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Abstract: Metasurfaces with a high engineering degree of freedom are promising building blocks
for applications in metalenses, beam deflectors, metaholograms, sensing, and many others. Though
the fundamental and technological challenges, proposing tunable metasurfaces is still possible.
Previous efforts in this field are mainly taken on designing sophisticated structures with active
materials introduced. Here, we present a generic kind of monolithic dielectric metasurfaces for
tunable light field modulations. Changes in the period number and surrounding refractive index
enable discrete and continuous modulations of spatial light fields, respectively. We exemplify this
concept in monolithic Lithium Niobate metasurfaces for tunable metalenses and beam deflectors. The
utilization of monolithic dielectric materials facilitates the ready integration of the metasurfaces with
both chip and optical fiber platforms. This concept is not limited by the availability of active materials
or expensive and time-consuming fabrication techniques, which can be applied to any transparent
dielectric materials and various optical platforms.

Keywords: light field modulations; monolithic metasurfaces; tunability; chip platform; fiber-optic platform

1. Introduction

Metasurfaces formed with artificial nanoscale features were introduced to tailor and
control light’s fundamental properties [1,2]. Following the pioneering work, considerable
efforts have been made to develop functional metasurfaces addressing various application
needs [3,4]. Overall, various types of light manipulations have been demonstrated, such
as amplitude tuning, wavefront modulations, and polarization controls. For amplitude
tuning, the light intensity of the reflection, transmission, or absorption of metasurfaces is
changed [5–7]. In wavefront modulations, the phase of a propagating beam is tailored for
focusing, steering, or others [8,9]. Polarization controls are of essential importance in cases
where beam formation, polarimetry, or optical trapping is required [10,11].

Benefitting from the continuous research on metasurfaces, tremendous new func-
tionalities have seen their successes, including metalenses [12,13], beam steering [14–17],
metaholograms [18], versatile polarization generations [19,20], nonlinear optics [14,21], and
many others. Remarkably, the achievements in design strategies, active materials, and tun-
ing mechanisms inspire the historical developments of tunable metasurfaces, which hold
the potential of dynamic light manipulations [22–25]. Basically, there are two tunability
strategies drawing the main attentions, including tailoring the properties of nanoscale fea-
tures [22] and modifying the surrounding medium [26]. Since then, tunable metasurfaces
have been the research hotspot laying the path to multifunctional devices.

Additionally, different from those metasurfaces with sophisticated structures [27,28],
monolithic configurations with both the nanoscale features and the substrate is the same
material that possesses intrinsic integration in optical circuits [29,30]. The realizations of
monolithic metasurfaces are mainly attributed to simultaneous optimizations of shape, size,
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and orientation of subwavelength resonators, which engineer the wavefronts and enable
the desirable optical responses [31–33]. More recently, emerging material has been explored
for monolithic metasurfaces [34]. Nevertheless, the monolithic configurations suffer from
weaker confinements of the electromagnetic field; therefore, there are larger difficulties
in design. However, few tunable devices based on monolithic metasurfaces have been
reported till now. In addition, extended configurations of these monolithic metasurfaces on
fibers are pending for flexible application scenarios.

Lithium niobate (LiNbO3, LN) has been regarded as an alternative material in the
photonics community owing to its commercial availability and multifunctional properties,
including excellent visible and infrared transparency and large nonlinear coefficients [35].
In this work, we present tunable monolithic metasurfaces for focusing and beam deflectors.
LN, as a representative dielectric material, is used. By varying the surrounding refrac-
tive index (SRI) continuously, the focal length of metalenses and the deflection angle of
beam deflectors can be tuned accordingly. In practice, active materials, e.g., liquid crys-
tal and phase-change materials, are the potential as the surrounding medium to enable
the tunability of the continuously tunable metasurfaces with elaborate fabrications in the
future [36,37]. Moreover, altering the nanopillar number in one supercell changes the
slope of the phase gradient of a metalens so that the deflection angle of beam deflectors
shifts discretely. The proof-of-concept of tunable monolithic metasurfaces is generic and
applicable to any transparent dielectric materials. More interestingly, this monolithic con-
figuration is readily compatible with various optical platforms, like chips and optical fibers.
Within the fiber-integrated framework, the combination of metasurfaces with optical fibers
benefits from two sides: one is the improved flexibility of metasurfaces in terms of practical
applications, and the other is the expanded functionality of fiber devices. For instance,
metasurfaces are attractive in scanning imaging, while flexible fiber-based metasurfaces
allow the opportunity for internal tissue endoscopy in vivo environments around medical
diagnosis. On the other hand, in practical scenarios, fiber devices are extremely essential,
and the implementation of metasurfaces on fiber would constitute a crucial step forward in
the multifunctionality of fiber devices, e.g., in-fiber collimator.

2. Materials and Methods

The dielectric metasurfaces consist of nanopillars with rationally-arranged sizes, which
are fabricated in monolithic materials, e.g., x-cut LN. Three-dimensional (3D) schematics
of a metalense are present in Figure 1a. The structure of the metasurface is rotationally
symmetric, allowing polarization-independent operations. The monolithic configuration
is freestanding itself in an optical circuit, as well as compatible with optical fiber or chip
platforms where the monolithic metasurfaces are integrated with one certain substrate
via a UV-cured adhesive layer, as shown in the Top and Bottom of Figure 1a, respectively.
The implementation can be achieved using an adopted transfer method that we used to
fabricate plasmonic fiber tips [38]. During this process, the key challenge is probably
the alignment issue. Indeed, taking advantage of the mature microscope and movement
control techniques, the alignment could be well conducted [39]. As generally shown
in Figure 1b, the nanopillar height H and array pitch P are optimized to provide 2π
phase coverage through a range of nanopillar diameters. For simplification, not otherwise
specified, two-dimensional (2D) simulation models in the x-z plane are built to investigate
the performances of monolithic dielectric metasurfaces. The simulations were carried out
using commercial software (Lumerical FDTD solution, Canada) with a laptop computer
(Intel Core i7-10510U CPU, 16 GB RAM). In the finite difference time domain (FDTD)
simulations, the spatial mesh grids are set as ∆x = ∆y = 10 nm. The source is set as a
plane wave along the z-axis with a center wavelength of 1550 nm. The polarization of
the incident beam is on the x-axis. For the convergence of the results, the temporal step
and simulation time is set as 0.0233507 fs and 10,000 fs, respectively. At the wavelength
of interest 1550 nm, the pitch P and the nanopillar height H are determined to be 1.2 µm,
and the width of the LN nanopillar varies to achieve the desired phase delay. In this
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way, the waveguiding effect is responsible for phase accumulation, especially for larger
nanopillar widths [40]. The corresponding phase delay and transmittance calculated by
the FDTD method depend strongly on the nanopillar widths. Additionally, the simulated
electric field profiles (standing-wave-like features) for LN nanopillar widths (500 nm and
1000 nm) verify the attributed waveguiding effect. The same anisotropic refractive index
(nxx = nyy = no = 2.211, nzz = ne = 2.138) is taken for LN [41] in our simulations. Note that in
the phase and transmittance simulations, periodic boundary conditions are used.
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Figure 1. (a) Schematic of a monolithic dielectric metasurface on fiber (Top) and chip (Bottom)
platform, respectively; (b) the phase delay and transmittance obtained via FDTD simulations of the
LN nanopillar as a function of width W. The insets are the cell diagram and electric field profiles for
W = 500 and 1000 nm from left to right, respectively.

According to the database in Figure 1b, the rational arrangements of LN pillars with
corresponding widths at their positions offer specifically functional metasurfaces at the
operation wavelength in transmission modes, such as metalens, beam deflectors, and many
others. Low material losses and compressed scattering effects guarantee a fairly high
transmission efficiency above 0.4 over the range of LN nanopillar sizes at the operation
wavelength of 1550 nm.

3. Results and Discussions
3.1. Continuously Tunable Metalens

In the transmission mode, metalenses focus a collimated incident beam into a spot,
i.e., the focal point. To accomplish this, the required profile of phase delay for a metalens
needs to follow the hyperboloidal relation:

ϕd(r, λd) = ϕr −
2π
λd

(√
r2 + f 2 − f

)
, (1)

where ϕr is the reference phase, r is the position of each dielectric element away from the
center, λd is the operation wavelength in free space, and f is the focal length.

To evaluate the focusing performance of the monolithic metalens, a metalens with a
lateral size of 50 µm and designed focal length of 100 µm was simulated by FDTD. The size
detail of the metalens can be found in Figure S1a (Supplementary Materials). The proposed
metalens possesses a numerical aperture (NA) of 0.24. The calculated results of the power
intensity of the metalens along the propagation direction (z-axis) are depicted in Figure 2a.
It is clear that the transmitted beam propagates and focuses on a spot. The longitudinal and
horizontal cuts of the focal behavior are marked with green and blue dashed lines, which
are exhibited in Figure 2a,c, respectively. The calculated focal length is 97.85 µm agreeing
well with the designed value. Well, the focal full-width at half-maximum (FWHM) of
2.79 µm exhibits the outstanding performance of the proposed monolithic metalens. Note



Nanomaterials 2023, 13, 69 4 of 11

also that in the FDTD calculation about metalenses, perfect matching layers (PMLs) bound-
ary conditions are used. Additionally, the electric field profile near the metalens is shown
in Figure S2 in the Supplementary Materials. Lobes are visible in the field distributions ver-
ifying the existence of waveguide modes along with Fabry–Perot effects responsible for the
phase delay in the monolithic metasurfaces. Similar evidence could be found in previous
work [29,34]. It should be noted that the current designs are for single-wavelength func-
tionality; any wide-band operations would suffer from chromatic aberrations (Figure S3 in
the Supplementary Materials), whereby achromatic metasurfaces are required. Moreover,
monochromatic aberrations involve off-axis deviations of the incidence. Similar to common
hyperbolic metalenses described by Equation 1, the designed monolithic metalens offers
reliable focusing performances for paraxial cases [42]. More details can be found in the
Supplementary Materials (Figure S4).
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Figure 2. (a) Intensity profiles of the monolithic metalens along the propagation direction (z-axis) in
the x-z planes. The longitudinal and horizontal cuts of the focal behavior are marked with green and
blue dashed lines, as shown in (b,c), respectively.

Furthermore, we demonstrate the tunability of the monolithic metalens by adjusting
the surrounding refractive index (SRI) where the metalens works. As summarized in
Figure 3, with the SRI increasing from 1 to 1.4, the focal spot moves forward, and the focal
length rises from 97.85 to 159.44 µm almost linearly. In addition, the focal spot slightly
broadens horizontally, with the FWHM changing from 2.79 to 3.27 µm by 15%.
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3.2. Discretely Tunable Beam Deflectors

A beam deflector with a phase gradient can shape the wavefront of the transmitted
light and modulate the deflected light in one desired direction. The gradient phase profile
of a beam deflector is described by the generalized Snell’s law as:

nt sin θt − ni sin θi =
λd
2π

dϕd
dx

, (2)

where θt and θi are the incidence and deflection angles, respectively. nt and ni are the
corresponding refractive indices of media at incidence and transmission sides, respec-
tively. dϕd/dx is the phase gradient governing the beam deflection behaviors. For normal
incidence (θi = 0) and air medium (nt = 1), Equation (2) can be transformed into

dϕd(x, λd, θt) =
2π
λd

dx sin θt, (3)

Equation (3) presents freedom to engineer the deflection behaviors. For beam deflectors
with 2π phase coverage, smaller lateral sizes lead to sharper phase gradients, therefore, larger
deflection angles. As illustrated in Figure 4, to realize the phase gradient, a supercell consisting
of a number of LN nanopillars with the widths rationally chosen is designed (Figure S1b
in the Supplementary Materials). It is clear to see that different numbers of LN nanopillars
with various widths donated by dashed lines and dots are arranged in one supercell to cover
a full 2π phase delay range. By changing the nanopillar number from 3 to 10 within one
supercell, the slopes of the phase gradient vary along with a full 2π phase accumulation over
the supercell. According to Equation (3), the deflection angle is tuned discretely.
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Figure 4. Schematic of the discretely tunable beam deflector. The dashed lines and dots represent the
varied supercells with different numbers of nanopillars of metasurface deflectors.

Figure 5 summarizes the simulated phase profiles of the deflection behaviors of the
monolithic beam deflectors with the supercell pitch Ps varying (Ps = N × P, N = 3, 4, . . . , 10).
Note also that in the FDTD calculations here, plane-wave source and periodic boundary
conditions are used. In order to visualize the deflection behaviors in the infinite metasurface
deflectors, phase profiles of the deflected fields are obtained in simulations. As shown in
Figure 5, when the incident light is illuminated from the bottom, each metasurface deflects
the transmitted beam into one designed direction with high tunability. As the number of
LN nanopillars forming the supercell increases from 3 to 10, the desired deflection angle
through the monolithic metasurface deflector reduces from 25.50◦ to 7.42◦ discretely, while
the actually simulated deflection angle changes from 24.54◦ to 6.96◦ correspondingly. The
simulated and designed results show a good agreement with each other. The phase profiles
clearly indicate the plane-wave features of the deflected light, suggesting the superior
performances of the discretely tunable beam deflectors.
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3.3. Continuously Tunable Beam Deflectors

Beyond monolithic metasurface metalenses, we demonstrate continuously tunable
beam deflectors based on monolithic metasurfaces. As shown in Figure 6, four groups of
supercells with six LN nanopillars are arranged to form the finite-size deflector. When a
Gauss beam (indicated by the horizontal red bar) is injected into the deflector bottom, the
transmitted light will deflect, and the wavevector k will orientate a certain direction. More
interestingly, it is found that the deflection angle (wavevector orientation) strongly depends
on the SRI. As the SRI rises from 1 to 1.4, the deflection angle decreases from 12.43◦ to 9.07◦

gradually and continuously. In practice, active materials, e.g., liquid crystal and phase-
change materials, are available as the surrounding medium to enable the tunability of the
continuously tunable beam deflectors. Continuous tunability offers a unique opportunity
in high-performance light field modulations.
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the deflector. Bottom: simulated intensity profiles of the deflected beams under varied SRI.

The above-designed monolithic metasurface deflectors consist of finite supercells of
periodic LN nanopillars. Here, we present that the periodic lattice of LN nanopillars is
not essential for the deflection function. By an elaborate arrangement of LN nanopillars
offering a required phase difference throughout the metasurface size, the desired deflection
angle is possible with a finite non-periodic lattice of LN nanopillars, as estimated by [43]

sin θt =
λd
2π

dϕd
w

, (4)
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where w is the whole lateral size of metasurfaces with nanopillars. Therefore, throughout the
metasurface deflectors, the deflection angle is tunable by increasing the total phase difference
or decreasing the metasurface size. Considering a monolithic LN metasurface deflector of
30 µm lateral size, a 25.91 rad phase difference would enable a 12.3◦ beam deflection.

As shown in Figure 7a,b, the lattice pitch and duty cycle of LN nanopillars are mapped
to reveal the dependencies of transmittance and phase accumulation. By choosing the LN
nanopillars with proper pitch and duty cycles (Figure S1c in the Supplementary Materials),
a 25.91 rad phase difference is realized over a 30 µm metasurface for 12.3◦ beam deflection,
as the diagram shows in Figure 7c. By altering the SRI from 1 to 1.4, a continuously
tunable deflection behavior is observed with the finite non-periodic monolithic metasurface
deflector. The deflection angle reduces from 12.3◦ in air (SRI = 1) to 8.9◦ in a medium of
SRI = 1.4. The 3.4◦ tunability range is comparable with that of the finite periodic metasurface
deflector present above.
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and duty cycle, respectively. (c) Schematic and (d) SRI-tuned deflection behaviors of the finite
non-periodic monolithic metasurface deflector.

The performances of freestanding and chip-based monolithic metasurfaces are ba-
sically consistent since the illumination conditions and metasurface structures are the
same despite the difference in supporting medium, i.e., monolithic metasurface body or
extra materials. Indeed, the monolithic metasurfaces are compatible with optical fibers,
which brings out those fiber meta-tips [44–47]. In terms of fiber-integrated monolithic
metasurfaces, similar results can be achieved. As shown in Figure 8, a metalens and a
beam deflector with the same parameters as above are integrated into a multimode fiber,
respectively. The diameters of the fiber cores are the same large as those of the corre-
spondingly supported metasurfaces (50 µm for metalens and 28.6 µm for beam deflector,
respectively). The illumination source from fibers is a mode source with a fundamental
mode in simulations which is different from the aforementioned plane wave or Gauss beam.
It can be clearly seen from Figure 8a that the fiber-based metalens is able to focus the light
beam into a spot, while the focal length and FWHM are 96.04 and 3.43 µm, respectively.
These results are consistent with those based on a freestanding configuration in Figure 2.
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Figure 8b presents the deflection behavior of a monolithic metasurface deflector on a fiber
tip. It is found that the fiber-based deflector offers a comparable deflection performance to
that of the above continuously tunable beam deflectors (Figure 6, SRI = 1) with a deflection
angle of 12.41◦. The slight performance differences between the fiber-based monolithic
metasurfaces compared with those of the above freestanding monolithic metasurfaces may
be attributed to the illumination difference. Therefore, aiming at fiber-integrated circuits,
the structures of the monolithic metasurfaces can be optimized specifically.
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fiber tips, respectively. The diameter of the fiber core is as large as that of the correspondingly
supported metasurface, i.e., (a) 50 µm and (b) 28.6 µm.

As extended contributions to the metasurface family of beam steering and varifocal
lens, our monolithic dielectric metasurfaces take special advantages. As summarized
in Table 1, our designs offer moderate modulation ranges both in beam steering and
varifocal lens. Most importantly, the monolithic metasurfaces proposed in our work take
the outstanding advantage of compatibility with varied optical platforms, i.e., chips and/or
fibers. This flexibility would boost the variety of applications. Moreover, our designs
exhibit good tunability continuities, excluding the discretely tunable deflectors through
nanopillar number changing within one supercell.

Table 1. Performance comparison among typical tunable metasurfaces.

Applications Operation Wavelength Tunability Range Tunability Continuity Compatibility Ref.

Beam steering

0.65 µm 11◦ No Low [48]
0.672 THz 32◦ No Low [49]
1.522 µm 22◦ No Low [50]

5 THz 35.5◦ Yes Low [51]
0.917 µm 9.66◦ No Moderate [52]
1.55 µm 32◦ No Moderate [53]

0.124 µm 8.5◦ No High [54]
1.55 µm 27.58◦ No High

This work1.55 µm 3.4◦ Yes High

Varifocal lens

1.522 µm 10 µm No Low [50]
0.633 µm 100 µm Yes Low [55]
0.532 µm 115 mm Yes Low [56]
1.55 µm 61.6 µm Yes High This work
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4. Conclusions

This work presents a design route for fabricating tunable metasurfaces with monolithic
dielectric materials. With metalenses and beam deflectors exemplified, discrete and contin-
uous modulations of spatial light fields are realized through changes in nanopillar period
number and refractive index surrounding the monolithic Lithium Niobate metasurfaces.
This concept, with intrinsic integration to both chips and optical fibers, allows the efficient
construction of tunable metasurfaces for plenty of applications taking advantage of a wide
range of emerging dielectric materials.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/nano13010069/s1, Figure S1: Nanopillar sizes of (a) the
metalens, (b) the beam deflectors with varied numbers of nanopillars within one supercell, (c) the
beam deflector based on non-periodic arrangement of nanopillars; Figure S2: Numerical result of the
electric field profile of the metalens at wavelength of 1550 nm; Figure S3: Focusing performances of
the monolithic metalens at different wavelengths (a) 1400 nm, (b) 1550 nm, and (c) 1600 nm; Figure
S4: Optical aberrations of the monolithic metalens for paraxial cases with varied AOIs. (a) Simulated
intensity profiles and (b) MTF.
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