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Abstract: We fabricated ferroelectric films of the organic molecular diisopropylammonium chlo-
ride (DIPAC) using the dip-coating technique and characterized their properties using various
methods. Fourier-transform infrared, scanning electron microscopy, and X-ray diffraction analysis
revealed the structural features of the films. We also performed ab-initio calculations to investi-
gate the electronic and polar properties of the DIPAC crystal, which were found to be consistent
with the experimental results. In particular, the optical band gap of the DIPAC crystal was es-
timated to be around 4.5 eV from the band structure total density-of-states obtained by HSE06
hybrid functional methods, in good agreement with the value derived from the Tauc plot analysis
(4.05 ± 0.16 eV). The films displayed an island-like morphology on the surface and showed increasing
electrical conductivity with temperature, with a calculated thermal activation energy of 2.24 ± 0.03 eV.
Our findings suggest that DIPAC films could be a promising alternative to lead-based perovskites
for various applications such as piezoelectric devices, optoelectronics, sensors, data storage, and
microelectromechanical systems.

Keywords: diisopropylammonium chloride (DIPAC) structural; optical; electrical; FTIR; SEM; electric
polarization; ab initio calculations

1. Introduction

Recently, molecular ferroelectrics have emerged as a promising alternative to tra-
ditional inorganic ferroelectrics due to several advantageous properties, such as multi-
functionality, low density, low cost, and solution processability. These properties make
them potential candidates for the development of all-organic electronic devices. Ferroelec-
tric compounds are characterized by exhibiting ferroelectric–paraelectric phase transitions.
Such transitions occur at critical temperatures (Tc) [1]. Conventional inorganic polar crys-
tals such as lead zirconate titanate and barium titanate have been used for decades, owing
to their extraordinary ferroelectric properties. However, because of their toxicity effects
on the environment and hard processing in addition to their heavyweight, manufactured
molecular ferroelectric crystals attract more attention due to their appealing and brilliant
properties, such as being lightweight, easy to process, and environmentally friendly [2,3].
However, the practical applications of molecular ferroelectrics have been limited due to
their relatively low melting and Curie temperatures, as well as their small spontaneous
polarization. To address these limitations, recent studies have investigated the ferroelectric
properties of diisopropylammonium halide (DIPAX, X = Cl, Br) molecular crystal systems,
which have demonstrated enhanced ferroelectricity [4–6].
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As a ferroelectric material, DIPAC has a strong tendency for polarization switching,
enabling it to be employed for several applications, such as nonlinear capacitors, pyro-
electric, data storage, and electro-optical devices [7,8]. DIPAC has been reported to be an
inexpensive and easy-to = prepare organic salt with Curie temperature (Tc = 440 K) [9–17].
It exhibits a large spontaneous polarization (Ps) of about 8.9 µC/cm2. This value is ex-
tremely large compared to those of poly(vinylidene difluoride) (PVDF, ≈8 µC/cm2) and
Nylon-11 (≈5 µC·cm2).

In a previous study, we conducted both computational and experimental investigations
of the structural, optical, electronic, crystallographic, and physical properties of thin films
composed of diisopropylammonium bromide (C6H16BrN, DIPAB). Ab initio simulations
were also implemented to calculate the key structural parameters. as well as the bandgap
energy of DIPAB. The measured and calculated electronic and optical properties of the
DIPAB thin films reveal a fairly good agreement between the measured and calculated
parameters [1]. In addition, the optical properties of synthesized DIPAB thin films were
measured and interpreted. The study was the first of its kind. Previous works were geared
toward investigating and interpreting the interplay between the electrical and dielectric
properties of DIPAB films. The significance of investigating the optical properties of thin
films composed of diisopropylammonium halides (DIPAX, X = Br, Cl) lies in their potential
use in a range of applications, including optical lenses, display panels, and solar cells [18].

Few attempts to grow thin-film-based DIPAX (X: F, Cl, Br, and I) have been made
on surfaces and typically end up with the formation of randomly distributed microcrys-
tals [19,20]. A way to extend the application of these materials in devices is to control their
spontaneous tendency to crystallize in order to obtain homogeneous thin films [21]. The
main objective of this study is to optimize the optical and electrical properties of ferroelectric
thin films made from diisopropylammonium chloride (DIPAC) that are both cost-effective
and high-performing. Successful optimization of these key parameters ensures the scaled
fabrication of multifunctional optoelectronic devices that are low cost and that operate
more effectively than current devices. In particular, we focus on investigating and inter-
preting the structural, optical, electronic, crystallographic, and physical properties through
experimental means. By doing so, we aim at monitoring the potential characteristics of
these materials.

In parallel, first-principle simulations were conducted to mimic DIPAC thin films
to support the experimental investigations [1]. DIPAC has attracted the attention of re-
searchers as a novel organic ferroelectric material. owing to its promising ferroelectric
characteristics such as high spontaneous polarization (Ps ≈ 8.9 µC/cm2) at room temper-
ature and high-density organic ferroelectric RAM (FeRAM). It exhibits extremely high
Curie temperatures (Tc = 440 K) [5,7]. Therefore, fabricating high-density FeRAM based on
ferroelectric DIPAC thin films becomes possible. DIPAC has been extensively investigated
for its promising ferroelectric characteristics using various techniques, such as dielectric
spectroscopy and X-ray diffraction, to analyze its electrical and structural properties [22–25].
In this study, we focus on the optical properties of DIPAC thin films as potential candidates
for the development of multifunctional scaled optoelectronic devices.

2. Experiments and Calculations

The main ingredient used to prepare DIPAC thin films is diisopropylammonium
(DIPA) (C6H16N; Mw = 102.20 g/mol) that was purchased from AK Scientific (Union City,
CA, USA). Other materials such as hydrochloric acid (HCl; Mw = 36.46 g/mol) and 12-
Crown-4 (C8H16O4) (Mw = 176.21 g/mol) were purchased from Sigma-Aldrich (Darmstadt,
Germany). To prepare the DIPAC (C6H16NCl) solution, 0.999 mL of diisopropylammonium
cation and 0.001 mL of hydrochloric acid anion were variegated in 100 mL absolute ethanol
in a 1:1 molar ratio by utilizing slow evaporation with continuous magnetic stirring at room
temperature. The stabilizer (0.01 mL of 12-crown-4) was then added to the solution while
maintaining continuous stirring for 1 h at room temperature. The synthesized DIPAC thin
film was coated on a fused silica glass substrate using a dip coating technique for 2 h. The
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entire mixture was then dried at 40 ◦C overnight under normal air atmospheric pressure.
The thickness of the film was calculated to be about 250 ± 20 nm, using the mathematical
model of Al Bataineh et al. [26].

The Fourier transform infrared spectroscopy (FTIR) spectra of the synthesized DIPAC
crystalline thin films were obtained using a Bruker Tensor 27 spectrometer (Karlsruhe,
Germany) in the spectral range of 4000–400 cm−1. Crystalline properties of as-prepared
thin films were investigated by measuring X-ray diffraction (XRD) patterns. The patterns
were accurately measured by employing a Malvern Panalytical Ltd. (Malvern, UK) diffrac-
tometer facility at room temperature with CuKα radiation (0.1540598 nm). The incident
angles were varied from 30◦ to 60◦ with a step of 0.02◦ and an energy resolution of 20%.
The main objective of the current work was geared toward optimizing the optical and
electrical properties of DIPAC thin films.

To elucidate a deeper understanding of the optical properties of the synthesized DIPAC
thin films, a UV–Vis spectrophotometer (Hitachi U-3900H, Tokyo, Japan) was utilized to
measure the UV–Vis spectra in the 250–700 nm spectral range. Electrical properties were
crucial in our investigations of this novel material. The 2D electrical conductivity sheets
were obtained at room temperature using a 4-point probe (Microworld Inc., New Jersey,
USA) equipped with a high-resolution multimeter (Keithley 2450 Sourcemeter, Beaverton,
OR, USA).

To comprehensively deepen the understanding of the structural and physical proper-
ties of DIPAC films, ab initio simulations within the framework of the density functional
theory [27,28] were utilized to conduct a detailed investigation of DIPAC. The electronic
structure was computed by employing the projector augmented wave (PAW) method [29],
as implemented in the Vienna ab initio simulation package (VASP) [30]. The Perdew–Burke–
Ernzerhof (PBE) exchange-correlation form of the generalized gradient approximation
(GGA) [31,32] was implemented to model the layered DIPAC molecule. Moreover, a hy-
brid functional method [33] based on the Fock exchange in real space was introduced to
designate a broad range of molecular properties. The HSE06 hybrid functional method was
applied to determine the electronic properties of the polar DIPAC crystal [34,35]. The key
parameters, such as optical bandgap, were determined using the HSE06 hybrid functional
method. This method was anticipated to yield a more accurate band gap of DIPAC than
the values previously reported using the GGA approach (an approach that was proven to
underestimate the value of the bandgap).

It is worth mentioning that the samples prepared in this work can be easily repro-
ducible. The materials used to prepare samples are easily available and can be purchased
immediately. The synthesis technique used to prepare samples is straightforward. Indeed,
all samples of different sizes and features were reproduced several times. The characteriza-
tion techniques of the samples employed in this work have shown that different samples
yield the same results. Since the samples were subjected to same preparation conditions,
the obtained results on different samples were statically the same. This was an adequate
indication that the samples were reproducible. Moreover, the materials used, the prepara-
tion techniques employed, and the characterization methods utilized were inexpensive and
easy to perform.

3. Results and Discussion
3.1. Chemical Properties

The chemical structure of DIPAC is mainly composed of DIPA molecules bonded
together via chloride ions. It exhibits a large value of spontaneous polarization around
Ps ∼ 8.82 µC·cm−2 [4]. The FTIR spectra of the DIPAC film (Figure 1) were investigated
to study the nature of the interaction between DIPA and chloride ions. The vibrational
bands between 2400–3000 cm−1 were assigned to N–H stretching vibrations, while the
vibrational band at 2095 cm−1 was associated with N–H bending vibrations. The -CH3
stretching bands appeared at 1585 cm−1, while the C–N and C–O stretching bands were
located in the 1250–1400 cm−1 and 1000–1200 cm−1 spectral ranges. The C–Cl stretching
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band was the main vibrational band that determined the interaction between the DIPA and
Cl and appeared in the 500–1000 cm−1 spectral range.
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Figure 1. The FTIR spectrum of DIPAC.

3.2. Crystal Structure and Morphological Properties

The XRD pattern (Figure 2) of DIPAC film exhibits peaked at 12.24◦, 16.78◦, 22.46◦,
25.04◦, 27.42◦, 31.98◦, and 32.86◦, corresponding to DIPAC crystallographic planes indexed
by Miller indices ((001), (110), (020), (002), (012), (201), and (300), respectively). The obtained
XRD pattern clearly indicated the polycrystalline monoclinic structure of DIPAC molecule.
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Figure 2. The XRD patterns of the DIPAC thin films.

The monoclinic structure of the DIPAC molecular crystal was also determined by
DFT-based calculations, with lattice constants of a = 7.495 Å, b = 7.818 Å and c = 7.655 Å,
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α
◦
= γ

◦
= 90

◦
and β

◦
= 114.640

◦
(Table 1, Figure 3). The lattice constants and angle β

◦

were calculated using the following formula:

1
d2 =

1
sin2 β

(
h2

a2 +
k2sin2 β

b2 +
l2

c2 −
2hlcos β

ac

)
(1)

Table 1. The structural properties of polar monoclinic phase of DIPAC molecular crystal.

Parameter DFT Exp.

Empirical formula C6 H16 Cl N C6 H16 Cl N
Polarization [µC·cm−2] 8.90 –

Crystal system Monoclinic Monoclinic
Space group P21 P21

Lattice parameter a (Å) 7.495 7.239
Lattice parameter b (Å) 7.818 7.901
Lattice parameter c (Å) 7.655 7.397

α
◦

90 90
β
◦

114.640 114.870
γ
◦

90 90
Crystallite size (nm) – 10

Strain – 0.0095
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The lattice constants (a, b, and c) of the monoclinic DIPAC molecular crystal were
determined using the formula presented, where d represents planar spacing and was
computed using Bragg’s law with X-ray wavelength λ (0.1540598 nm) and incidence angle
θ. The values of the lattice constants of the DIPAC film were calculated and tabulated, as
shown in Table 1. The results obtained through DFT calculations were compared to the
XRD experimental outcomes, as presented in Figure 2, indicating good agreement.

The crystallite size (D) and lattice strain 〈ε〉were calculated by employing the Williamson–
Hall (W–H) method modified by the uniform deformation model (UDM), according to the
previous literature [33]. The estimated values of the crystallite size D and the microstrain
〈ε〉 of DIPAC film were tabulated, as shown in Table 1.

As shown in Figure 4, SEM micrographs were taken at 50, 10, and 1 µm enlargement
scales to observe the surface of DIPAC film. It was found that the film had cracks that
were distributed in an island-like pattern. The cracks on the surface provided paths for the
penetration of chlorides into DIPA molecules, which led to the reinforcement of chloride-
induced island-like patterns. The morphology of the elongated microcrystals was observed
to be island-shaped with a common orientation over a large area for all enlargement scales.
The width and height distributions of the microcrystals were greatly influenced by growth
conditions. The size of the single unit was approximately 100 nm. Additionally, the
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short-scale micrograph (1 µm) indicated that the coarse units of the cracks also exhibited a
micro-sheet-like pattern.
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Figure 4. The SEM micrographs of DIPAC film at different enlargement scales (a) 50, (b) 10, and (c) 1 µm.

3.3. Optical Properties

The optical properties of DIPAC film were examined using a UV-Vis spectrophotometer
at room temperature within the spectral range of 250–700 nm. The transmittance spectra
showed a rapid increase in values from 0 to 90% as the incident photon wavelength
increased from 300 nm to 370 nm, with negligible change in values as the wavelength
increased from 370 nm to 700 nm (Figure 5a). The decrease in the transmittance spectra
below the absorption edge can be attributed to the interband transition. The band gap
energy was determined using Tauc plot [34] and found to be 4.05 ± 0.16 eV (inset of
Figure 5a).
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Figure 5. (a) Transmittance, (b) refractive index, and (c) extinction coefficient of DIPAC film. The
inset in (a) represents the Tauc plot of DIPAC film.

The refractive index and extinction coefficient were calculated using transmittance
and reflectance spectra, based on previous literature [26,35]. The refractive index exhibited
normal dispersion in the (350–700) nm spectral region, with a continuous decrease in
values from 1.88 to 1.54 as the wavelength of the incident photon increased (Figure 5b); the
refractive index spectra of DIPAC film was affected with the cracks behavior. In addition,
the spectral region of (250–350) nm showed anomalous dispersion, due to the resonance
phenomenon, occurring when the frequency of the incident photon matched the plasma
frequency of the vibrating electric dipoles. The extinction coefficient showed a decrease in
the high energy region (300–350) nm and vanished for wavelengths greater than 400 nm,
indicating that the DIPAC film was transparent in the visible region (Figure 5c).

3.4. Electric Polarization of DIPAC

The Berry phase quantum mechanical approach was used to describe the macroscopic
polarization of DIPAC [28,29,36–38], and the difference in total polarization between two
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phases was the spontaneous polarization Ps. The equilibrium lattice parameters were
slightly reduced by performing the Van der Waals correction to energy using the DFT-D3
method with Becke–Jonson damping in VASP [39,40]. According to the calculations, the
spontaneous polarization of α-DIPAC was Ps = 8.82 µC/cm2, which was consistent with
previous theoretical results [41].

DIPAC has the highest Tc among known molecular ferroelectrics (Tc = 440 K). These
values of Ps and Tc suggest that DIPAC has the potential to be used in high-temperature
piezoelectric and optoelectronic devices. The energy difference between the polar and
paraelectric phase is 12.5 eV, which can be used to determine the Curie temperature of
DIPAC crystal [42,43]. The ferroelectric–paraelectric phase transition occurs at 440 K, which
is well above room temperature, making DIPAC an excellent alternative to perovskites for
high-temperature device applications [44].

The electrical conductivity of the DIPAC film was measured using a 4-point probe
at various temperatures ranging from 300 K to 323 K. A conductivity mapping of the
DIPAC film (Figure 6a) indicated that the film had a low conductivity with a non-significant
distribution, averaging 3.6 µS/cm. The average electrical conductivities (σ) for tempera-
tures 300 K, 308 K, 313 K, 318 K, and 323 K were plotted against (1000/T(K)), as shown in
Figure 6b, and fitted to the Arrhenius formula. The Arrhenius-like behavior of σ is described
as σ = σ0exp(−Ea/KBT), where σ0 is the pre-exponential factor, T is the temperature [K],
KB stands for the Boltzmann constant, and Ea is the activation energy [45]. The Ea param-
eter was deduced from the electrical conductivity was found to be 2.24 ± 0.03 eV. The
perfect fit indicated that the system is thermally activated. This behavior can be directly
related to the significant surge of the cations’ Ea value, leading to the cation jump to the
next coordinating site and, thus, increasing the energy of segment vibrations [46] which, in
turn, leads to abrupt segmental motion counter to the hydrostatic pressure [47]. In addition,
increasing the temperature enhances a significant carrier concentration mobility of the free
electrons [46,48].
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3.5. Electronic Properties

We optimized the lattice parameters of DIPAC using a total energy minimization
approach and followed the Hellmann–Feynman (HF) forces on the ionic sites in the unit
cell of DIPAC. The HF forces were minimized to be as small as 0.002 eV/Å. We calculated
other key parameters, such as the density of states (DOS) and the band structure of DIPAC.
The electronic band structure of polar DIPAC was computed using the HSE06 method, as
demonstrated in (Figure 7a). The calculated bandgap energy was found to be approximately
4.5 eV, indicating that polar DIPAC is a wide-bandgap insulator. The DOS and partial
DOS (PDOS) of DIPAC were also calculated using the HSE06 method (Figure 7b). The
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PDOS plots indicated that the valence band consists mainly of Cl (p) orbitals, while the
conduction band is dominant by C(p), C(s), N(p), and N(s) states. This confirms the fact
that the interband transitions mainly occurred from the valence bands of Cl atoms to the
conduction bands of C and N atoms in the DIPAC molecule.
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4. Conclusions

In conclusion, as-synthesized DIPAC thin films are primarily composed of DIPA
molecules that are interconnected through chloride ions, as revealed by XRD as well as
by FTIR measurements. The measured optical bandgap value of DIPAC films indicated
that it behaves as an insulator and exhibits excellent dielectric properties. We obtained
high-transmittance value in the 300–700 nm spectral range in the DIPAC film. DIPAC
exhibited a wide optical bandgap of 4.5 eV. Increasing the temperature enhanced the
available free volume around the DIPAC chains significantly. Consequently, higher ion
mobility and thermally activated electrical conductivity of DIPAC films were observed
in this work. Using the Berry Phase Approach (BPA), polar DIPAC was found to exhibit
a ferroelectric phase transition temperature of 440 K with a large value of spontaneous
polarization of 8.82 µC/cm2. This spontaneous polarization is comparable to those of
certain environmentally harmful perovskites, indicating that DIPAC has the potential to be
a suitable alternative for high-temperature piezoelectric-based applications. The electrical
conductivity of DIPAC was measured and the activation energy was determined to be
2.24 ± 0.03 eV. The system was found to be thermally activated, and this behavior can be
attributed to the increase in cation thermal activation energy. This increase triggered the
cation to jump to the next coordinating site. This jump induced a significant increase in
the segmental vibrations energy, which in turn led to more segment motion to counter the
increase in the hydrostatic pressure. Thermal agitations induced by the increase of the
temperature enhanced the mobility of the free electrons significantly. Overall, the structural,
optical, electronic, and electrical properties of DIPAC thin films measured and interpreted
in this work indicate that these films could be potential candidates for the fabrication of a
promising new generation of efficient multifunctional optoelectronic devices for a wide
range of technological applications.
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