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Abstract: All-solid-state Tm lasers have a wider wavelength range and higher output power com-
pared to other types of lasers. In this work, we demonstrate an all-solid-state, high repetition, Tm:YAP
laser Q-switched by a graphdiyne (GDY) saturable absorber. The high-quality optical nonlinear
material GDY, synthesized by a cross-coupling method, exhibits a strong nonlinear optical response.
The application of GDY as a saturable absorber in the passively Q-switched (PQS) Tm:YAP of an
all-solid-state laser has been realized with the shortest pulse duration of ~785 ns and repetition
frequency of ~199.6 kHz at a central wavelength of 1985.8 nm. This represents the shortest pulse
duration and the highest repetition frequency achieved from GDY in a solid-state Tm laser to date.
Our work demonstrates the remarkable nonlinear optical properties of GDY, which holds promising
potential in the field of optoelectronics.
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1. Introduction

All-solid-state lasers, with the advantages of small size, lightweight, compact structure,
and long life, are widely used in military, medical, scientific research, and other fields.
High-repetition frequency, short pulse duration solid-state lasers are widely used in many
fields such as lidar, laser ranging, laser precision processing, and optical communication.
The 2 µm is in the atmospheric window and human-eye-safe band, and there are many
absorption peaks of atoms and molecules in the 2 µm, which makes the Tm:YAP crystal, an
ultrafast laser crystal at 2 µm with good thermal and mechanical properties, widely used
in the field of solid-state lasers. All-solid-state lasers can obtain high-repetition frequency
narrow pulse width laser output by actively Q-switched and PQS methods. The PQS makes
it easier for the short pulse duration laser output because no additional polarizing optics
are required.

The saturable absorbers play a very important role as a nonlinear optical modulator
in PQS pulsed solid-state lasers, taking advantage of the fact that the transmittance of a
saturable absorber increases with the intensity of the input laser, allowing for the transition
from continuous to pulsed lasers. The semiconductor saturable absorber mirror (SESAM)
has developed rapidly as a saturable absorber over the past few decades and has been
used in fiber lasers, solid-state lasers, and wafer lasers [1]. However, the development
of SESAM is limited by its low damage threshold, high cost, and complex preparation
process [2]. Subsequently, two-dimensional (2D) material such as graphene [3], topological
insulators (TIs) [4,5], transition metal dichalcogenides (TMDs) [6–9], black phosphorus
(BP) [10–12], MXene [13–15], perovskite [16], and other 2D materials are applied to the
field of ultrafast lasers. Graphene has broadband optical modulation properties, but low
absorption efficiency and poor modulation depth at 2 µm [17]. The preparation of TIs is
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complex, and the properties of TMDs are unstable [18]. The absorption peak of MXene is
usually concentrated in the near-infrared band, and the absorption intensity is low [19].
BP-based saturable absorbers are prone to oxidation in the air [20]. Saturable absorbers
with low optical losses, short pulse widths, strong nonlinearity, and fast response times
need to be explored to obtain excellent pulsed lasers in a solid-state laser.

As a new member of the carbon family, GDY is a new all-carbon nanostructured
material developed and synthesized after graphene, which has the characteristics of both
2D layered planar materials like graphene and three-dimensional porous material. The
GDY molecular structure belongs to the π-electron conjugated system, where carbon atoms
are interconnected by covalent bonds to form a planar structure. This structure imparts
GDY with a high polarization rate as well as a nonlinear polarization rate. Using density-
functional theory calculations, several light metals adsorb GDY structures denoted as
AM3@GDY (AM = Li, Na, K). This structure has an intramolecular electron donor-acceptor
framework, which endows them with a rare nonlinear optical behavior [21]. First-principles
calculations show that GDY has a natural band gap compared to graphene with zero band
gap, and the minimum band gap of GDY is between 0.46 eV and 1.22 eV depending on
the calculation method and correlation function [22]. Furthermore, it is worth noting that
the band gap of GDY is tunable. This means that the energy gap of materials can be
effectively adjusted, leading to changes in the probability of electron transitions within
GDY. This tunability can be achieved through various methods, such as chemical doping
or stress modulation. GDY possesses unique characteristics such as a direct band gap
semiconductor with a highly conjugated 2D π-electron system. GDY with these properties
has become a significant research material in the field of optical nonlinearity. In 2010,
Li et al. from the Chinese Academy of Sciences made a significant breakthrough in the
synthesis of GDY. They successfully synthesized large-area thin films of GDY by coupling
the reaction of hexaethylbenzene under the catalytic action of copper sheets [23]. This
achievement marks a pivotal moment in the transition of GDY from a purely theoretical
structure to an experimental platform. GDY is a narrow band gap semiconductor with a
lower electron-hole recombination rate and a faster optical response speed, thus possessing
stronger nonlinear optical properties. Based on the strong third-order nonlinear effect of
GDY, the shortest output pulse width in an erbium-doped GDY saturable absorber fiber
laser is 135.8 fs to date [24]. In the field of solid-state lasers, GDY saturable absorber is used
in PQS Yb:SSO lasers to achieve a pulse output with a repetition rate of 43.6 kHz, a pulse
width of 4.153 µs, and an average output power of 0.393 W. Improving the modulation
parameters of the saturable absorber is necessary to realize a higher-performance pulsed
laser. The application of GDY in fiber mode-locked lasers has gradually matured, while
research in the field of solid-state lasers is still in its infancy.

In this article, we report, for the first time, an all-solid-state PQS Tm:YAP laser inte-
grating a GDY-based saturable absorber fabricated from cross-coupling-synthesized GDY
and test its third-order nonlinear optical properties The PQS Tm:YAP laser based on a
GDY saturable absorber achieves the shortest pulse width of 785 ns, the corresponding
repetition of 199.6 kHz at the central wavelength of 1985.8 nm. Compared with the reported
results [25–27], the proposed GDY-based saturable absorber all-solid-state PQS in this work
has the advantages of a stable resonator, large repetition rate, and narrow pulse width. It is
expected that our findings will shed new light on the study of 2D GDY materials in ultrafine
photonics and have great significance for the application of GDY and the development of
novel nonlinear optical materials.

2. Preparation and Characterization of Saturable Absorber Devices
2.1. Materials

Two-dimensional GDY NSs are successfully synthesized by a cross-coupling method
using hex ethynyl benzene (HEB) as a monomer and Cu foil as a substrate and catalyst,
as previously reported [23,28]. The synthesized GDY is first dispersed in IPA solvent, and
the GDY NSs are obtained by a facile liquid phase exfoliation in a water bath with a fixed
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temperature of 10 ◦C. The thicker GDY nanostructures are removed using centrifugation at
7500 rpm for 20 min, and the supernatant containing thinner GDY NSs is gently decanted
into another tube, which is further centrifugated at 18,000 rpm for 30 min. The precipitate
is collected and dried under a vacuum at 70 ◦C overnight.

The morphology of the as-fabricated GDY NSs is studied by FEI Talos200F transmis-
sion electron microscopy (TEM, 200 kV, FEI, Hillsboro, OL, USA). The atom arrangement
of the as-fabricated GDY NSs is studied by high-resolution TEM (HRTEM). The optical
absorption spectrum is performed through the UV-3150 UV-vis-NIR spectrophotometer
(Hitachi S4000, Santa Clara, CA, USA). The TEM image shows that the as-fabricated 2D
GDY NSs have a lateral size of 300–1200 nm (Figure 1a). The HRTEM image in Figure 1b
shows that a clear lattice space (red line) of 0.46 nm can be observed, which can be assigned
to the (110) plane GDY [29]. The UV-Vis-NIR spectrum exhibits that the 2D GDY NSs
have a broadband absorption range from 300 nm to 2000 nm (Figure 1c), and the typical
Tyndall can also be observed (Figure 1c inset), which holds great promise in ultrafast
lasers. Figure 1d shows the typical Raman spectrum of the as-fabricated GDY NSs with
four characteristic peaks at 1384, 1570, 1943, and 2173 cm−1, in good agreement with the
previously reported result [29,30].
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Figure 1. Structure characterization of GDY NSs. (a) TEM image; (b) HRTEM image; and (c) UV-vis-NIR
spectrum of 2D GDY; inset in (c) shows the dispersion containing 2D GDY; (d) Raman spectrum.

2.2. Devices

The GDY saturable absorber is prepared via the liquid-phase stripping approach. The
10 mg GDY powder is dissolved in 20 mL of alcohol solution (concentration 99.9%) and
sonicate for 30 min to obtain a homogeneous dispersion solution with a concentration of
0.5 mg/mL and placed in a brown reagent bottle to avoid changes in the chemical properties
of GDY caused by light. The prepared mixed solution is put into the ultrasonic grinder
(ZOLLO, JY92-IIN, China) four ultrasonic times, each time for 20 min, to form a solution
of GDY NSs with fewer layers. Then, the CaF2 substrate with good light transmission
performance and less energy absorption is placed in the center of the base of the centrifuge
(KW-4A). After sonication, an appropriate amount of the upper mixed solution is extracted
and slowly added dropwise to the CaF2 substrate. The substrates are rotated at 2000 rpm for
30 s and then dried at ambient temperature (25 ◦C) for 10 h, resulting in good transparency
of the prepared saturable absorber.

A Tm,Ho:GdVO4 acousto-optic Q-switched(AOQS) laser, in which two high-power
laser diodes are used as the pump sources, is constructed to measure the nonlinear ab-
sorption of the GDY saturable absorber, and the device diagram is shown in Figure 2a.
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The pump laser is focused through a collimated focusing system onto a Tm,Ho:GdVO4
crystal, where the pump source is first collimated using a collimating mirror with a focal
length of 25 mm, and then passes through a focusing mirror with a focal length of 50 mm.
The left-side laser passes through a high reflective (HR) planar-concave mirror, which has
a radius of curvature of 150 mm and is coated on both sides with a highly transmissive
film of 790–810 nm, and on the concave side, a highly reflective film of 1.9–2.1 µm. The
laser on the right side passes through a 45◦ plate reflector, where the front and back sides
are coated in high transmittance 790–810 nm and high reflectance 1.9–2.1 µm film. After
that, the laser is transmitted from the crystal, reflected into the AOQS, and finally passes
through the output coupler (OC), which is a flat reflector with a 20% light transmission
film of 1.9–2.1 µm coated on the inside of the mirror. The laser beam output from the
Tm,Ho:GdVO4 crystal is split into two beams using a beam-splitter mirror. One beam of
light is directed toward a power meter, serving as the reference beam, while the other beam
of light passes through GDY and is received by another power meter. By comparing the
output power of the reference beam with that of the measurement beam, the magnitude
of the nonlinear absorption can be determined. The measured data and the fitted curve
are shown in Figure 2b [24]. The modulation depth, initial transmittance, and satura-
tion absorption intensity of the GDY-based saturable absorber are 11.74%, 82.29%, and
2.11 MW/cm2, respectively.
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(b) the nonlinear transmittance curve of the GDY.

3. Experimental Setup

The experimental schematic diagram of an all-solid-state PQS Tm:YAP laser based
on a GDY saturable absorber is illustrated in Figure 3. A fiber-coupled semiconductor
laser, with a central output wavelength, core diameter, and numerical aperture of 792 nm,
105 µm, and 0.22, respectively, is used as a pump source. The collimated focusing system
comprises a 25 mm focal length convex lens and a 50 mm convex lens. To start with, use a
collimating lens with a focal length of 25 mm to accurately collimate the pump source. Then,
employ a focusing lens with a focal length of 50 mm to achieve precise focus. The Tm:YAP
crystal used has a Tm3+ concentration of 3%, dimensions of 3 mm × 3 mm × 8 mm, and
an antireflection (AR) coating of 1.9–2.1 µm and 790–810 nm. The input coupler, M1
(curvature radius of 100 mm), is a flat concave mirror coated with a highly transmissive
film at wavelengths of 790–810 nm and a highly reflective film at 1.9–2.1 µm. The pump
beam is focused to the end face of the Tm:YAP crystal after passing through M1, forming
a focused spot of 210 µm. The output coupler, M2, is a plain mirror coated with a pair of
high reflectors at wavelengths in the range of 1.9–2.1 µm, and two different output mirrors
with the transmittance of 2% and 5% are used for comparison. The total length of the laser
resonant cavity is 35 mm. Utilizing the ABCD beam transport matrix, the spot radii on
HR, saturable absorber, and OC can be calculated to be 157 µm, 128.5 µm, and 127 µm,
respectively. To enhance cryogenic cooling efficiency and to prevent premature thermal
lensing that can impede laser beam output, the crystal is tightly enveloped by a thermally
conductive silver foil layer before the experiment. The crystal is securely installed onto a
copper metal heat sink, and the base of the heat sink is connected to the circulating water
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system of a water chiller, ensuring that the water temperature is maintained at a constant
13 ◦C. Moreover, it is crucial to maintain a moderate ambient temperature throughout the
experiment to prevent the formation of water droplets on the cooled crystal’s surface.
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4. Results and Discussion
4.1. Results

The continuous waves (CW) and PQS laser output power as a function of incident
pump power ranging from 1.09 to 13.51 W are demonstrated in Figure 4. There is a
linear increase in the output power of the Tm:YAP laser as the incident pump power
increases. The output power of the CW Tm:YAP laser is 3.84/1.70 W with T = 2/5% at
2 µm, corresponding to a slope efficiency of 28.4/12.6% at an incident pump power of
13.51 W. The maximum output power achieved using a T = 2% plane mirror as an output
coupler in PQS mode is 0.77 W at an incident pump power of 13.51 W, corresponding
to a slope efficiency of 5.7%. For an output coupler with T = 5%, the maximum output
power and slope efficiency are 0.71 W and 5.3%, respectively. When comparing the output
characteristics of the laser under CW operation and PQS mode, it is apparent that the laser
threshold increases and the conversion efficiency decreases in PQS operation. The insertion
of saturable absorber results in increased losses in the laser’s optical resonator, ultimately
leading to a decrease in maximum output power.
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Figure 4. PQS Tm:YAP laser characteristics. (a) Output power; (b) pulse width and pulse repetition
frequency.

The temporal pulse trains of the PQS Tm:YAP laser are detected using a detector (EOT,
ET-5000, America) with bandwidth and displayed in an oscilloscope (Siglent, SDS5054X,
bandwidth of 500 MHz, Shenzhen, China) with a sampling rate of 1 GSa/s. The relationship
between the pulse width and repetition frequency curve of the output of the PQS Tm:YAP



Nanomaterials 2023, 13, 2171 6 of 9

laser is shown in Figure 4b. The maximum repetition rate and the shortest pulse width are
199.6/156.5 kHz and 0.785/1.09 µs, respectively, at T = 2%/5%. The angle of the optical
elements is finely adjusted to overcome noise interference from relaxation oscillations, after
which the laser outputs a stable pulse as shown in Figure 5. The narrowest pulse monopoles
measured at a time scale of 1 µs/div are shown in Figure 5a when T = 5%. Figure 5b,c show
typical pulse trains recorded at T = 2% under different time scales, exhibiting the feature of
the Q-switched laser.
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The output wavelength of the Tm:YAP laser is measured using a Bristol Instruments
721A-IR wavelength meter, as shown in Figure 6a. The CW Tm:YAP laser has a central
wavelength output of 1992.5 nm, while the PQS Tm:YAP laser has a central wavelength
output of 1985.8 nm when using a 2% transmittance output mirror. The central wavelength
of the laser output in PQS mode is observed to be smaller than that of the laser output in
CW mode. This difference is because the energy storage of the laser crystal emission section
in PQS mode is greater than that in continuous operation mode, resulting in a decrease in
crystal-stimulated emission cross-section and a spectral blue shift [31]. During the entire
experimental process, the GDY-based PQS laser outputs a stable pulse over 30 min, and the
variation of the width of the narrowest output laser pulse with time is shown in Figure 6b,
evidenced by the stable structure of 2D GDY NSs characterized by the Raman technique
with unchanged Raman signal after laser experiments (Figure 6c), which is sufficient to
demonstrate the stability of the PQS laser.
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output pulses; (c) Raman spectrum after laser experiments.

Table 1 summarizes the output performance of PQS Tm:YAP lasers equipped with
various material saturable absorbers. The saturable absorber based on GDY in this experi-
ment shows exceptional output properties such as the shortest pulse width and the highest
repetition rate when used as a modulator compared to similar and different materials.
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Table 1. Comparison with the output performances of PQS laser with different materials.

Saturable
Absorbers Crystal

Central
Wavelength
(nm)

Average
Output Power
(mW)

Repetition
Frequency
(kHz)

Pulse Width
(µs) Year Ref.

Graphene Tm:YAP 1936.6 1370 98.6 2.164 2016 [32]
BP Tm:YAP 1988.0 151 19.3 1.780 2016 [32]
MXene Tm,Gd:CaF2 1906.0 1927 19.61 2.390 2019 [33]
SnSe2 Tm:YAP 1936.0 411 43.2 2.400 2020 [34]
WS2 Tm:YALO3 1936.0 110 34.7 2.650 2020 [35]
PZT Tm:YAP 1991.9 810 175.0 1.690 2020 [36]
GDY Tm:YAP 1936.6 1370 98.59 2.164 2020 [37]
GDY Ho:YLF 2062.1 443 29.72 1.380 2021 [38]
GDY Tm:YLF 1908.4 1290 91.58 2.207 2021 [25]
GDY Tm:YAP 1985.8 770 199.6 0.785 2023 This work

4.2. Discussion

We have successfully prepared saturable absorber devices for Tm:YAP ultrafast laser
using the ultrasonic liquid-phase stripping method on CaF2 substrates. The choice of CaF2
as the substrate material is based on its excellent transmittance and low absorption energy,
which is ideal for this application. In addition, in past decades, the methods commonly
used to prepare saturable absorber devices are the ultrasonic liquid-phase stripping method,
the CVD method, and the sol-gel method. Among them, the slow deposition rate of the
CVD method and the low safety of the reaction source and residual gas has limited its
application, while the sol-gel method is difficult to prepare gel-like organic solvents with
difficult rationing and a long solidification time to form a film. From the preparation
process and economic point of view, the GDY saturable absorber prepared by ultrasonic
liquid-phase stripping method is more advantageous.

In the experiment, a double-ended pumped Tm,Ho:GdVO4 AOQS laser with an output
wavelength at 2 µm was constructed to investigate the nonlinear absorption characteristics
of the GDY saturable absorber. By comparing the extensive document, the modulation
depth of BP, Ti3C2Tx, MoS2, Bi2Te3, and Nb2AlC are 5% [39], 11.1% [40], 2.9% [41], 9.8% [42],
and 4.1% [43], respectively. The modulation depth of the GDY saturable absorber measured
in this work is 11.74%. The GDY material exhibits a higher nonlinear optical response
during optical transmission, enabling it to efficiently absorb and modulate light signals.
Consequently, GDY applied in saturable absorber devices can achieve a greater modulation
depth, leading to a more pronounced nonlinear optical effect.

GDY and its third-order nonlinear properties have found numerous applications in
the field of fiber optics. However, research exploring the utilization of GDY in solid-state
lasers has been relatively limited. In this paper, with the uniformity of GDY quantum
dots and the excellent performance of the fabricated saturable absorber device, we have
successfully achieved a stable Q-switched pulse output. Minimum pulse width and maxi-
mum pulse repetition frequency are obtained by compressing the resonant cavity length
to optimize the laser performance. In addition, we adopted several measures to mitigate
the effect of temperature on the experimental results. A water-cooled circulator was used
in the experiments to maintain a stable temperature in the system and dissipate the heat
generated during operation. We also carefully controlled the ambient temperature around
the experimental setup to minimize fluctuations that could affect the laser’s performance.

5. Conclusions

In summary, we have, for the first time, demonstrated an all-solid-state, high repeti-
tion frequency PQS Tm:YAP laser with a 785 ns pulse duration and 199.6 kHz repetition
frequency, Q-switched using a GDY saturable absorber. The laser design achieved the
shortest pulses and highest repetition frequency with a short cavity length (~35 mm) to date.
Our simple all-solid-state Tm:YAP laser design and GDY can promote the development
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of utilizing optical nonlinear materials and ultrafast laser crystals at 2 µm to generate the
shortest pulses.
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