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Abstract: The binary metal organic framework (MOF) is composed of two heterometallic ions bonded
to an organic ligand. Compared with monometallic MOFs, bimetallic MOFs have greatly improved in
terms of structure, porosity, active site, adsorption, selectivity, and stability, which has attracted wide
attention. At present, many effective strategies have been designed for the synthesis of bimetallic
MOF-based nanomaterials with specific morphology, structure, and function. The results show that
bimetallic MOF-based nanocomposites could achieve multiple synergistic effects, which will greatly
improve their research in the fields of adsorption, catalysis, energy storage, sensing, and so on. In
this review, the main preparation methods of bimetallic MOFs-based materials are summarized, with
emphasis on their applications in adsorption, catalysis, and detection of target pollutants in water
environments, and perspectives on the future development of bimetallic MOFs-based nanomaterials
in the field of water are presented.
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1. Introduction

Since the concept of metal organic framework (MOF) was formally proposed in
1995 [1], the unique material has received extensive attention. Metal–ligand compounds,
such as materials of the Institute Lavoisier (MIL) [2,3] and zeolitic imidazolate frameworks
(ZIFs) [4], formed by bonding of transition metals and organic ligands, possess all kinds
of unique structural properties, including but not limited to large specific surface area,
developed pore structure, physical and chemical relative stability, and adjustable structure
and function [5,6].

These MOFs, which contain only one transition metal, are favored by researchers, who
promote the in-depth development of MOFs in energy, materials, sensors, the environ-
ment [7–10], and other fields for application. Li et al. [11] used a household microwave oven
to successfully synthesize Zr6O4(OH)4(BTC)2(HCOO)6 (MOF-808) nanoparticles with a
maximum adsorption capacity of 24.83 mg/g for arsenic solution. Singh et al. [12] prepared
the g-C3N4/Cu-DTO MOF nanocomposite with heterojunction structure by ultrasound
to combine g-C3N4 and Cu-DTO MOF in methanol solution. At room temperature, the
lowest detection limit of the material for endocrine disruptors could be acquired at 0.02 µM.
Nguyen et al. [13] used MIL-101(Fe) and g-C3N4 as precursors and adopted solvother-
mal synthesis, synthesizing the MOF derivative nanomaterial of a three-dimensional g-
C3N4/MIL-101(Fe). The presented material showed excellent performance in the photo-
catalytic degradation of paracetamol. For more application cases of monometallic MOFs,
Gonzalez et al. [14] carried out a detailed review.
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However, as researchers pursued higher properties of MOF materials, these monometal-
lic MOFs and their derivatives were no longer able to further meet the needs, which
gradually led to the design and development of binary metal organic frameworks with
higher properties [15,16]. At present, in the field of water environmental treatment, binary
metal MOFs and their derivatives (the bimetallic MOF-based nanomaterials) [17,18] have
been greatly developed compared with monometallic MOFs. Typically, Yaqoob et al. [19]
designed the Fe-Ni-MOF/nanotube composite catalysts using conventional hydrothermal
reaction processes, which significantly improved the redox reaction of Fe-MOF or Ni-MOF.
Bathla et al. [20] reported multiple bimetallic nanostructure metal-organic frameworks to
photodegrade harmful organic compounds. The report confirmed the significant role of
bimetallic MOFs in the photocatalytic degradation of organic pollutants.

In recent years, bimetallic MOF derivatives have been directly prepared to form a
variety of MOF-based nanomaterials. Research on a bimetallic magnetic nanocomposite,
Fe3O4@CeO2@MOF-5(Zn-Co), to adsorb flusilazole in a water environment was notewor-
thy. The specific surface area of the bimetallic MOFs-based nanomaterial could reach
399 m2/g, which was more than 10 times that of a single metallic Fe3O4@CeO2@MOF-5(Zn)
or Fe3O4@CeO2@MOF-5(Co) [21]. The report of vanadium/chromium-bimetallic MOFs in
adsorption desulfurization showed a pleasing advantage. A special interaction between
the bimetal and sulphur atoms greatly promoted the van der Waals force between the
material and the target pollutants [22], thus improving the selectivity of the material for
thiophene and aromatics. Selvam et al. [23] achieved encouraging results in core-shell
CuNi bimetallic nanoparticle electrochemical biosensors, which made great progress in
detecting dopamine.

Bimetallic MOF-based composites have many advantages over monometallic MOF-
based materials: (i) Different monometallic MOFs have different metallic elements, organic
ligands, morphology, and structure, which can be prepared by different combination
strategies to construct bimetallic MOF materials with different compositions, structures,
and functions; (ii) Most monometallic MOFs have undeveloped holes, but the synthesis
of binary metal MOFs can further effectively improve this property. In addition, the
preparation process of bimetallic MOFs is relatively simple and mild; (iii) The regular
staggered arrangement of metal ions (or metal ion clusters) and organic ligands in bimetallic
MOF structures is conducive to further fixing and dispersing metals (or metal oxides),
improving the stability and catalytic activity of materials.

Based on the advantages mentioned above, many studies have reported binary metal
MOF-based nanomaterials with different compositions and structural properties that are
widely used in environmental pollution control [24–26]. Fan et al. [27] focused on the
synthesis of bimetallic MOFs and catalytic degradation of water pollutants and further
summarized in detail the influencing factors and catalytic mechanism of this material in the
activation processes for peroxydisulfate (PDS), peroxymonosulfate (PMS), and peroxide
(H2O2). Soni et al. [24] reported the latest developments in the synthesis and electrocatalytic
activity of two-dimensional MOFs with bimetallic nodes. Kumari et al. [28] summarized the
application of MOF-derived materials for H2 and CO2 adsorption and photocatalysis. How-
ever, the application of bimetallic MOF-based materials in the environment is not detailed
in their reviews. Sanati et al. [29] concentrated on the superior performance of bimetallic
materials derived from metal-organic frameworks in electrochemical energy storage, while
Chen et al. [30] focused on the design, construction, and synthesis of bimetallic MOF-based
materials. Differently, we mainly aim at the bimetallic MOFs-based nanomaterials in the
remediation of water environments and summarize the applications of the materials in
adsorption, catalytic degradation, and detection of pollutants.

This review provides the important progress of bimetallic MOFs in the treatment of
environmental pollutants in water [31–33]. The synthesis process of bimetallic MOFs is
summarized. The application of bimetallic MOFs in the adsorption, catalysis, and detection
of pollutants in water was emphasized. Finally, the future development and design of
bimetallic MOF-based nanomaterials in the field of water environment are prospected.
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By discussing and examining previous studies, we hope to provide some ideas on the
design and construction of bimetallic MOFs-based nanomaterials for effective treatment of
water environmental pollutants [34–42], so as to stimulate more applications of bimetallic
MOFs-based nanocomposites in the environmental field (Figure 1).
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2. Preparation Strategies of Bimetallic MOF-Based Nanocomposites

As is well known, the preparation methods and synthesis processes of materials are of
great importance to their morphology, structure, and performance characteristics. Accord-
ing to statistics, the types of MOFs formed by the bonding of many organic ligands with
metal ions have already exceeded 2000 [43]. Mainstream methods for synthesizing these
monometallic MOF materials have been summarized in detail in the report of Mukher-
jee and co-workers [44], including hydrothermal, microwave irradiation, the ionic liquid
method, and so on. These basic strategies for the synthesis of monometallic MOF materials
have also been adopted by researchers for the construction and development of bimetallic
MOF-based materials. In addition, binary metal MOF-based composites are also further
extended by some major post-treatment methods [30], such as heat treatment, mechanical
processing, the sol–gel method, and the like. Thus, the synthesis methods mentioned
above for bimetallic MOFs can be divided into two categories. One is direct synthesis,
namely hydrothermal, solvothermal, mechanochemistry, electrochemistry, sonochemistry,
and spray-drying. Another is indirect synthesis or post-treatment, that is, pyrolysis, ball-
milling, metal-organic chemical vapor deposition, and solution impregnation.

2.1. Direct Synthesis

Here, the direct synthesis of binary metal MOFs is the self-assembly process of metal
ions with organic ligands to form a coordination polymer in one pot. Bimetallic MOFs
prepared by direct synthesis have retained their physical and chemical properties since the
beginning of synthesis, including a large specific surface area, a developed pore structure,
high conductivity, and a great Fermi level.
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The synthesis and exploration of bimetallic MOFs have become important ways to
develop new MOF nanomaterials. Liu et al. [45] synthesized 36 kinds of bimetallic MOFs
(MnFe-MOFs, MnMg-MOFs, MgCo-MOFs, CoNi-MOFs, FeNi-MOFs, MnNi-MOFs, and so
on) using dimethyl formamide (DMF) as solvent by the hydrothermal method. The struc-
tural properties of the synthesized MOFs were investigated by UV-vis diffuse reflectance
spectroscopy (DRS) and X-ray photoelectron spectroscopy (XPS). The results showed that
the structural properties of bimetallic MOFs were better than those of monometallic MOF
materials. Chen et al. [46] successfully prepared CoNi bimetallic MOFs (CoNi-MOFs) with a
rough surface and spherical shape via a typical one-step solvothermal method (Figure S1a).
Galvanostatic charge/discharge (GCD) and cyclic voltammetry (CV) were used to test the
electrochemical properties of CoNi-MOFs. The results displayed that the maximum specific
capacitance of the structured material could be increased to 2608 F/g at 1 A/g, and it still
maintained good stability after 5000 cycles of discharge.

In order to achieve higher structure, morphology, and performance advantages, a
variety of binary metal MOF materials with strictly controlled preparation processes
were compounded. Kuila and co-researchers had successfully synthesized a structurally
stable 3d–4f bimetallic coordination polymer, CeFe MOFs [47]. Specifically, cerium nitrate
hexahydrate, iron nitrate hexahydrate, and 2-aminoterephthalic acid were used as raw ma-
terials, with DMF, methanol, and water as solvents to prepare the CeFe MOFs. The visible
light absorption characterization analysis exhibited that the absorption intensity of CeFe
MOFs synthesized was obviously better than that of Fe-MOF and Ce-MOF. The photocat-
alytic degradation tests further confirmed the excellent performance of electron–hole pair
separation in the visible band, and the degradation efficiency of 10 ppm of acetaminophen
reached 94.6% in 210 min. Suksatan and colleagues synthesized nanometer nickel-zinc
bimetallic MOFs (NiZn-MOFs Figure S1b) with uniform morphology with the ultrasonic
method [48]. Fourier transform infrared spectroscopy, specific surface area, and thermo-
gravimetric analysis showed that, compared with monometallic materials (Ni-MOF and
Zn-MOF), the samples of NiZn-MOFs had a larger Brunauer–Emmet–Teller (BET) specific
surface area and porosity and higher thermal stability.

2.2. Indirect Synthesis or Post-Treatment

Indirect synthesis, or post-treatment method, is further developed on the basis of
direct synthesis for the product follow-up treatment so as to form the final binary metal
MOFs-based material. The end-product is a kind of derivatively bimetallic MOF materials
that are markedly different from those formed by direct synthesis in terms of structure,
morphology, chemical functional groups, and properties. What needs illustration is that
the target product of bimetallic MOF-based materials cannot be achieved by the one-pot
synthesis method.

Guo and co-team [49] first synthesized cobalt–molybdenum bimetallic MOFs (CoMo-
MI) by solvothermal method and further heated treatment to effectively design the cobalt-
molybdenum bimetallic MOF-based carbon and nitrogen nanomaterials (CoMo-MI-T).
Figure S2a shows the preparation process for CoMo-MI-T. These results of multiple charac-
terization techniques (XRD, SEM, TG, and TEM) demonstrated that, compared with CoMo-
MI, the crystal structure of CoMo-MOFs for CoMo-MI-T nanomaterials had collapsed and
the surface morphology was rough. Meanwhile, the CoMo-MI-T’s thermal stability was
enhanced, and the content of micropores and mesoporous developed. Electrochemical
performance analysis confirmed that the CoMo-MI-T nanomaterials possessed a better
synergistic effect among the multiple components, which promoted electron conduction,
thus enhancing the electrocatalytic oxygen evolution reaction. Liang and his co-research
group [50] explored CoNi-MOF as a precursor to the pyrolysis preparation of CoNi@C
nanowires with Janus structures (Figure S2b). The material showed extremely strong
stability and sustainable recycling in the long-term heating and cooling cycle tests, which
could be used as a high-performance material to prevent electromagnetic interference in
low- or high-temperature environments. Analogously, Wang et al. [51] used cobalt-cerium
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bimetallic MOFs as intermediates to produce the CoCeOx nanocomposites (CoCe-MOF)
(Figure S2c). In the experiments of catalytic conversion of carbon dioxide to ethanol, the
ethanol conversion efficiency of the CoCe-MOF experimental groups could reach 97%, and
almost no acetone byproduct was produced. In the 40 h test period, the ethanol conversion
by the CoCe-MOF catalyst was only reduced by 3%, while the Co3O4/CeO2 control groups
significantly reduced it by 11%.

In Figure 2a, Yan et al. [52] demonstrated the synthesis of zinc–cobalt bimetallic MOFs
(BMOFs ZnxCoy) with methanol and ethanol as solvents. Then, ferric ions were introduced
into BMOF ZnxCoy and heated in the gas mixture of H2 and N2 to prepare an MOF-based
Co-Fe bimetallic composite (ZnCo6Fe). Scanning electron microscope analysis made clear
that BMOF ZnxCoy was smooth and regular polyhedral, while ZnCo6Fe was composed
of ZnCo-MOF derivatives and carbon nano tubes (CNTs) networks with a rough surface.
Afterward, the material was used to test the microwave absorption properties, and the
minimum microwave absorption reflection loss of ZnCo6Fe was −66 dB. The mechanism
analysis further proved that the defective structure of the materials could greatly improve
the microwave absorption characteristics and provide workable ideas for the design and
construction of highly efficient microwave-absorbing materials.

Nanomaterials 2023, 13, x FOR PEER REVIEW 5 of 30 
 

 

strong stability and sustainable recycling in the long-term heating and cooling cycle tests, 

which could be used as a high-performance material to prevent electromagnetic interfer-

ence in low- or high-temperature environments. Analogously, Wang et al. [51] used cobalt-

cerium bimetallic MOFs as intermediates to produce the CoCeOx nanocomposites (CoCe-

MOF) (Figure S2c). In the experiments of catalytic conversion of carbon dioxide to ethanol, 

the ethanol conversion efficiency of the CoCe-MOF experimental groups could reach 97%, 

and almost no acetone byproduct was produced. In the 40 h test period, the ethanol con-

version by the CoCe-MOF catalyst was only reduced by 3%, while the Co3O4/CeO2 control 

groups significantly reduced it by 11%. 

In Figure 2a, Yan et al. [52] demonstrated the synthesis of zinc–cobalt bimetallic 

MOFs (BMOFs ZnxCoy) with methanol and ethanol as solvents. Then, ferric ions were in-

troduced into BMOF ZnxCoy and heated in the gas mixture of H2 and N2 to prepare an 

MOF-based Co-Fe bimetallic composite (ZnCo6Fe). Scanning electron microscope analysis 

made clear that BMOF ZnxCoy was smooth and regular polyhedral, while ZnCo6Fe was 

composed of ZnCo-MOF derivatives and carbon nano tubes (CNTs) networks with a 

rough surface. Afterward, the material was used to test the microwave absorption prop-

erties, and the minimum microwave absorption reflection loss of ZnCo6Fe was −66 dB. 

The mechanism analysis further proved that the defective structure of the materials could 

greatly improve the microwave absorption characteristics and provide workable ideas for 

the design and construction of highly efficient microwave-absorbing materials. 

 

Figure 2. (a) Schematic illustration for the formation process of Zn6CoFe. Reproduced with permis-

sion from ref. [52]. Copyright 2020, Elsevier. (b) Leaf-shape core-shell structured ZIF-L@ZIF-67 and 

Figure 2. (a) Schematic illustration for the formation process of Zn6CoFe. Reproduced with permis-
sion from ref. [52]. Copyright 2020, Elsevier. (b) Leaf-shape core-shell structured ZIF-L@ZIF-67 and
its transformation to NC@GC/CNTs. Reproduced with permission from ref. [53]. Copyright 2022, El-
sevier. (c) Schematic diagram of the synthesis process of ZnS/CoS2/CC. Reproduced with permission
from ref. [54]. Copyright 2022, American Chemical Society.
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A novel preparation method for bimetallic MOF-based nanocomposites has been
successfully brought up by Zhang et al. [53], which mainly included three stages (Figure 2b):
Firstly, Zn-MOF (ZIF-L) was synthesized by the hydrothermal method with Zn2+ and
2-methylimidazole. Secondly, on the basis of ZIF-L, ZIF-67 was further synthesized to
form the product ZIF-L@ZIF-67. Finally, under the conditions of concentrated sulfuric acid
and heating, the bimetallic MOFs ZIF-L@ZIF-67 were etched and cracked into bimetallic
MOF-based nanocomposites (NC@GC/CNTs) with similar leaf shapes. The highlight of
the method was mainly reflected in the pyrolysis stage of MOF-based material synthesis.
Through reasonable control of the amount of concentrated sulfuric acid, the physical and
chemical properties of the end-products NC@GC/CNTsx (x = 1, 2, 3, and 4) could be
effectively regulated. In laboratory conditions, NC@GC/CNTs2 displayed a surprising
advantage in the adsorption of NaCl (1000 mg/L sodium chloride aqueous solution), where
the maximal adsorption capacity attained 77.33 mg/g after 30 min.

Recently, another interesting pyrolysis method for preparing bimetallic MOF-based
nanocomposites was worth noting. Fu et al. [54] cleverly used the stepwise synthesis
method to synthesize ZIF-67 and ZnCo-MOFs (ZnCo-ZIF-CC). Subsequently, in the pyroly-
sis stage, sulfur powder was co-pyrolyzed with ZnCo-ZIF-CC to produce sulfide bimetallic
MOFs-based material (ZnS/CoS2/CC). The schematic diagram of the preparation process
is shown in Figure 2c. The ZnS/CoS2/CC was used as anode material for lithium batteries,
demonstrating the satisfactory advantages of electric energy storage. The battery capacity
of the material was still up to 1644.7 mA h/g after hundreds of cycles of testing at the high
current density of 1 A/g.

Furthermore, mechanical grinding or ball-milling has also proven to be an effective
strategy for the synthesis of bimetallic MOF-based nanocomposites. Panda et al. [55]
synthesized amorphous bimetallic MOF intermediates using ball-milling the precursors (Al-
MOF (Al-ndc) and Ga-MOF (Ga-ndc)); afterward, the bimetallic MOF-based nanomaterial
AlGa-MOFs with crystal structure were reconstructed via steam treatment. This study
highlighted the importance of ball-milling technology in bimetallic MOF preparation
and also stressed the limitations of traditional MOF preparation methods in bimetallic
MOF synthesis.

The feasible method for preparing bimetallic MOF-based nanomaterials by ball-milling
and heat treatment is attracting more and more attention [56,57]. Based on the monometallic
MOF (Fe-Tz and Cu-Tz) of iron and copper [56], M. Lee et al. mixed the two by mechanical
grinding to prepare a bimetallic MOF intermediate (FeCu-x:y) with evenly dispersed iron
and copper, then pyrolyzed, which finally formed the required bimetallic MOF-based
nanomaterials (FeCu-x:y-T). For comparison, a different preparation process was also
performed, which exhibited the transformation from one-pot synthesis of FeCu-MOFs
(FeCu-50:50DEF) by hydrothermal method to the preparation of bimetallic MOF-based
nanomaterials (FeCu-50:50-TDEF) with heat. Morphology and microstructure analysis
showed that the distribution of elements in the FeCu-x:y-T sample was more uniform
than that in the FeCu-50:50-TDEF. The results of the redox reaction confirmed that the
synergistic effect of the FeCu-x:y-T sample was greater than that of the FeCu-50:50-TDEF,
which underlined the effectiveness of mechanical grinding and pyrolysis in bimetallic
MOF-based nanomaterials.

3. Applications of Bimetallic MOFs-Based Nanocomposites for Pollutants in Water

Bimetallic MOF-based nanocomposites have been widely regarded as novel functional
materials for controlling pollutants in environmental water bodies due to their advantages
in structure and performance. Therefore, many new bimetallic MOFs with different forms
have been developed and constructed, which have been applied in adsorption removal,
catalytic degradation, and the detection of water pollutants.



Nanomaterials 2023, 13, 2194 7 of 27

3.1. Adsorption

Bimetallic MOF-based nanomaterials are characterized by a larger surface area, a richer
pore structure, and more available metal sites than monometallic MOF-based materials.
Therefore, it has important practical significance in developing porous bimetallic MOF-
based materials to absorb ions or molecules in water to a greater extent. At the same
time, reasonable and effective adjustment of the composition of bimetallic MOFs-based
materials, including metal and ligand types, can further improve the adsorption strength of
the materials on target ions or molecules in water. By referring to existing reports, it can be
found that the adsorption of bimetallic MOF-based nanocomposites on ions or molecules
is highly correlated with the structure of MOFs [58–66]. Consequently, part of the latest
research is summarized about the adsorption–removal of pollutants in water environments
by bimetallic MOF-based materials in Table 1.

3.1.1. Ionic Adsorption

Sun and co-researchers constructed Fe-Co-based bimetallic MOF adsorbents with
different Fe/Co molar ratios (FexCoy MOF-74, where x:y = 0:3, 1:2, 1.5:1.5, 2:1, and 3:0) [67].
Microstructure analysis showed that the BET-specific surface area of bimetallic Fe2Co1
MOF-74 increased by about 20 times (147.82 m2/g) and the total pore volume increased
by about 4 times (0.058 cm3/g) compared with that of monometallic Co MOF-74. At room
temperature, compared to other Fe/Co molar ratio bimetallic MOF-based materials, the
maximum adsorption capacity of Fe2Co1 MOF-74 for As5+ and As3+ increased significantly,
reaching 292.29 mg/g (Figure 3a) and 266.52 mg/g (Figure 3b), respectively. The study
displayed that the absorption capacity of Fe2Co1 MOF-74 to As5+ and As3+ was mainly
attributed to the enhancement of specific surface area, total pore volume, pore structure,
and nanomaterial size.

Zhang and colleagues designed an amorphous Fe/Mn bimetallic organic framework
(FeMn-MOF-74), which effectively combined the low coordination active centers with the
metal atoms at the high oxidation sites to achieve the overall efficient removal of As3+ [68].
When the molar ratio of Fe to Mn was 1.96, the synergistic effect between the active sites
of Fe and Mn was the best, and the maximum adsorption capacity of the material for
As3+ could reach 161.6 mg/g under laboratory conditions. The study confirmed that the
synergistic effect between the components of bimetallic MOFs in amorphous form played
a decisive role in promoting the adsorption of trivalent arsenic. Similarly, a fusiform
FeCo bimetallic MOFs-based nanomaterial (δ-MnO2@Fe/Co-MOF-74) was successfully
prepared by Yang et al., which exhibited high adsorption removal rates for As3+ in the pH
range from 2 to 10 [69]. Compared with Fe/Co-MOF-74, the N2 adsorption–desorption
curves (Figure 3d) and pore size distributions (Figure 3c) of MnO2@Fe/Co-MOF-74 were
significantly ameliorated. At room temperature, the maximum adsorption capacity of δ-
MnO2@Fe/Co-MOF-74 for As3+ was 300.5 mg/g, while that of Co-MOF-74 was 159.3 mg/g.
The mechanism analysis explained that the strong coordination of Fe3+/Co2+ for As was the
important reason for the significant improvement of adsorption performance for bimetal-
lic MOFs-based nanocomposites, besides the functional groups of Fe/Co-O, Fe/Co-OH,
and Mn-O.

3.1.2. Organic Compound Adsorption

The continuous development of bimetallic MOF-based adsorbents with high physico-
chemical properties, high adsorption capacity and selectivity of organic matter, and low
production costs is worth further exploration. Bimetallic MOFs are materials with a large
surface area, high porosity, and multiple active sites that have a good development prospect
in the adsorption of organic pollutants in water environments [70,71].

The introduction of a second metal into the monometallic MOF can improve the
stability of the MOF as a whole and also enhance the interaction between the material
and the targeted contaminant. Yang and Bai [72] prepared flower-like hierarchical NiZn
MOF microspheres by hydrothermal method (Figure 3e) to improve the stability of the
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adsorbent and the adsorption capacity of organic pollutant Congo red. The result showed
the adsorption capacity of NiZn MOF to Congo red increased to 460.90 mg/g (Figure 3f),
while that of Zn MOF and Ni MOF was 276.60 mg/g and 132.20 mg/g, respectively. In
addition, the density functional theory (DFT) calculation of NiZn MOF confirmed that
the NiO, ZnO, and NiO-ZnO nanoclusters contained in the adsorbent were favorable for
the adsorption of Congo red molecules. Similarly, Zheng et al. prepared a cobalt–zinc
bimetallic MOFs-based nanomaterial (ZnCo-NPC) with a special three-dimensional porous
structure [73], and the maximum adsorption capacity of the material was up to 320 mg/g
for ornidazole (ODZ) in water. Adsorption mechanism analysis showed that ZnCo-NPC
enhanced the capture capacity for ODZ molecules by intensifying electrostatic forces,
hydrogen bonds, and π–π bonds.

Liu and co-team synthesized multi-component hollow and multi-shell Ni-Co bimetallic
MOFs-based nanomaterials (Fe(OH)3@NiCo-LDH) to strengthen the interaction between
unsaturated sites and Congo red molecules in the material’s skeleton structure [74]. Within
20 min, the maximum removal efficiency of Congo red by Fe(OH)3@NiCo-LDH reached
100%, and the saturated adsorption capacity reached 658.52 mg/g, significantly higher
than that of Fe(OH)3@NiMg-LDH. The remarkable difference in adsorption capacity of
Congo red by bimetallic MOFs-based materials with distinct structures (Fe(OH)3@NiCo-
LDH is a double-shell structure, and Fe(OH)3@NiMg-LDH is a hollow tube structure)
indicated that the binding strength between the adsorption sites of the material structure
and goal molecules was different. The results demonstrated that the adsorption active sites
formed by NiCo-MOFs-based materials were better than those formed by NiMg-MOFs-
based materials.

However, another report also showed similar research content; the maximum adsorp-
tion capacity of the prepared bimetallic MOFs on Congo red was more than three times
that of the above reports. The study focused on the adsorption properties of cobalt and
iron bimetallic MOFs for CoFe-BDC-(1), which was synthesized in one pot, and CoFe-
BDC-(2), which was prepared by the MOF-on-MOF method (that is, CoFe-MOFs were
further structured on the basis of Fe-BDC) [75]. The maximum adsorption capacity of
CoFe-BDC-(1) adsorbent for Congo red reached 1935.68 mg/g, while that of CoFe-BDC-(2),
Fe-BDC, and Co-BDC was 1259.52, 775.19, and 628.93 mg/g, respectively. The SEM, TEM,
and N2 adsorption–desorption analysis exhibited that CoFe-BDC-(1) had more defects
than CoFe-BDC-(2), which could improve the adsorption and removal efficiency of anionic
pollutants in water. The above two reports indicate that the design of an adsorbent for
the same target pollutant should be fully considered from the aspects of synthesis process,
metal type, material structure, and function.

Table 1. Recent advances of bimetallic MOFs-based nano-adsorbents for adsorption of pollutants
in water.

Adsorbents Pollutants Concentration/mg/L SSA a

/m2/g
K b

/min−1
kmax

c

/mg/g Ref.

CuFe-BTC U(IV) 50 - - 354 [20]
NC@GC/CNTs NaCl 1000 516.46 - 77.33 [53]

Fe doped HKUST-1 Pb2+ 50 438.9 0.041 564.9 [58]
CoxMg1−x-MOF-74 1-hexene - 1135 - 152.7 [59]

NiFe-MOF
Crystal violet 400

9.2
0.003 395.9

[63]Tetracycline 400 0.003 568.1
MIL-125(Ti)/MIL-53(Fe)/CNT@Alg Tetracycline 50–300 273.77 - 294.12 [64]

NiCo-MOF@CMC Tetracycline 30 - - 624.87 [65]

Zinc/Iron mixed-metal MOF-74
Methylene blue 50

1280
- 370

[66]Methyl orange 50 - 239

Fe-Co based MOF-74
As5+ 1

147.82
- 292.29

[67]
As3+ 1 - 266.52

Fe/Mn-MOF-74 As3+ 5–50 45.82 - 161.6 [68]
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Table 1. Cont.

Adsorbents Pollutants Concentration/mg/L SSA a

/m2/g
K b

/min−1
kmax

c

/mg/g Ref.

δ-MnO2@Fe/Co-MOF-74 As3+ 5–160 - - 300.5 [69]
GO/Ni-MOF-199 Thiophene 500 777.88 0.494 50.38 [70]

ZnIn2S4-Nanosheet
Ciprofloxacin 100–1000

118.6
- 219

[71]Congo red 50 - 257
NiZn MOF Congo red 30 56.7 0.0089 460.90 [72]
CoFe-MOF Congo red 0.072 mol/L 10.57 0.0088 1935.68 [75]

Cobalt/zinc-based MOF-74 Ornidazole 500 231 - 320 [73]
Fe(OH)3@NiCo-LDH Prussian blue 100 187.90 0.055 658.52 [74]

Ag-Fe MOF Cd2+
50–200 1150.3

0.539 265
[76]

Cu2+ 0.860 213
a SSA represents the specific surface area, b k is the rate of adsorption, c kmax is maximal adsorption capacity.
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Reproduced with permission from ref. [67]. Copyright 2019, Elsevier. (c) N2 adsorption–desorption
isotherms and (d) pore width distribution of Fe/Co-MOF-74 and δ-MnO2@Fe/Co-MOF-74. Reproduced
with permission from ref. [69]. Copyright 2021, Elsevier. (e) SEM image of NiZn MOF and (f) adsorption
efficiency of Congo red on Ni MOF, Zn MOF, and NiZn MOF. Reproduced with permission from ref. [72].
Copyright 2019, Elsevier.

3.2. Catalysis

Catalysis is an important direction in the development of bimetallic MOF-based
nanomaterials. In terms of the intrinsic catalytic mechanism of MOF-based nanomaterials
as catalysts, inorganic nodes owned by MOFs themselves are the important basis for the
catalytic properties of catalytic materials. In fact, during the catalytic process of inorganic
nodes, the intensity of the electric field around metal ions would change, which could
cause fluctuations in the coordination environment between metal ions and organic ligands,
further inducing the collapse of the metal-organic framework. Therefore, compared with
monometallic MOF-based catalysts, the design of bimetallic MOF-based catalysts is wise;
that is, one highly active metal ion mainly acts as the catalytic center, and the other
maintains the stability of the catalyst structure. At the same time, the construction of
bimetallic MOF-based materials can effectively optimize the distribution of metal catalytic
active sites, improving their stability, catalytic activity, and selectivity [76–80]. The recently
catalyzed degradation of pollutants in the water environment by bimetallic MOF-based
nanocomposites is summarized in Table 2.

3.2.1. Catalytic Activation Degradation

The catalytic activation degradation process is based on the fact of activating H2O2,
PMS, and PDS to produce highly active hydroxyl radicals (•OH) and sulfate radicals
(SO4

•−), which effectively act and degrade stubborn organic pollutants. Over the past
decade, hundreds of studies have confirmed that the catalytic activity of SO4

•- is supe-
rior to that of •OH and that oxidants (PMS) with asymmetric structures are more con-
ducive to activation than those (H2O2 and PDS) with symmetric structures. In response
to the call for green, efficient, and sustainable development goals, heterogeneous cata-
lysts have gradually replaced homogeneous catalysts, becoming the hot spot for catalytic
activation and degradation of organic pollutants in water [81,82]. Among many heteroge-
neous catalysts, the bimetallic MOF-based nanocomposites, especially Co-based MOFs [83],
that directly rely on the advantages of attainable and highly effective metal active sites
and structures are regarded as efficient catalysts for catalytic degradation of pollutants
in water.

Huang and co-workers prepared hierarchical CoFe LDH/MOFs nanorods with differ-
ent cobalt and iron contents for urea oxidation in solution [84]. Compared with Co-MOF,
the CoFe LDH/MOF catalyst had a larger surface activity, higher conductivity, and a better
electron mass transfer path, making the material favorable to promote the catalytic reaction.
The catalytic degradation of urea by bimetallic CoFe-MOFs-based materials confirmed
that CoFe LDH/MOFs still had good recyclability after a long time of work, which was
attributed to the improvement of the local electronic structure for the catalytic active site.
Meanwhile, with the introduction of iron ions, the adsorption capacity, or controllability,
of the catalyst for inorganic metal nodes and ligands gradually increased. Wang and
colleagues synthesized layered Pd@ZnNi-MOF/GO catalysts to activate H2O2 degrad-
ing 3,7-bis(Dimethylamino)phenazathionium chloride [85]. The introduction of Pd atoms
not only greatly improved the catalytic activity of the nanocomposite on H2O2, but also
reinforced its own stability.

Yang and co-team synthesized porous magnetic bimetallic MOFs-based nanocrystal
catalyst CoFe2O4 NC using a CoFe bi-MOFs template for degradation of bisphenol A
(BPA) with activating PMS (Figure S3a) [86]. Compared with CoFe2O4 NC/BPA (only
4% BPA removal efficiency), Fe-MOF/PMS/BPA (5%), and Co-MOF/PMS/BPA (63%),
the catalytic removal efficiency of BPA by the CoFe2O4 NC/PMS/BPA system was more
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than 97% in 60 min (Figure S3b), which illustrated that introducing iron ions into Co-
MOF could significantly promote the activation of PMS and the catalytic degradation
of BPA. The CoFe2O3 nanoparticle (CoFe2O4 NP) prepared by the traditional one-step
hydrothermal method was also weaker than the CoFe2O4 NC in the degradation of BPA
by activating PMS, and the BPA removal efficiency of the former was 69% under the same
experimental conditions. These results indicate that the synergistic catalytic effects between
Co2+ and Fe2+ are significantly different in terms of CoFe2O4 NP and CoFe2O4 NC with
different structures.

Li and co-researchers synthesized a series of unique macaroon-like NbCo-MOF materi-
als for heterogeneous catalyst activation of PMS [87]. The catalytic degradation performance
of tetracycline (TC) in NbCo-MOF samples with Nb/Co ratios of 1:1, 1:2, 1:3, 1:4, 1:5, 2:1,
and 4:1 was investigated. In the kinetic process of TC degradation by activating PMS, the
catalyst samples with the Nb/Co ratio of 1:4 showed the highest catalytic activity (within
10 min, the removal efficiency of TC was close to 100%), while the catalytic activity of
other samples ranged from 35% to 79% (Figure S3c). The anion effects of HCO3

−, NO3
−,

C2O4
2−, and Cl− co-existing with TC were investigated in the NbCo-MOF/PMS system,

and the results displayed that the presence of these anions hardly affected the catalytic
degradation of TC (Figure S3d–g). In addition, NbCo-MOF exhibited excellent catalytic
degradation of rhodamine B and tylosin tartrate. Within 30 min, the removal efficiency of
these target molecules in water was greater than 98%. The research emphasized that the
combined effect of the Nb4+/Nb5+ cycle and the Co2+/Co3+ cycle (Equations (1)–(6)) in the
NbCo-MOF catalyst accelerated the regeneration of highly active sites and improved the
electron transfer efficiency between the catalyst and PMS, thus effectively promoting the
catalytic activity of the catalyst for degrading dissolved organic pollutants.

Nb4+ + HSO5
− → Nb5+ + SO4

•− + OH− (1)

Nb5+ + HSO5
− → Nb4+ + SO5

•− + H+ (2)

Co2+ + HSO5
− → Co3+ + SO4

•− + OH− (3)

Co3+ + HSO5
− → Co2+ + SO5

•− + H+ (4)

Nb4+ + Co3+ → Nb5+ + Co2+ (5)

Nb5+ + Co2+ → Nb4+ + Co3+ (6)

The multi-component reaction in bimetallic MOF-based materials that can be realized
smoothly is based on the coordination of different active sites [88–91]. By adjusting the
target metal ratio, Wang and co-members proved that the materials with spinel-structured
CoMn-MOFs-based nanoparticles (CoxMn3−xO4-C) possessed high catalytic activity and
were constructed with a Co/Mn bimetallic organic framework as a template [88]. A series
of CoxMn3−xO4-C samples showed substantial performance in activating PMS to degrade
bisphenol A (BPA), and the Co1.5Mn1.5O4-C had the best performance. The material could
completely degrade 0.1 mM BPA in a very short time (3 min) (Figure 4a). The stability
experiments measured the leaching amount of cobalt ions for prepared catalysts during the
catalytic process (Figure 4b), which strongly confirmed that the structure of Co1.5Mn1.5O4-C
had high fixability on metal ions during working. Common inorganic anions (such as
HCO3

−, H2PO4
−, NO3

−, and Cl−) also had little effect on the catalytic degradation of BPA
by the Co1.5Mn1.5O4-C/PMS system, but humic acid had a significantly negative effect.
Finally, the mechanism analysis highlighted that there are two pathways for the catalytic
degradation of BPA (Figure 4c). One is that the active sites of cobalt and manganese directly
catalyze PMS to form •OH and SO4

•− radicals working on BPA molecules, while the other
is that the carbonyl group (C=O) under the action of electron transport for the carbon
framework in the catalyst interacts with PMS to produce singlet oxygen 1O2 attacking BPA.
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3.2.2. Photocatalytic Degradation

In recent years, bimetallic MOFs-based materials have gradually developed various
excellent environmental photocatalysts [92–96], which could be used as prominent pho-
tocatalytic reaction active agents for the degradation of organic pollutants in water. It is
generally acknowledged that titanium-based and zinc-based metal organic frameworks
have become hot spots in the field of photocatalysis due to their unique absorption and
conversion properties of light [97–99]. Another metal combined with Ti or Zn to form the
bimetallic MOFs could significantly promote the photocatalytic activity of the materials.

Li et al. investigated the application of TiIn-MOF catalysts with different proportions
for adsorption and photocatalytic degradation of BPA [100]. Among them, the hetero-
geneous metal clusters formed by TiIn-MOF(1:1) could well regulate the surrounding
electronic structure and significantly improve the absorption intensity of visible light
(Figure S4a). Moreover, the lowest optical bandgaps (2.60 eV) were found among the syn-
thesized bimetallic MOF-based catalysts (Figure S4b). After 30 min of dark treatment, the
adsorption removal efficiency of BPA by TiIn-MOF(1:1) reached 38%, and the adsorption
performance was about twice that of Ti-MOF. Subsequently, under 300 W xenon lamp
irradiation, the degrading efficiency of BPA was 100% by TiIn-MOF(1:1) after 20 min, and
the degradation rate was twice that of Ti-MOF. In addition, the synergistic effect of TiIn-
MOF(1:1) could promote the production of •O2

−, hole (h+) and 1O2 in the photocatalytic
process by a large margin. However, a part of the pores and active sites for the directly
synthesized Ti-based MOFs were masked by precursor molecules (organic ligands, organic
solvents, and the like), which resulted in a decrease in the activity of the catalyst. Therefore,
Wang et al. performed a thermal treatment of the synthesized ZnTi-MOF (Figure S4c) to
prepare a C-doped MOFs-based bimetallic photocatalyst that displayed highly efficient
visible light absorption [101]. After 45 min irradiation by a 200 W xenon lamp, the cat-
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alytic degradation efficiencies of all C-dope ZnTi-MOF samples were better than those of
untreated samples.

Amine-functionalized bimetallic MOFs have been successfully applied in the prepara-
tion of photocatalytic materials. Amination can not only expand the visible light absorption
of MOFs-based materials but also well protect the oxygen-containing functional groups
on the surface, which enhances the utilization rate of light by the photocatalyst, adding to
its own oxidation resistance [102,103]. Wang et al. used FeTi-MOF-NH2 as a photo-Fenton
catalyst to degrade chrysoidine at 300 W xenon lamp irradiation [103]. Within 10 min of
the reaction starting, the photo-catalysis ability of Fe/Ti-MOF-NH2(3:1) degrading the
goal pollutant increased to 100%, while FeTi-MOF-NH2(1:1) and FeTi-MOF-NH2(1:3) were
only about 40%. The heterojunction structure of FeTi-MOF-NH2(3:1) could effectively
slow down the photocatalytic electron-hole pair recombination rate and improve the ef-
fective photocatalytic e--h+ pairs so as to exhibit highly efficient catalytic performance
(Equations (7)–(11)).

Fe/Ti-MOF-NH2(3:1) + hv→ Fe/Ti-MOF-NH2(3:1) (e− + h+) (7)

S2O8
2− + e− → SO4

•− + SO4
2− (8)

O2 + e− → O2
•− (9)

2O2
•− + 2H2O→ 2•OH + 2OH− + O2 (10)

Chrysoidine + SO4
•−, •OH, O2

•−, h+ → degradation products (11)

Zhong and co-workers designed an AB-type heterojunction photocatalyst,
ZnO/Ni0.9Zn0.1O using MOF-NiZn as the intermediate [104]. It is worth noting that
during the pyrolysis process of MOF-NiZn, some Ni metal nodes were replaced by Zn to
form Ni0.9Zn0.1O. Compared with NiO (3.11 eV), the hybrid state of Ni0.9Zn0.1O (2.98 eV)
had a lower band gap. Therefore, ZnO/Ni0.9Zn0.1O only needed lower photon energy to
excite and generate electrons and holes in visible light, displaying better photocatalytic per-
formance. The photocatalytic degradation efficiency of ZnO/Ni0.9Zn0.1O for phenothiazine
could reach more than 97% in 60 min.

Li et al. constructed CoZn-ZIF as a porous, non-bonding nano-catalyst CoZn-N-C
(MCZC) using thermal etching technology (Figure 5a), which could enhance the electron
transfer between the Co active site and the Zn active site and construct the unsaturated
metal sites of Co and Zn atom pairs to the maximum extent [105], improving the synergistic
effect between different active sites of the catalyst. When the photocatalytic time is 24 min,
the maximum removal efficiency of TC in the MCZC/PMS/Visible-light system was 99.6%
(the mineralization rate was 55.8%), while that in ZCCN (ZCCN was the thermal etching
product of ZIF-67) was only 74.9% without visible-light irradiation. A variety of anions
(including Cl−, SO4

2−, NO3
−, CO3

2− and H2PO4
−) and natural organic matter (HA) did

not significantly affect the maximum degradation efficiency of the MCZC/PMS/Vis/TC
system, but the removal rates were significantly different. The presence of Cl- and H2PO4

−

increased the catalytic rates of MCZC, while the rest showed inhibition (Figure 5b). The
internal mechanism of the catalytic performance improvement for MCZC was explained
mathematically by density functional theory (Figure 5c). When PMS was adsorbed on
the Co active site at the photocatalyst surface of ZCCN or MCZC, the O-O bond length
of PMS would be outstandingly stretched (from 1.483 Å or 1.476 Å to 1.527 Å) at visible-
light irradiation driving. Thus, as for MCZC, the PMS was more easily activated by
photogenerated electrons to produce SO4

•− and •OH.
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Table 2. Recent forefront of bimetallic MOFs-based nano-catalysts for catalytic degradation of
pollutants in water.

MOFs Precursors Catalysts Pollutants Concentration PMS
(Dosage) Light Source Time

/min R d Ref.

ZIF-67, MOF-74(Ni)
Co-MOF/Ni-

nanoparticles/g-
C3N4 Venlafaxine 10 mg/L 0.4 mM - 120

91.38

[83]

ZIF-67, MIL-100(Fe)
Co-MOF/Fe-

nanoparticles/g-
C3N4

100

ZnNi-MOF Pd@ZnNi-MOF/GO

3,7-
bis(Dimethylamino)
phenazathionium

chloride

10 mg/L - - 8 95 [85]

Titanium
isopropoxyde,

In(NO3)3·9H2O
In/Ti-MOF Bisphenol A 50 mg/L - 300 W Xenon

lamp 20 100 [100]

CoMn-MOF-74 CoxMn3-xO4 Bisphenol A 0.1 mM 1.0 mM - 14 100 [88]

ZnFe-MOF ZnFe2O4/CNTs Bisphenol A 50 mg/L 0.2 g/L - 15 100 [33]

CoFe-MOF CoFe2O4 Bisphenol A 45 µM 0.45 mM - 60 97 [86]

Co(NO3)2·6H2O,
Cu(NO3)2·3H2O

2,5-dihydroxy-1,4-
benzene

dicarboxylate

CuCo-MOF-74 Phenothiazine 0.2 mM 2.0 mM - 30 100 [89]

MOF-NiZn ZnO/Ni0.9Zn0.1O-82 Phenothiazine 20 mg/L - UV-light 60 97.4 [104]

Co(NO3)2·6H2O,
C10H5NbO20,

2-aminoterephthalic
acid

NbCo-MOF

Phenothiazine

20 mg/L 300 mg/L - 30

100

[87]Tylosin tartrate 98.4
Tetracycline 99.7

Rhodamine B 99.7

ZIF-8, ZIF-67 Co/ZIF-8 Rhodamine B 50 mg/L 150 mg/L - 90 85 [77]

Co, Zn-MOF Co@C-NCNTs Norfloxacin 30 mg/L 0.5 mM - 30 92 [90]

Co(NO3)2·6H2O,
Ni-MOF,

1,3,5-tricarboxylic
acid

NiCo-LDH Red reactive 0.1 mM 3 mM - 10 89 [91]

NiCe-MOF NiO/CeO2

Sodium
p-dimethylamino-

azobenzene
sulfonate

10 mg/L -
125 W

Mercury
lamp

60 97 [92]

BiFe-MOF BiFeO3 Naproxen 10.0 µM 0.10 mM 400 W Xenon
lamp 40 95.5 [95]

CoCl2·6H2O,
FeCl3·6H2O, CeO2,

terephthalic acid

MIL-
53(Fe/Co)/CeO2

Atrazine 10 mg/L 250 mg/L 80 W lamp 60 99 [96]

MIL-88B/Zn ZnFe2O4/Fe2O3 Ciprofloxacin 10 mg/L - 300 W Xenon
lamp 180 96.5 [99]

ZnTi-MOF C-doped ZnO/TiO2 Basic Rhodamine 10 mg/L - 200 W Xenon
lamp 45 94 [101]

FeTi-MOF FeTi-MOF-NH2 Chrysoidine 50 mg/L 14 mM 300 W Xenon
lamp 10 100 [103]

CoCl2·6H2O,
FeCl3·9H2O,

2-aminoterephthalic
acid

FeCo/N MOF Tetracycline 50 mg/L 5 mM - 150 99 [79]

ZIF-CoZn
Co-Zn-N-C

(MCZC)

Tetracycline

10 mg/L 1 mM - 24

99.6

[105]Ofloxacin 98.4
Norfloxacin 97.6

Phenol 97.7

d R is maximum degradation efficiency.
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3.3. Detection

Bimetallic MOF-based materials possess high electron mobility, structural adjustabil-
ity, and chemical stability, which have been widely used in the detection of target ions
or molecules, especially as sensors [106–110]. Compared with the monometallic MOF-
based electrode, the bimetallic MOF-based electrode sensor has the advantages of stronger
high-temperature resistance, higher sensitivity, better selectivity, and a shorter response
time [111–113]. The bimetallic MOFs are composed of two different metal cations or
metal cations’ aggregates bonded with organic ligands to form functional materials with
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high specific surface area, porosity, and structural morphology stability, which is a new
sustainable-development form based on single metal MOF materials. At present, a variety
of sensors with special selective performance have been developed based on bimetal-
lic MOFs-based materials and are popularly applied in the detection of targeted ions
and molecules, including glucose [114,115], bisphenol A [116], Fe3+ [117], miRNA [118],
antibiotics [119], acetone [120], organophosphate [121], and so on. The bimetallic MOF-
based nanomaterials’ latest progress in detecting pollutants in environmental water is
summarized in Table 3.

Pan and co-workers synthesized NiCu-MOF/GCE based on a glassy carbon elec-
trode supported by 2D/3D hierarchical NiCu-MOF, which showed great electrocatalytic
performance for a non-enzyme glucose sensor [114]. NiCu-MOF/GCE electrode sensors
exhibited a favorable linear response to glucose in the range of 20 µM~4.93 mM, which was
three times that of Ni-MOF/GCE (5 µM~1.63 mM) (Figure 6a,b). The NiCu-MOF/GCE’s
performance advantage was not only manifested in the width of response to glucose but
was also outstanding in anti-interference ability and stability. When the distractions of uric
acid, citric acid, ascorbic acid, and Cl− coexisted, the responsiveness of Ni-MOF/GCE and
NiCu-MOF/GCE for glucose was deeply explored (Figure 6c). The results showed that
the detection performance of NiCu-MOF/GCE for glucose was almost unaffected in the
presence of high concentrations of Cl−, while Ni-MOF/GCE decreased by 22%. In addition,
Figure 6d also reflected that after continuous operation for up to 22 days, the electrode
performance of NiCu-MOF/GCE only went down 10%, while that of Ni-MOF/GCE under
the same conditions reduced almost 52%. Another more efficient enzyme-free glucose
bimetallic MOFs-based sensor (Co/MnO@HC) was successfully prepared (Figure 6e) [115].
Chronoamperometry and cyclic voltammetry evaluated that the Co/MnO@HC sensor had
high electrochemical catalytic performance in low concentration glucose (50~900 µM) and
high concentration glucose (1.9~6.9 mM) solutions, and the detection limit of the electrode
material was 1.31 µM.

Huang and co-researchers prepared six self-assembled multilayer M-N-MOFs-based
(M=Ce, Ni, Zn; N=Co, Ni) carbon nanotubes loaded on glassy carbon electrodes
(M-N-MOF/MWCNTs/GCE) and applied them to the detection of BPA in drinking
water [122]. Among the above six synthetic bimetallic MOFs, CeZn-MOF-based electrodes
displayed the best catalytic performance and the highest oxidation peak current value
(more than 40 µA) for BPA in aqueous solution. Nyquist plots further reflected the electrode
impedances of CeZn-MOF/MWCNTs/GCE, CeZn-MOF/GCE, MWCNTs/GCE, and GCE,
which were 34.64, 138.2, 84.26, and 103.9 Ω, respectively. The results demonstrated that
CeZn-MOF/MWCNTs/GCE electrodes had the highest charge transfer efficiency in opera-
tion. Taking advantage of electrochemical impedance spectroscopy (EIS) and differential
pulse voltammetry (DPV), the working range of CeZn-MOF/MWCNTs/GCE electrodes
for BPA was determined from 0.1 to 100 µmol/L along with a detection limit of 7.2 nmol/L.

Wu and Huang synthesized an MgZn MOFs material with fluorescent characteristics:
MgZn(1, 4-NDC)2(DMF)2 (1, 4-NDCH2 = 1, 4-naphthalene dicarboxylic acid), which was
constructed by the chain of [-Mg-(COO)2-Zn-(COO)2-]n, exhibiting the two-color conver-
sion fluorescence from green to blue [117]. The phenomenon was due to the change in
interaction force and relative position between metal ions and organic ligands during the
synthesis of bimetallic MOF-based materials, which led to the unique fluorescence behavior
of the materials. In fact, MgZn(1, 4-NDC)2(DMF)2 could exhibit different fluorescence
intensities because the fluorescence energy released by MgZn(1, 4-NDC)2(DMF)2 would
be absorbed by metal ions or molecules. Therefore, MgZn(1, 4-NDC)2(DMF)2 showed
excellent detection performance for Fe3+ (0–100 µM, Cu2+ (0–150 µM, CrO4

2− (0–600 µM)
and CS2.
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Figure 6. (a) Amperometric responses of Ni-MOF/GCE and NiCu-MOF-6/GCE upon successive
addition of glucose (Inset shows the magnified amperometric response to glucose at lower con-
centrations); (b) The corresponding calibration curves of Ni-MOF/GCE and NiCu-MOF-6/GCE;
(c) Anti-interfering capabilities of Ni-MOF/GCE and NiCu-MOF-6/GCE in the presence of glucose
and other possible interference; (d) Stability of Ni-MOF/GCE and NiCu-MOF-6/GCE in 0.1 M NaOH
solution containing 0.6 mM glucose. Reproduced with permission from ref. [114]. Copyright 2021,
Elsevier. (e) Scheme showing the synthesis of Co/MnO@HC and modification of working glassy
carbon electrode. Reproduced with permission from ref. [115]. Copyright 2022, Elsevier.
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Wang and co-workers have designed another high-efficiency fluorescent bimetal-
lic MOFs-based sensor, Cd6Na4(L)4(DMF)2(µ-H2O)3 (H4L = 1,1′-ethylbiphenyl-3,3′,5,5′-
tetracarboxylic acid) (Figure 7a), for the detection of ODZ, cysteine (Cys), TC, and metron-
idazole (MDZ) in water [119]. Interestingly, Cd6Na4(L)4(DMF)2(µ-H2O)3 exhibited different
detection characteristics when working. On the one hand, a fluorescence quenching effect
was displayed on the detection of ODZ (the detection limit was 0.32 µM), TC (0.11 µM),
and MDZ (0.14 µM). On the other hand, a fluorescence-enhancing effect was revealed
during the process of recognizing Cys (19.7 nM). When ODZ, TC, or MDZ were presented
in water, the ligands of Cd6Na4(L)4(DMF)2(µ-H2O)3 preferentially transferred energy to
target molecules ODZ, TC, or MDZ, while the energy transferring to other receptors was in-
hibited, thereby reducing fluorescence intensity, which manifested as selective recognition
of ODZ, TC, or MDZ. The fluorescence enhancement effect was the result of a synergis-
tic effect between Cys and the porous structure of CdNa-MOFs. Targeting experiments
(Figure 7b) and interference tests of 17 amino acids (Met, Thr, Lys, and the like) proved
that Cd6Na4(L)4(DMF)2(µ-H2O)3 sensor owed characteristic detection performance to Cys,
and cyclic tests further highlighted that the sensor possessed the properties of maintaining
good stability and recycling.
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Figure 7. (a) The 3D framework of Cd6Na4(L)4(DMF)2(µ-H2O)3; and (b) The emission intensities of
Cd6Na4(L)4(DMF)2(µ-H2O)3 in different amino acids. Reproduced with permission from ref. [119].
Copyright 2022, Elsevier.
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Table 3. Recent progress of high-sensitivity bimetallic MOF-based sensors for detecting pollutants
in water.

MOFs Precursors Sensors Goals Linear Range
/µM LOD e/nM Response

Time/s Ref.

AgZn-MOF AgZn-MOF HCV-RNA 1 fM~100 nM 0.64 fM 3.5 h [37]

ZnFe-MOF Fe2O3@ZnFe2O4 Acetone 1.4~300 - 7.6 [35]

Zn-MOF-5, Fe(NO3)3·9H2O ZnFe2O4/Fe-ZnO Acetone 30.8–200 mg/L - 4.7 [111]

CuCo-MOF CuOx@Co3O4
core-shell nanowires Glucose 0.1~1300.0 36 1 [107]

CuNi-MOF M/MO-800@C Glucose 0.1~2200 60 5 [108]

Ni(NO3)2·6H2O/Cu
(NO3)2·3H2O NiCu-MOF/GCE Glucose 20~4930 15,000 - [114]

MnCo-MOF-74 Co/MnO@HC/GCE Glucose 50~900,
1900~6900 1310 - [115]

NiCo-MOF NiCo-
MOF/Ag/rGO/PU Glucose 10~660 3280 12 [123]

FeCl3·6H2O, EuCl3·6H2O,
2-aminoterephthalic acid FeEu-MOF Alkaline

phosphatase 0~250 0.6 - [110]

CeZn-MOF CeZn-
MOF/MWCNT/GCE Bisphenol A 0.1~100 7.2 125 [122]

Ce(NO3)2·6H2O,
Ni(NO3)2·6H2O,

1,3,5-benzenetricarboxylic acid
Ce-Ni-MOF/GCE Bisphenol A 0.1~100 7.8 150 [116]

EuCl3, TbCl3, CTP-COOH Versatile
Eu3+/Tb3+-MOFs Fe3+ 20~250 3860 <10 [124]

EuCl3·6H2O, TbCl3·6H2O,
protonated

pyridine-3,5-dicarboxylic acid
sulfate ligand

EuxTb1-x-MOFs Fe3+ 30~120 10,000 - [125]

Mg(NO3)2, Zinc acetate,
1,4-naphthalene
dicarboxylic acid

MgZn(1,4-
NDC)2(DMF)2

Fe3+ 0~100 - -
[117]Cu2+ 0~150 - -

CrO4
2− 0~600 - -

CdNa-MOF
Cd6Na4(L)4(DMF)2(µ-

H2O)3

Ornidazole 0~65 320 20

[119]
Cysteine 0~2 19.7 20

Tetracycline 0~30 110 20
Metronidazole 0~150 140 20

Glucose 5~35 3500 30

K3[Fe(CN)6], MnCl2·4H2O,
terephthalic acid MnFe-MOF Organophosphate 0.001~0.1 0.85 120 [121]

ZnNi-MOFs ZnNi MOF
microspheres Adenosine 0.0001~100

ng/mL 20.32 fg/mL - [126]

BMZIF67@MWCNTs Co-Nx-C@MWCNTs Pb2+ 2~60 µg/L 0.7 µg/L 120 [127]

Fe-MOF, TbCl3·6H2O TbFe-MOFs Carbohydrate
antigen 0.01~200 58 - [128]

ZIF-67@ZIF-8-P CoP@C/NCS/GCE Dopamine 5~400 30 200 [129]

NiCo-MOF NiCo-MOF@C Helicobacter pylori 10~107 CFU./mL 1 CFU./mL 1200 [130]

FeCu-MOF MOF(Fe-Cu)-ChOx Choline 20~200 6 1200 [131]

CsCe-MOF CsCe-MOF/GCE Tryptophan 0.25~331 140 - [132]

NiIn-MOF Au-NiO/In2O3
hollow microspheres Toluene 5~100 µg/L 5.1 µg/L 1 [133]

UiO-66, AgNO3, PdCl2,
terephthalic acid, 2-

aminoterephthalic acid
AgPd@UiO-66-NH2 4-Nitrophenol 100~370 32 60 [134]

e LOD is limit of detection.
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4. Summary and Outlook
4.1. Summary

The adjustable advantages of MOFs in morphology, structure, and chemical properties
have made them a potential force for adsorption and catalytic treatment of polluted water
and the detection of trace pollutants. Bimetallic MOFs increase the complexity of MOF-
based materials on the basis of monometallic MOFs, including morphology, structure,
catalytic properties, electron conduction, and stability. Direct synthesis and post-treatment
have been widely adopted to prepare bimetallic MOF-based nanocomposites in order to
maximize the efficiency of adsorption removal, catalytic degradation, and recycling.

The formation of heterojunctions and Schottky junctions significantly and effectively
promoted electron transfer between the two metal atoms, thus enhancing the charge
recombination cycle and improving the stability of the materials. In order to better explore
the structure, composition, and arrangement of heterometals in bimetallic MOF-based
materials, a variety of characterization techniques need to be fully utilized and combined.
At present, the existing research lacks detailed and effective means to determine the
arrangement of metals in the framework. However, the effective identification of metal ion
arrangements in bimetallic MOFs-based materials is critical to understanding performance
improvement in heterogeneous metal mixing modes.

Bimetallic MOF-based nanomaterials with complex structure and composition usually
exhibit better performance than monometallic MOFs. MOFs composed of different metal
centers can form bimetallic MOFs with different morphologies, structures, and functions
through different preparation processes. Hydrothermal, solvothermal, and one-pot syn-
thesis have become the basic strategies for bimetallic MOF synthesis, while ball-milling,
pyrolysis, and other post-treatment methods have gradually developed into mainstream
methods for the synthesis of new MOF-based materials. The synthesis process of new
MOFs-based materials is usually accompanied by the formation of heterometal substitu-
tion and defective crystal structure so as to adjust the electronic structure, pore structure,
and stability of bimetallic MOFs-based materials, leading to new physical adsorption and
chemical catalytic properties.

At present, the effective synthesis and design of bimetallic MOF-based nanocomposites
with various physical structures and chemical properties have been favored by many
applications, including adsorption, catalysis, and the detection of pollutants in water
environments. However, the sustainable development of bimetallic MOF-based materials
is still limited by the following aspects: (a) low stability, (b) easy plugging of active sites
and pore structures, (c) poor electrical conductivity, (d) unclear interaction mechanisms
between bimetals, and (e) inconvenient recovery.

4.2. Outlook

A large number of studies on the characterization, recycling, and recovery of bimetallic
MOF-based composites have been performed in detail and confirmed that the bimetallic
MOF-based composites are more stable than the original MOFs.

Bimetallic MOF-based nanomaterials have more available active sites, relatively good
stability, and electrical conductivity, which makes their applications in the fields of ad-
sorption, catalysis, and detection under complex environmental conditions have stronger
core competitiveness.

Although great progress has been made in the design of bimetallic MOFs as multi-
functional materials, there are still some problems, such as the uneven distribution of metal
particles, the absence of available active sites, and the difficulty of accurately controlling
pore structure. In order to solve these problems as much as possible, studies using MOFs
as precursors or templates are gradually developing. For example, the ball-milling method
is used to control the mixing of the two precursor MOFs more fully so as to reduce the
aggregation of bimetals in MOFs during the pyrolysis process. On the other hand, the
doping of nonmetallic compounds can also enhance the toughness of bimetallic MOF-based
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nanomaterials. These strategies have improved the physical and chemical properties of
bimetallic MOFs to a certain extent, but they still deserve further exploration.

The leaching of metal ions is an urgent problem to be solved in the application of
bimetallic MOF-based materials in water treatment. The highly electronegative elements
contained in the organic ligands can not only effectively fix metal ions in the synthesis of
bimetallic MOFs-based materials, reduce ion leakage in the working process of nanoma-
terials, but also further optimize the pore structure and electron transport properties of
the materials.

On the one hand, for the reaction mechanism and degradation path of pollutants in
heterogeneous catalytic oxidation processes, many researchers only evaluated the mineral-
ization degree of organic pollutants from the perspective of total organic carbon without
considering the deeper carbon balance. In future studies, more effective evaluation meth-
ods can be considered to explain the conversion of pollutants between organic carbon
and inorganic carbon. On the other hand, although bimetallic MOF-based nanocompos-
ites have outstanding performance in removing pollutants from water environments, the
comprehensive safety and ecological risk assessment of the materials still needs to be
further studied.

Despite the fact that bimetallic MOF-based nanocomposites still face many challenges
in water treatment, their rapid development in adsorbents, catalysts, and sensors (elec-
trodes) in recent years indicates that they have huge potential for growth. In future research,
it is expected to develop bimetallic MOF-based materials that are more efficient, cheaper,
and environmentally friendly so that functional materials for water treatment can be
realized with both structure and performance.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/nano13152194/s1, Figure S1: (a) Schematic of the synthesis mechanism
of bimetallic CoNi-MOFs; (b) Schematic drawing of the NiZn-MOFs nanostructure. Figure S2:
(a) Diagrammatic synthesis of CoMo-MI-T; (b) CoNi@C is synthesized via a one-pot solvothermal
and pyrolysis reaction; (c) Preparation procedure of CoCe-MOF. Figure S3: The schematic diagram of
the preparation process for CoFe2O4 NC and the catalytic degradation of BPA by activating PMS
and (b) removal efficiency of BPA in different reaction systems within 60 min. Effect of (c) Nb/Co
ratio (catalyst = 0.01 g; TC = 100 mL, 0.02 g/L; PMS = 0.3 g/L; pH = 6.02; temperature = 25 ◦C; the
dotted line represents the instability of Co-MOF), (d) Cl−, (e) NO3−, (f) HCO3− and (g) C2O42-
on TC removal by NbCo-MOF (Nb:Co = 1:4). Figure S4: (a) UV–vis DRS spectra and (b) the band
gap energy of as-prepared samples. (c) The process of preparation for ZnTi-MOF and photocatalytic
degradation of basic Rhodamine.
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BET Brunauer-Emmet-Teller
BMOF Bimetallic Metal Organic Framework
BPA Bisphenol A
CC Carbon Cloth
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CoMo-MI Cobalt-Molybdenum Bimetallic MOFs
Co-Mo-MI-T Cobalt-Molybdenum Bimetallic MOF-based Carbon and Nitrogen Nanomaterials
CV Cyclic Voltammetry
CNTs Carbon Nano Tubes
Cys Cysteine
DFT Density Functional Theory
DMF Dimethyl Formamide
DRS Diffuse Reflectance Spectroscopy
DPV Differential Pulse Voltammetry
EIS Electrochemical Impedance Spectroscopy
Fe@NC-800/AG Fe-Doped Nitrogen Carbon/Aerogel
GCD Galvanostatic Charge/Discharge
GO Graphene Oxide
LDH Layer Double Hydroxide
MCZC Cobalt/Zinc coordinated hollow carbon nitride
MDZ Metronidazole
MIL Materials of Institute Lavoisier/materials of institute Lavoisier
MOF Metal Organic Framework
NC Nitrogen-doped Carbon
NP Nano Particle
ODZ Ornidazole
PDS Peroxydisulfate
PMS Peroxymonosulfate
SEM Scanning Electron Microscope
SSA Specific Surface Area
TG Thermogravimeitry
TEM Transmission Electron Microscope
TC Tetracycline
XRD X-Ray Diffraction
ZCCN Cobalt metal-organic framework-derived Co-doped porous carbon nitride
ZIFs Zeolitic Imidazolate Frameworks
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