
Citation: Liu, C.; Du, G.; Guo, Q.; Li,

R.; Li, C.; He, H. Fabrication and

Characterization of Polylactic Acid

Electrospun Wound Dressing

Modified with Polyethylene Glycol,

Rosmarinic Acid and Graphite Oxide.

Nanomaterials 2023, 13, 2000.

https://doi.org/10.3390/

nano13132000

Academic Editor: Mikhael Bechelany

Received: 12 June 2023

Revised: 28 June 2023

Accepted: 30 June 2023

Published: 3 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nanomaterials

Article

Fabrication and Characterization of Polylactic Acid Electrospun
Wound Dressing Modified with Polyethylene Glycol,
Rosmarinic Acid and Graphite Oxide
Chengyi Liu 1, Guicai Du 1, Qunqun Guo 1 , Ronggui Li 1, Changming Li 2,* and Hongwei He 3,*

1 College of Life Sciences, Qingdao University, Qingdao 266071, China; m17806282245@163.com (C.L.);
duguicai@qdu.edu.cn (G.D.); gqunqun@163.com (Q.G.); lrg@qdu.edu.cn (R.L.)

2 Schneider Institute of Industrial Technology, School of Automation, Qingdao University,
Qingdao 266071, China

3 Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing,
Qingdao University, Qingdao 266071, China

* Correspondence: lichangming@qdu.edu.cn (C.L.); hehongwei@qdu.edu.cn (H.H.)

Abstract: Polylactic acid (PLA) is a biodegradable polymer made from natural sources, and its
electrospinning (e-spinning) nanofiber membrane doped with antibacterial ingredients is widely
used in the field of medical dressings. In this research, 9 wt% of rosmarinic acid (RosA) and 0.04 wt%
of graphite oxide (GO) with synergistic antibacterial activity were introduced into the e-spinning PLA
precursor solution, and the obtained PLA nanofiber membrane showed good antibacterial properties
and wound healing effects. At the same time, a nonionic amphiphilic polymer, polyethylene glycol
(PEG), was also introduced into this system to improve the hydrophilicity of the e-spinning membrane
for wound healing application. The morphological characterization showed the RosA/GO and
PEG did not affect the e-spinning of PLA. The tests of mechanical performance and wettability
demonstrated that PEG and RosA/GO incorporated in PLA have migrated easily to the surface of the
fiber. The e-spun PLA/PEG/RosA/GO membrane showed good antibacterial activity and promoted
initial wound healing quickly, which would be a promising application in wound dressing.

Keywords: PLA nanofiber; electrospinning; rosmarinic acid; wound healing

1. Introduction

The skin is the organ in the human body that has the greatest contact area with the
outside world. It has functions that resist the external environmental stimuli, such as
antimicrobial functions and regulation of the body temperature. The skin exposed to the
environment is also the most vulnerable, incurring injuries such as burns, frostbite and
cuts [1]. Wound healing is a continuous process, and the inflammation that is caused
ordinarily by bacterial infections results in a decrease in the wound healing rate [2]. Wound
dressings are important medical materials that promote wound healing. A qualified and
efficient wound dressing needs to have the effect of reducing the risk of bacterial infection
and controlling the occurrence of inflammation [3,4].

Electrospinning (e-spinning) has been a rapidly developing technique for preparing
nanofiber non-woven membranes in the past three decades, which have a wide range
of applications, such as filtration, environmental protection, energy, biomedicine, food
packaging and other fields [5–7]. The electrospun (e-spun) membranes utilized in tissue
engineering and wound dressings has become a hot topic in the research and development
of e-spinning technology [8–12]. Compared with traditional wound dressings, the fiber
mesh substrate composed of e-spun nanofibers has a smoother surface and structure close to
the natural extracellular matrix (ECM), which is good for cell adhesion, encapsulation and
the protection of various bioactive substances [13,14]. Some e-spun membranes of natural
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and synthetic polymers or their composites with biocompatibility and biodegradability
have been employed as substrates for wound dressings [15,16]. PLA is a thermoplastic, high-
modulus and high-strength polymer that can be produced from renewable resources such as
corn and potatoes. It has attractive properties, including biocompatibility, biodegradability
and harmless degradation products [17]. PLA e-spun fiber membranes could also be
used in biomedical engineering [18,19], wound dressings [12,20,21], etc. Although PLA
has antibacterial effects to some extent [22], as a wound dressing, better antibacterial
properties are needed by adding antibacterial active substances such as nano-silver [23],
ZnO [24], plant extracts [25–28] or antibiotics [29]. To improve the hydrophilicity of PLA
e-spun membranes as wound dressings, both hydrophilic polymers and antibacterial
active ingredients were introduced into the PLA e-spun membranes, such as chitosan and
aloin [30], chitosan/starch/zinc oxide [31], hyperbranched polyglycerol and curcumin [32],
beta cyclodextrin/canamaldehyde/[33], etc.

Due to its excellent optoelectronic properties, mechanical performance and large
specific surface area, various graphene and its derivative products have emerged since
it was discovered [34]. Graphene, oxide graphene (GO), reduced graphite oxide (rGO)
and their derivatives have also attracted great attention in the biological community due
to their excellent biocompatibility and low cytotoxicity [35]. Several kinds of antibacte-
rial GO derivative or composite have been developed, such as, silver-modified GO [36],
clarithromycin-loaded GO composite [37], ornidazole-loaded graphene [38] chlorophyllin
functionalized GO [39]. Rosmarinic acid (RosA) is a natural polyphenolic acid compound
with strong antioxidant properties, as well as antibacterial and anti-inflammatory prop-
erties [40]. RosA has demonstrated its important applications in pharmaceuticals, food,
cosmetics, etc.

In this research, biodegradable polymer PLA was used as the e-spun nanofiber material
matrix, and GO/RosA introduced as the synergistic antibacterial and anti-inflammatory
active ingredient to study the effect of their addition on e-spinning of PLA and on the
antibacterial synergistic effect of the e-spun composite membrane. At the same time,
polyethylene glycol (PEG) was added as well, as a safe and biodegradable polymer to
improve the hydrophilicity of PLA e-spun membranes. The performance characterization
of the obtained PLA/PEG/RosA/GO nanofiber membrane and its evaluation on wound
healing in mice as a wound dressing material, showed that the e-spun membrane could be
employed as a biodegradable, absorbable and good antibacterial wound dressing.

2. Materials and Methods
2.1. Materials

Commercial polylactic acid (PLA) polymer, IngeoTM biopolymer 4032D, with a melt
flow rate (MFR) = 7 g/10 min (210 ◦C, 2.16 kg) by NatureWorks (Minneapolis, MN, USA),
was purchased from a distributor, Suzhou Ziyunxuan Plastic Co., Ltd. (Suzhou, China).
Polyethylene glycol (PEG, molecular weight = 2000 g/mol), graphene oxide (2 mg/mL,
dispersed in N-methyl pyrrolidone), rosmarinic acid (RosA), dichloromethane (DCM),
N,N-dimethylformamide (DMF), sodium chloride, and sodium pentobarbital were all
purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).

2.2. Preparation of e-Spinning Solutions

The 10% (w/v) solution of PLA and PLA/PEG (95:5 w/w) solution was prepared
in DCM/DMF (8:2, v/v) on a magnetic stirrer for 2 h at room temperature, and RosA
and GO was added in the solution with different content, as shown in Table 1. The e-
spinning precursor solution and the e-spun nanofiber membranes were named after PLA,
PLA/RosA/GO and PLA/PEG/RosA/GO, respectively.
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Table 1. Recipe of e-spinning solution.

Run. DCM/DMF,
mL/mL PLA, g PEG, g RosA, g GO, mL

PLA 8/2 1 0 0 0
PLA/RosA/GO 8/2 1 0 0.1 2

PLA/PEG/RosA/GO 8/2 0.95 0.05 0.1 2

2.3. Preparation of e-Spinning Membranes

The solutions shown in Table 1 were utilized for e-spinning on home-made e-spinning
equipment with a syringe pump, high DC power source to produce nanofiber membranes
(Figure 1). The parameters of the e-spinning process were set as follows: the voltage was
20 kV, 0.8 mL/h of feeding rate and 18 cm distance of tip-to-collector at room temperature
(~20 ◦C) and about 50% humidity. The obtained fiber membranes were dried at 60 ◦C in an
oven for 24 h. All samples were given with 1.2 g/m2 in basis weight.
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Figure 1. Illustration of a home-made e-spinning equipment.

2.4. Characterizations
2.4.1. Morphology and Structure

The e-spun fibrous membranes were observed on a scanning electron microscope
(SEM, Phenom Pro, Hitzacker, Germany) with a working distance of about 5 mm and
an accelerator voltage of 15 kV under a high vacuum. The chemical structure of as-
spun membranes was characterized by means of a Fourier transform infrared (FT-IR)
spectroscopy (Nicolet iS10 instrument, Thermo Fisher Scientifc, Waltham, MA, USA) with
ATR mode, scanning from 4000 to 400 cm−1, and X-ray diffraction (XRD) spectra were
afforded by means of an X-ray diffractometer (DX-2700, Cephas, Taipei, Taiwan) with Cu
Kα radiation, 40 kV of voltage, 40 mA of current, 5–50◦ of scanning range and 5◦/min of
scanning speed.

2.4.2. Thermal and Mechanical Performance

The thermal properties were performed by using a TGA/DSC 3+ instrument (Mettler-
Toledo, Germany) at a heating rate of 10 ◦C/min in a N2 atmosphere from 25 to 300 ◦C.
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In addition, the thermogravimetric analyzing (TGA) chart was also given from 25 ◦C to
600 ◦C at a rate of 10 ◦C/min in a N2 atmosphere.

The e-spun membrane’s mechanical properties were measured using a tensile tester
(Instron 3382, Norwood, MA, USA). Before testing, different samples with a thickness of
0.20 ± 0.02 mm were cut 50 × 10 mm, and the obtained strips were clamped between
tensile grips. The initial distance between the grips was 20 mm. The upper grip was then
raised by a constant speed of 0.5 mm/s. The elongation at break was recorded together
with the related tensile strength. Five strips of every sample were measured and the results
were given with the average value.

2.4.3. Hydrophilicity

The hydrophilicity of the as-spun membrane was characterized by the change of water
contact angle, which was measured using a contact angle goniometer, JY-Phb (Chengde
Jinhe Co., Ltd., Chengde, China). Three titrated water droplets dropping onto the e-spun
membrane and the contact angle between the droplets and the membrane was observed
and recorded.

2.4.4. Porosity and Permeability

The pore size and its distribution of the e-spun membranes was tested on a pore-size
tester (TOPAS PSM-165, Frankfurt, Germany) with the bubbling method, and isopropyl
alcohol (IPA) was dripped and then completely infiltrated the sample (the tested area:
2.01 cm2). The porosity (P) was calculated via the following formula [41]:

Porosity = 1 − m
t × A × ρ

(1)

where m, t and A are the mass, the thickness and the per unit membrane measured,
respectively. And ρ is ~1.20 g/cm3, the density of raw materials, 1:1 of PLA/PEG.

The air permeability was detected by means of an Air Permeability Tester (FX3300,
Textest AG, Switzerland) with a 20 cm2 effective area and a 200 Pa pressure drop.

2.5. Antibacterial Activity

According to the AATCC100-2004 standard, different antimicrobial tests were carried
out with Escherichia coli (E. coli, ATCC 25922) and Staphylococcus aureus (S. aureus, ATCC
29213). A single colony of bacteria was inoculated in 5 mL LB liquid culture medium, and
cultivated in a shaking incubator at 37 ◦C for 24 h to obtain a bacterial suspension with a
concentration of 1 × 109 CFUs/mL. Then it was diluted to 1 × 105 CFUs/mL using sterile
phosphate buffered saline (PBS). Forty mg of as-spun nanofiber membranes was added
into 5 mL of diluted bacterial suspension, and another 5 mL of bacterial suspension as the
control group. Cultivating in a shaker at 250 rpm and 37 ◦C for 12 h, 100 µL of bacterial
suspension was coated onto an LB agar plate for bacterial counting.

2.6. In Vivo Wound Healing Study

Nine KM mice (20–25 g) were taken from Sibeifu Biotechnology Co., Ltd. (Suzhou,
China). The dorsal region hairs of the anesthetized mice (pentobarbital sodium 60 mg/kg
of body weight) were shaved, and a 6 mm circular excision diameter was cut from the back,
then the wound was covered with an e-spun membrane patch. The mice were randomly
distributed into 3 groups. The groups included a control based on pure e-spun PLA patch,
PLA/RosA/GO and PLA/PEG/RosA/GO. On days 1, 3, 5,7, 9 and 11 of post-wounding,
the photographs of wound sites were taken. Wound areas were measured through using
the Image J software and compared with the original wound at each time interval for the
rate of wound healing [1].
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3. Results and Discussion
3.1. Characterization of e-Spun Nanofibers Morphology

As a biodegradable polyester, PLA’s e-spinning has been paid much attention recently
and mixed solvents are used commonly for preparing e-spinning precursor solutions, such
as CH2Cl2 and DMF [42–44]. In this work, 8:2 (v/v) of CH2Cl2 and DMF was employed;
however, GO did not easily disperse in this system. Fortunately, the addition of RosA
helped disperse the GO, which showed there might have been a redox that had occurred
between the reducing RosA and GO. As shown in Figure S1, the color of the RosA/GO
solution was darkening compared with the GO before the RosA added, which could
illustrate that reduced GO (graphene) with a dark color was produced. To improve the
wettability of the e-spinning membrane, the amphiphilic polymer PEG was introduced,
which exhibited a more stable dispersive precursor solution throughout the entire spinning
time of 2–4 h, or even over 10 h. As shown in Figure 2, the average diameter of the
e-spinning fibers of pure PLA was 910 nm, and with the addition of RosA and GO, the
average diameter of the fibers slightly decreased to 720 nm, mainly because the addition of
GO (dispersion in NMP) reduced the concentration of the system. After adding PEG, the
average diameter of the fibers decreased continuously to about 680 nm (Figure 2c), which
may be attributed to it being a better dispersion of this e-spinning precursor solution.
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3.2. Analysis of FT-IR and XRD for e-Spinning Fibers’ Structure

As shown in Figure 3a, the peaks of 1758 cm−1 and 1083 cm−1 were assigned to
C=O and C-O ester bonds of PLA. Because of the two carboxyl and four hydroxyl groups
of RosA, the peak at 1715 cm−1 and its broadening area could be attributed to COOH
and the vinyl ester of RosA; the intensity and wavenumber were lower than those of
PLA. The introduction of only 5% PEG had little effect on the infrared spectrum peak,
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and the 2884 cm−1 CH2 peak and 1080 cm−1 peaks overlapped with the corresponding
peak of PLA. The lower content of GO was hard to find in these IR spectra. As shown
in Figure 3b, the XRD plot shows the semi-crystalline polymer of PLA, where there was
a broad peak at 22.68◦ [45]. The addition of RosA/GO resulted in a slight shift in the
crystallization peak, and there was a diffraction that peak appeared at 16.63◦, which may
also indicate that RosA had a certain interaction with the PLA matrix and caused the
change of diffraction peaks [46,47]. After adding PEG, the diffraction peaks were similar
to PLA/RosA/GO, indicating that PEG/RosA/GO homogeneously mixed into the PLA
matrix in an amorphous form, and had no significant effect on the crystallinity and crystal
structure of composite nanofibers.

Nanomaterials 2023, 13, x FOR PEER REVIEW 6 of 13 
 

 

introduction of only 5% PEG had little effect on the infrared spectrum peak, and the 2884 

cm−1 CH2 peak and 1080 cm−1 peaks overlapped with the corresponding peak of PLA. The 

lower content of GO was hard to find in these IR spectra. As shown in Figure 3b, the XRD 

plot shows the semi-crystalline polymer of PLA, where there was a broad peak at 22.68° 

[45]. The addition of RosA/GO resulted in a slight shift in the crystallization peak, and 

there was a diffraction that peak appeared at 16.63°, which may also indicate that RosA 

had a certain interaction with the PLA matrix and caused the change of diffraction peaks 

[46,47]. After adding PEG, the diffraction peaks were similar to PLA/RosA/GO, indicating 

that PEG/RosA/GO homogeneously mixed into the PLA matrix in an amorphous form, 

and had no significant effect on the crystallinity and crystal structure of composite 

nanofibers. 

 

Figure 3. (a) FT-IR spectra and (b) XRD patterns of as-spun composite nanofiber membranes. 

3.3. Thermal Properties 

The thermal properties of the e-spun nanofiber membrane were analyzed on a 

machine of DSC-TG; these diagrams are shown in Figure 4. The TG of PLA was at 60–80 

°C and the transit temperature at 100 °C might have been cold crystallization. Based on 

the DSC curves, the crystallinity of PLA, PLA/RosA/GO and PLA/PEG/RosA/GO could 

be calculated and was 45%, 45% and 46%, respectively, which coincided with the results 

shown in the XRD patterns. The melting point of pure PLA was 168.1 °C, and the addition 

of RosA/GO and PEG reduced its melting point to 160.4 °C and 159.2 °C, respectively. On 

the contrary, the TG curve showed that both RosA/GO and PEG had improved the heat 

resistance of PLA. The 5% of thermal weight loss temperature increased from 288 °C of 

pure PLA to 310 °C and 315 °C, respectively (Table S1). The TG curve was smooth and 

there were no obvious small molecular weight loss stages, which also indicated that the 

addition of Rosa/GO and PEG containing multiple oxygen groups was thoroughly 

dispersed in the PLA and interacted with the PLA in some forms, such as hydrogen bonds 

to improve the heat resistance of the composite membrane materials. 

Figure 3. (a) FT-IR spectra and (b) XRD patterns of as-spun composite nanofiber membranes.

3.3. Thermal Properties

The thermal properties of the e-spun nanofiber membrane were analyzed on a machine
of DSC-TG; these diagrams are shown in Figure 4. The TG of PLA was at 60–80 ◦C and the
transit temperature at 100 ◦C might have been cold crystallization. Based on the DSC curves,
the crystallinity of PLA, PLA/RosA/GO and PLA/PEG/RosA/GO could be calculated
and was 45%, 45% and 46%, respectively, which coincided with the results shown in the
XRD patterns. The melting point of pure PLA was 168.1 ◦C, and the addition of RosA/GO
and PEG reduced its melting point to 160.4 ◦C and 159.2 ◦C, respectively. On the contrary,
the TG curve showed that both RosA/GO and PEG had improved the heat resistance of
PLA. The 5% of thermal weight loss temperature increased from 288 ◦C of pure PLA to
310 ◦C and 315 ◦C, respectively (Table S1). The TG curve was smooth and there were
no obvious small molecular weight loss stages, which also indicated that the addition of
Rosa/GO and PEG containing multiple oxygen groups was thoroughly dispersed in the
PLA and interacted with the PLA in some forms, such as hydrogen bonds to improve the
heat resistance of the composite membrane materials.

3.4. Mechanical Performance

Figure 5 depicts the stress–strain curve of the e-spun membranes that evaluated their
mechanical performance. The addition of RosA/GO significantly improved the breaking
strength, which increased by about three times from 0.8 MPa for PLA to 2.6 MPa for
PLA/Rosa/GO. However, the elongation at break decreased 60%. The improvements of
strength might be attributed to the degree of the orientation that was increased because
the diameter of PLA/RosA/GO and PLA/PEG/RosA/GO was finer than that of the
pristine PLA. Accordingly, the number of fibers per unit weight or size of the former e-spun
membranes was higher, which would be helpful to improve their strength [48,49]. The
added nonionic amphiphilic PEG improved the dispersion and interaction of RosA/GO and
PLA, which caused the crystallinity to increase, the fibers to become brittle and elongation
at break to be reduced to 15%, while still maintaining high strength.
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3.5. Wettability

Wettability is the main prerequisite to absorb wound exudate and keep the wound
moist to some degree. As shown in Figure 6, PLA, as a hydrophobic material, had a
water contact angle of approximately 128◦ for its e-spun membrane. When the hydrophilic
RosA/GO was added, the contact angle decreased to 115◦, but it was still not hydrophilic.
The addition of the amphiphilic polymer PEG was very important and about 4.5 wt% was
used, which exhibited a significant synergistic effect with RosA/GO; the water CA of the
e-spun membrane was reduced to 74◦. The similarly decreasing water CA (hydrophilicity)
required the addition of about 20 wt% [50]; and in this work, PEG and RosA/GO might
have easily migrated to the surface of the fiber. The e-spun membrane was hydrophilic and
had similar wettability to conventional wound dressings [51].

3.6. Porosity and Permeability

Porosity and permeability are the other important performances for wound dress-
ings, and they depend on the pore size and distribution. As shown in Figure 7, the
PLA/RosA/GO and PLA/PEG/RosA/GO had 1.3 µm and 1.4 µm in average pore size,
respectively, and lower porosity, lower than that of PLA due to larger diameter of the PLA
e-spun fibers. However, the permeability of these membranes was about 300 mm/s, which
was not much difference from each other. PLA/PEG/RosA/GO would be more suitable
for wound dressing due to having better wettability.
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3.7. Evaluation of Antimicrobial Properties

As shown in Figure 8, the Gram-positive bacteria, Staphylococcus aureus and the Gram-
negative bacteria, Escherichia coli were used as indicators to conduct antibacterial tests
on as-spun nanofiber membranes. The pristine PLA showed no antibacterial activity
according to this evaluation method because there was no antibacterial composition mi-
grated. After the antibacterial composition of the RosA/GO was introduced, some of
the RosA/GO distributed on the surface of fiber came off, which resulted in the number
of colonies decreasing significantly. Especially when the PEG was introduced, the sam-
ple was almost sterile, which indicated further that the hydrophilic PEG helped more
antibacterial RosA/GO migrate out of the fiber and dissolve in the PBS liquid. At the
same time, RosA/GO showed better bactericidal activity against S. aureus, which also
coincided with the early evaluated results that rosmarinic acid had good antibacterial and
anti-inflammatory activity [52]. These showed that as-obtained PLA/PEG/RosA/GO was
more profitable for the wound dressing application because S. aureus was the most common
bacteria causing wound inflammation [40].

3.8. In Vivo Wound Healing Studies

The outcomes of the in vivo wound healing experiments can be seen on days 1, 3, 5, 7,
9 and 11 for the different samples in Figure 9. Compared with the control (pure PLA), both
the PLA/RosA/GO and PLA/PEG/RosA/GO patches showed better wound healing, and
the latter did not differ significantly in the wound healing rate (Figure 10 and Table S2). In
fact, the patch of PLA/PEG/RosA/GO initially showed better adhesion on the surface of
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skin and absorbed liquid quickly due to its good wettability, which would help the wound
healing and prevent the initial infection.
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4. Conclusions

In the present study, a natural biodegradable polymer, PLA, was employed as a
polymer matrix to electrospin nonfiber membranes. RosA and GO were introduced as
antibacterial ingredients, and PEG was used as a hydrophilic modifier. The effect of
RosA/GO and PLG was evaluated on the morphology and performances of the e-spun
membranes. The strength enhancement and the lowering of the elongation at break was
attributed to the RosA/GO promoting crystallization during fiber forming. The good
wettability and the antibacterial activity of PLA/PEG/RosA/GO also demonstrated that
there was a synergistic effect among PEG, RosA/GO and PLA; for example, PEG helping
RosA/GO migrant easily to the surface of the fiber. Animal experiments showed that the
e-spun membrane had good promotion on the initial wound healing, which would be a
potential application in wound dressing.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano13132000/s1, Figure S1: The photos of solution of PLA,
PLA/GO and PLA/RosA/GO in mixed solvents of DCM and DMF (8:2, v/v); Table S1: Thermal
weight loss based TG curves. Table S2: Healing rates after treatment in different treatment groups.
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