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Abstract: Copper-based fungicides have been used to control various plant diseases for more than
one hundred years and play very important roles in agriculture. Accumulation of copper in fresh-
water and environment pose severe threats to human health and the environment. The current
study evaluated the developmental and behavioral toxicity of PEG@Cu NCs (copper nanoclusters),
Kocide® 3000 (copper hydroxide), and Cu(CH3COO)2 (copper acetate) to zebrafish in early-life
stages. The developmental toxicity was evaluated according to the parameters of mortality, hatch-
ing rate, autonomous movement and heartbeat of embryos, and body length of larvae. The 9 dpf
(days postfertilization)-LC50 (50% lethal concentration) of embryonic mortality was 0.077, 0.174 or
0.088 mg/L, and the 9 dpf-EC50 (effective concentration of 50% embryos hatching) of hatching rate
was 0.079 mg/L, 0.21 mg/L and 0.092 mg/L when the embryos were exposed to PEG@Cu NCs,
Kocide® 3000 or Cu(CH3COO)2, respectively. Kocide® 3000 and Cu(CH3COO)2 obviously decreased
the spontaneous movements, while PEG@Cu NCs had no adverse effects on that of embryos. The
reduced heartbeat can return to normal after exposure to PEG@Cu NCs for 96 h, while it cannot re-
cover from Kocide® 3000. In addition, Kocide® 3000 (≥0.2 mg/L), PEG@Cu NCs and Cu(CH3COO)2

with 0.05 mg/L or higher concentration exhibited obvious behavioral toxicity to zebrafish larvae
according to the parameters of movement distance, average velocity, absolute sinuosity, absolute turn
angle and absolute angular velocity.

Keywords: zebrafish; early-life stages; copper fungicides; developmental and behavioral toxicity

1. Introduction

Copper exists naturally in a variety of mineral forms, and is widely used in industry,
agriculture, cosmetics and food processing, etc. [1]. Copper is an essential element for all
forms of life and plays very important roles in many physiological and biochemical pro-
cesses of living organisms. In addition, it also serves as a cofactor for several enzymes [2,3].
However, copper can cause hydromineral regulatory malfunction, stressing or killing or-
ganisms, when the copper concentrations exceed the nutritional needs [4]. Disruptions in
the homeostatic mechanisms of copper metabolism in brain are associated with human neu-
rodegenerative disorders such as Menkes disease, Wilson’s disease, Alzheimer’s disease,
Parkinson’s disease, and amyotrophic lateral sclerosis [5,6]. In addition, copper displayed
adverse effects on various aquatic organisms, including fish, algae, Daphnia, etc. Copper
affected the normal growth and survival of fish by interfering in the nervous system, innate
immune system and antioxidant system [7,8]. It also affected the reproduction and survival
ability of Daphnia species [9,10]. In addition, copper can reduce photosynthetic efficiency,
induce oxidative stress, and inhibit the growth of algae [11,12].

Copper was one of the first elements used as a plant fungicide. It can be traced back to
the famous origin of Bordeaux mixture, containing a mixture of copper sulfate and lime,
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which could effectively control the destructive diseases of downy mildew in France vine-
yards [13]. At present, a large number of copper fungicides are used for controlling diseases
such as citrus canker (Xanthomonas citri subsp. Citri), angular leaf spot of cucumber (Pseu-
domonas syringae pv. Lachrymans), and downy mildew disease of grape (Plasmopara viticola)
and cucumber (Pseudoperonospora cubensis) all over the world, including China [14,15].
These copper fungicides include copper sulfate, copper hydroxide, copper oxychloride and
copper acetate, etc. [13,15]. With the application of nanotechnology in pesticide processing,
Cu-based chemicals are one of the most common forms of nanopesticides due to their excel-
lent properties and low cost [16]. Compared with traditional pesticides, nanopesticides can
improve bioavailability, enhance solubility, delay the degradation rate of active ingredients,
control the release rate of active ingredients, etc. [17]. However, nanopesticides may also
have unexpected consequences for nontarget organisms and the environment due to the
inherent characteristics of the nanoparticles and the release of unknown chemical entities
into the environment [17,18].

Copper usually enters the environment with aqueous discharges, such as urban
wastewater, industrial and mine effluent and agriculture runoff, etc. [1,19]. A total of
approximately 8 kt of copper per annum (ktpa) is estimated to enter freshwater in the
European Union (EU), while approximately 1.8 ktpa is estimated to enter freshwater by the
way of agriculture [1]. It has been reported that copper concentration was about 10 mg/L
and 100 mg/L in aquatic systems near cities and mining areas, respectively [19]. Copper in
an aquatic environment can profoundly influence both human and environmental health.
To date, there are more than 400 copper-based fungicides registered for controlling a large
number of plant diseases [15]. In this study, the toxic effects of fungicides of Kocide®

3000 (copper hydroxide), Cu(CH3COO)2 (copper acetate), and copper nanoclusters of
PEG@Cu NCs (copper nanoclusters) on the development and behavior of zebrafish in
early-life stages were studied.

2. Materials and Methods
2.1. Chemicals and Reagents

PEG@Cu NCs, a copper nanocluster pesticide, was provided by Professor Kun Qian
from Southwest University of China (Chongqing, China). Kocide® 3000 (46% copper
hydroxide water-dispersible granule) is a commercial pesticide produced by DuPont Com-
pany (Wilmington, DE, USA), and 98% copper acetate anhydrous was purchased from
Shanghai Macklin Biochemical Co., Ltd (Shanghai, China). Reconstituted water of pH
7.5 ± 0.5 was prepared according to the guideline of ISO-7346-2 with minor adjustments,
which mainly contained 294 mg/L CaCl2 · 2H2O, 106.5 mg/L NaHCO3, 60 mg/L MgSO4
and 6 mg/L KCl [20].

2.2. Characterization of PEG@Cu NCs and Kocide® 3000

The shape, particle size of PEG@Cu NCs and Kocide® 3000 was measured by transmis-
sion electron microscopy (TEM) (JEOL JEM-F200, Tokyo, Japan) [21]. The hydrodynamic
particle size of Kocide® 3000 was measured by a nanoparticle-size and zeta potential
analyzer (Malvern Zetasizer Nano ZS90, Worcestershire, UK).

2.3. Maintenance of Zebrafish and Embryo Collection

Adult zebrafish (wild type, AB strain) were purchased from Beijing Hongda Gaofeng
Aquarium Department, China. The male and female zebrafish were separately raised in
the circulating filtration system (Beijing ESEN Technology Development Co., Ltd.; Beijing,
China) under conditions of 26 ± 1 ◦C and photoperiod of 14 h/10 h (light/dark). Adult
zebrafish were fed with live brine shrimp three times a day.

The night before the test, the male and female parent fish in a ratio of 1:1 were put into
the spawning box, which was separated by a baffle and covered with black cloth for dark
treatment. The fertilized embryos were collected and washed twice in reconstituted water
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the next morning. The normal and healthy embryos within 2 h postfertilization (hpf) were
selected for subsequent tests.

2.4. Acute Toxicity Test of Copper Fungicides on Embryos

Acute toxicity testing of embryos was carried out according to the OECD guideline
236 [22] with modifications. The final concentration of test solutions was 0.0125, 0.05, 0.2,
0.8, and 3.2 mg/L for PEG@Cu NCs, 0.23, 0.26, 0.3, 0.35, and 0.4 mg/L for Cu(CH3COO)2,
and 0.25, 0.5, 1, and 2, 4 mg/L for Kocide® 3000.

A total of 15 healthy embryos within 2 hpf were selected and placed in 40 mL test
solutions with different concentrations. The reconstituted water was used as control. Three
replicates were set for each test concentration and control. Test embryos were raised in an
incubator in conditions of 26 ± 1 ◦C and photoperiod of 14 h/10 h (light/dark) for 96 h. The
dead embryos were recorded and removed every 24 h during test periods. All procedures
in this test complied with Chinese legislation and were approved by the Independent
Animal Ethics Committee of China Agricultural University.

2.5. Developmental Toxicity Test of Zebrafish in Early-Life Stages

The experiment was conducted according to the OECD guideline 212 [23] with modifi-
cations. A series concentration of 0.0125, 0.05, 0.2, 0.8 and 3.2 mg/L was set for PEG@Cu
NCs, Cu(CH3COO)2 or Kocide® 3000. A total of 15 healthy embryos were selected and
immersed in 50 mL test solution with different concentrations. The reconstituted water was
used as control. Test embryos were raised in an incubator in conditions of 26 ± 1 ◦C and
photoperiod of 14 h/10 h (light/dark) for 9 days. The parameters of mortality and hatching
rate, autonomous movement, heartbeat, locomotor behavior, body length and deformity
were observed and recorded at different times during the test periods. The methods for
locomotor behavior are described in Section 2.6.

2.6. Locomotor Behavior of Zebrafish in Early-Life Stages

At 7 days postfertilization (dpf), the larvae without morphological abnormalities were
selected and transferred into 24-well plates with one larva in 2 mL solution per well. At
8 dpf, all larvae were removed from incubators and acclimated at room temperature for 2 h.
Then, the movement behavior of individual larvae was continuously recorded for 10 min
in dark conditions using a DanioVision system (Noldus, Wageningen, The Netherlands)
after acclimation in an observation chamber for 10 min. The total distance traveled, aver-
age velocity, absolute sinuosity, absolute turn angle, and absolute angular velocity were
analyzed using EthoVision XT15 software (Noldus, Wageningen, The Netherlands). Tests
were carried out in triplicate (n = 24) for each concentration.

2.7. Statistical Analysis

Significance analysis of means was conducted by one-way analysis of variance (ANOVA).

3. Results

3.1. Characterization of PEG@Cu NCs and Kocide® 3000

The shape of PEG@Cu NCs is nearly spherical, and the size is approximately 72.73 nm
(Figure S1A). In contrast, the shape of Kocide® 3000 particle is irregular, and the average
particle size cannot be determined accurately (Figure S1B). The hydrodynamic particle size
of Kocide® 3000 was 768.6 ± 148.3 nm, which indicated that Kocide® 3000 is a nanopesticide
(Figure S2).

3.2. Acute Toxicity Test of Copper Fungicides on Embryos

The results indicated that the 96 hpf-LC50 (50% lethal concentration) of PEG@Cu NCs
and Cu(CH3COO)2 for embryos was 0.166 mg/L and 0.276 mg/L, respectively (Table 1 and
Table S1). The mortality of embryos was 7.78%, 6.67% and 16.67% when the concentration
of Kocide® 3000 was 1.0, 2.0 and 4.0 mg/L, respectively. However, deposits of Kocide®
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3000 were observed in 4 mg/L test solutions. Hence, the 96 hpf-LC50 of Kocide® 3000 is
thought to be more than 2 mg/L.

Table 1. The acute toxicity of PEG@Cu NCs, Kocide® 3000 and Cu(CH3COO)2 for zebrafish embryos.

Fungicides 96 hpf—LC50 (mg/L) 95% Confidence Limit (mg/L) R2

PEG@Cu NCs 0.166 0.086–0.312 0.96
Kocide® 3000 >2.0 - -

Cu(CH3COO)2 0.276 0.256–0.296 0.96
Note: hpf = hours postfertilization; LC50 = 50% lethal concentration.

3.3. Developmental Toxicity of Copper Fungicides in Zebrafish in Early-Life Stages
3.3.1. Mortality of Embryo

The copper fungicides exhibited different toxicity to embryos (or larvae). The 9 dpf-
LC50 of PEG@Cu NCs, Kocide® 3000 and Cu(CH3COO)2 to embryos was 0.077, 0.174 and
0.088 mg/L, respectively (Table 2). The PEG@Cu NCs and Cu(CH3COO)2 displayed higher
embryo (or larvae) toxicity to zebrafish in early-life stages than Kocide® 3000.

Table 2. The 9 dpf mortality and hatching rate for zebrafish embryos exposed to PEG@Cu NCs,
Kocide® 3000 and Cu(CH3COO)2.

Fungicides
Mortality Hatching Rate

9 dpf—LC50
(mg/L)

95% CL
(mg/L) R2 9 dpf—EC50

(mg/L)
95% CL
(mg/L) R2

PEG@Cu NCs 0.077 0.005–0.343 0.87 0.079 0.003–0.396 0.87
Kocide® 3000 0.174 0.107–0.280 0.98 0.210 0.039–1.160 0.96

Cu(CH3COO)2 0.088 0.028–0.252 0.90 0.092 0.035–0.231 0.93
Note: dpf = days postfertilization; EC50 = effective concentration of 50% embryos hatching; CL = confidence limit.

The mortality of embryos increased with the enhancement of copper concentration
(Figure 1A). The embryo mortality (about 2.22–4.45%) displayed no obvious difference
treated with PEG@Cu NCs, Kocide® 3000 and Cu(CH3COO)2 with concentration of
0.0125 mg/L. At a concentration of 0.05 mg/L, the embryo mortality treated with PEG@Cu
NCs and Cu(CH3COO)2 was significantly higher than Kocide® 3000. However, almost
all embryos died after exposure to PEG@Cu NCs, Kocide® 3000 and Cu(CH3COO)2 at
concentration of 3.2 mg/L.
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Figure 1. The 9 dpf mortality (A) or hatching rate (B) of embryos after exposure to PEG@Cu NCs, 
Kocide® 3000 and Cu(CH3COO)2 at concentrations of 0.0125, 0.05, 0.2, 0.8 and 3.2 mg/L. The hatching 
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Figure 1. The 9 dpf mortality (A) or hatching rate (B) of embryos after exposure to PEG@Cu NCs,
Kocide® 3000 and Cu(CH3COO)2 at concentrations of 0.0125, 0.05, 0.2, 0.8 and 3.2 mg/L. The hatching
rate is zero, because all embryos died after exposure to 3.2 mg/L Kocide® 3000 or Cu(CH3COO)2.
Values are shown as means ± SD (standard deviation). The mortality and hatching rate with different
letter are significantly different (p < 0.05) for the same concentration of different fungicides.
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3.3.2. Hatching Rate of Embryos

The 9 dpf-EC50 (effective concentration of 50% embryos hatching) of PEG@Cu NCs,
Kocide® 3000 and Cu(CH3COO)2 to embryos was 0.079, 0.21 and 0.092 mg/L, respectively
(Table 2), which indicated that the copper fungicides displayed different effects on hatching
rate of embryo.

For each copper fungicide, the hatching rate of embryos decreased with enhancement
in copper concentration (Figure 1B). The hatching rate of embryos displayed no significant
difference after exposure to PEG@Cu NCs, Kocide® 3000 or Cu(CH3COO)2 at 0.0125 mg/L.
At concentrations of 0.05 and 0.2 mg/L, the hatching rate of embryos between the PEG@Cu
NCs and Cu(CH3COO)2 had no difference, but the hatching rate of embryos exposed to
PEG@Cu NCs was significantly lower than that of Kocide® 3000. The hatching rate of
embryos treated with PEG@Cu NCs was obviously lower than Kocide® 3000, but signifi-
cantly higher than Cu(CH3COO)2 at concentration of 0.8 mg/L. When the concentration of
PEG@Cu NCs, Kocide® 3000 or Cu(CH3COO)2 increased to 3.2 mg/L, almost no embryos
could hatch.

3.3.3. Autonomous Movement of Embryos

The three copper fungicides exhibited different effects on the autonomous movements
of embryos (Figure 2). The spontaneous movement of embryos was not affected by PEG@Cu
NCs at concentrations of 0.0125–3.2 mg/L. In contrast, Kocide® 3000 (0.0125–0.8 mg/L)
and Cu(CH3COO)2 (0.05–0.2 mg/L) obviously decreased the spontaneous movements
of embryos. Almost all the embryos died after exposure to 3.2 mg/L Kocide® 3000 or
Cu(CH3COO)2 at 0.8 mg/L and 3.2 mg/L.
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3.3.4. Heartbeat of Zebrafish in Early-Life Stages

The copper fungicides exhibited different effects on the heartbeat of zebrafish in early-
life stages with change in exposure time and concentrations (Figure 3A–C). In general,
the heartbeat of zebrafish in early-life stages treated with PEG@Cu NCs, Kocide® 3000 or
Cu(CH3COO)2 with different concentrations gradually returned with the extension of expo-
sure time within 48–96 h. The heartbeat reduced about 1.5–12.6%, 19.4–21.6% and 25.3–29.3%
after exposure to PEG@Cu NCs (0.0125–3.2 mg/L), Kocide® 3000 (0.0125–0.8 mg/L) and
Cu(CH3COO)2 (0.0125–0.2 mg/L) for 48 h, respectively (Figure 3A).
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Figure 3. The heartbeat number in 20 s of embryos after exposure to PEG@Cu NCs (A), Kocide®
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At 72 hpf, the heartbeat of zebrafish in early-life stages treated with PEG@Cu NCs,
Kocide® 3000 or Cu(CH3COO)2 recovered gradually, and the number of heartbeats was
about 93.9%, 91.6% and 95.6% of the control, respectively (Figure 3B). As the exposure
time increased to 96 h, the heartbeat after treatment with PEG@Cu NCs (0.0125–0.2 mg/L)
or Cu(CH3COO)2 (0.0125–0.05 mg/L) returned to normal. However, the heartbeat after
treatment with 0.2 mg/L Cu(CH3COO)2 reduced greatly. In contrast, heartbeat after
treatment with Kocide® 3000 (0.0125–0.8 mg/L) was still inhibited, the number of heartbeats
was about 87.0–88.5% of control (Figure 3C).

3.3.5. Body Length of Zebrafish Larvae

Collectively, the copper fungicides at low concentrations displayed obvious promotion
effects on the growth of zebrafish larvae (Figure 4). The body length increased about
2.6–4.0% after exposure to PEG@Cu NCs at 0.0125–0.02 mg/L compared with control
zebrafish larvae. When treated with Kocide® 3000, the body length of zebrafish larvae
significantly increased (increased about 3.7–4.9%) at 0.0125–0.05 mg/L, while it returned to
normal at 0.2 mg/L and 0.8 mg/L. In contrast, Cu(CH3COO)2 stimulated growth (2.3–3.4%)
at 0.0125 mg/L and 0.05 mg/L, and the body length of zebrafish larvae returned to normal
after exposure to 0.2 mg/L Cu(CH3COO)2.
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3.4. Behavioral Responses of Zebrafish Larvae
3.4.1. Total Movement Distance and Average Velocity

The total movement distance and average velocity of zebrafish larvae increased obvi-
ously after exposure to 0.0125 mg/L of Kocide® 3000 or Cu(CH3COO)2 compared with that
of control larvae. However, the total movement distance and average velocity of zebrafish
larvae reduced significantly when the exposure concentration increased to 0.05 mg/L or
above (Figure 5A,B).
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are shown as means ± SD. Different letters indicate significant differences (p < 0.05) for the same
copper fungicide.

3.4.2. Absolute Turn Angle

The absolute turn angle of zebrafish larvae increased significantly compared with
that of control larvae when treated with 0.0125 mg/L of PEG@Cu NCs, Kocide® 3000 or
Cu(CH3COO)2. However, the absolute turn angle of zebrafish larvae decreased obviously
when the exposure concentration increased to 0.05 mg/L or above (except 0.05 mg/L
Kocide® 3000). When treated with PEG@Cu NCs, Kocide® 3000 or Cu(CH3COO)2 at
0.05 mg/L and 0.2 mg/L, the absolute turn angle decreased about 39.0–52.8%, 8.5–20.0%,
and 22.0–35.3%, respectively (Figure 5C).

3.4.3. Absolute Sinuosity and Absolute Angular Velocity

The absolute sinuosity and absolute angular velocity of zebrafish larvae increased ob-
viously after exposure to 0.0125 mg/L PEG@Cu NCs, Kocide® 3000 or Cu(CH3COO)2. The
absolute sinuosity and absolute angular velocity of zebrafish larvae decreased significantly
after exposure to PEG@Cu NCs or Cu(CH3COO)2 at concentrations of 0.05–0.2 mg/L. The
decrease was 42.0–61.2% and 38.9–52.8% for PEG@Cu NCs, 22.2–35.1% and 21.9–35.3% for
Cu(CH3COO)2. In contrast, Kocide® 3000 reduced the absolute sinuosity and absolute
angular velocity of zebrafish larvae only at 0.2 mg/L and 0.8 mg/L (Figure 5D,E).
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4. Discussion

The early-life stages of zebrafish mainly included embryos and larvae, which were
widely used for the studies on aquatic toxicity as experimental models due to sensitiv-
ity to environment pollutants, including pesticides. In this study, the adverse effects of
PEG@Cu NCs, Kocide® 3000 and Cu(CH3COO)2, which are copper-based fungicides, on
the development and behavior of zebrafish in early-life stages were evaluated.

4.1. Developmental Toxicity of Copper Fungicides to Zebrafish in Early-Life Stages

The mortality, hatching rate, autonomous movement, heartbeat, and body length of
zebrafish in early-life stages were used for evaluating the development toxicity of three
copper fungicides in this study.

Hatching is very important in the development of zebrafish embryos and is considered
a critical point for assessing the effects of toxic substances on fish in early stages [24].
In this study, the PEG@Cu NCs, Kocide® 3000 and Cu(CH3COO)2 exhibited obvious
adverse effects on the hatching rate of embryos. The hatching rate of embryos decreased
significantly as the concentration of the copper fungicides increased to 0.05 mg/L, and
almost all embryos died at 3.2 mg/L (Figure 1). Similar phenomena were observed in
other experiments. For example, the hatching rate of zebrafish embryos (<1 hpf) decreased
significantly after exposure to 0.053 mg/L or higher concentrations of Cu2+ (CuSO4·H2O)
for 72 h [25]. A decrease in hatching rate was observed at 48 hpf, when zebrafish embryos
(4 hpf) were exposed to Cu(OH)2 nanopesticide (CNPE) (Kocide 3000) at 4 mg/L or higher
concentration [26]. The mechanisms involved in the hatching delay caused by exposure
to pollutants are not clear, and it has been proposed that the decrease in embryo motility,
changes in the levels of hatching enzymes or alteration of oxygen uptake by the embryos
can contribute to hatching inhibition [27,28]. In addition, the PEG@Cu NCs displayed
similar toxicity to Cu(CH3COO)2 and higher toxicity than Kocide® 3000 at concentrations
of 0.05 mg/L and 0.2 mg/L according to the hatching rate of embryos in this study. This
may be caused by the characteristics of copper nanoparticles. The diameter of the chorionic
membrane is approximately 0.5–0.7 µm, so copper nanoparticles are more likely to enter the
embryonic chorionic membrane [29]. Nanoparticles can also accumulate on the chorionic
membrane, blocking the pores and reducing oxygen passage, thus delaying hatching [30,31].
In addition, Cu2+ delay or impaired hatching of fish embryos occurred after inhibiting
hatching enzyme activity, inducing reactive oxygen species (ROX) and downregulating
wingless-type MMTV integration site family (Wnt) signaling [27,28,32].

The frequency of embryonic voluntary movements is associated with neurodevelop-
ment and is one of the important biomarkers in neurodevelopmental toxicity studies [33,34].
The results on voluntary movement indicated that Kocide® 3000 (0.0125–0.8 mg/L) and
Cu(CH3COO)2 (0.05–0.2 mg/L) obviously decreased the spontaneous movements of em-
bryos. This demonstrated that Kocide® 3000 and Cu(CH3COO)2 had neurotoxicity to the
embryo. However, PEG@Cu NCs at concentrations of 0.0125–3.2 mg/L had no obvious
effects on spontaneous movements compared with that of control. Other studies also
confirmed that oxine copper and Kocide® 3000 nanopesticide reduced the spontaneous
movement of embryos greatly [26,34]. This spontaneous movement behavior is considered
to be related to the electric coupling network of a subset of spinal neurons [35,36]. Hence,
the copper fungicides may affect the autonomous movement of embryos by disrupting the
electrical coupling network of related neurons in the spinal cord.

The heart is one of the first organs formed during the embryonic development of
zebrafish. Hence, heartbeat is an important parameter for evaluating cardiac function and
toxicity of pesticides to zebrafish embryos [37,38]. The results in this study indicated the
three copper fungicides displayed different effects on the heartbeat of zebrafish in early-life
stages. The heartbeat could recover to normal at 96 hpf when treated with PEG@Cu NCs at
all concentrations (0.0125–0.8 mg/L). In addition, the heartbeat could recover to normal
after exposure to Cu(CH3COO)2 only at 0.0125 and 0.05 mg/L. However, the heartbeat
could not recover to normal after exposure to Kocide® 3000 under any concentration
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(0.0125–0.8 mg/L). The adverse effects of copper on the heartbeat were confirmed in
various experiments. For example, CuSO4·5H2O at concentration of 327 µg/L and 464 µg/L
significantly increased heartbeat of embryos at 28 hpf [25], while Cu(OH)2 nanopesticide
(CNPE) (Kocide 3000) (at 4 mg/L or higher), CuO NPs (1 mg/L or higher), and oxine
copper (10 µg/L) significantly decreased heartbeat of zebrafish embryos [26,34,37]

Body length is also one of the important parameters measuring zebrafish growth. The
results demonstrated that PEG@Cu NCs, Kocide® 3000, and Cu(CH3COO)2 obviously
promoted the growth of larvae at 0.0125 and 0.05 mg/L, and did not exhibit inhibition to
body length of larvae at 0.2 mg/L or 0.8 mg/L (Figure 4). In contrast, a lot of studies con-
firmed that copper can inhibit the body growth of zebrafish at different times [25,26,32,39].
Whether copper, as an essential trace element in organisms, promotes or inhibits growth
may be directly related to its concentration.

4.2. Behavioral Toxicity of Copper Fungicides to Zebrafish in Early-Life Stages

Behavioral changes have been proven to be a sensitive and important endpoint for
detecting contaminant-induced neurological damage [40,41]. In the present study, the
parameters of total distance traveled, average velocity, absolute sinuosity, absolute turn
angle and absolute angular velocity were used for evaluating the behavioral toxicity of
three copper fungicides to zebrafish in early-life stages.

The results indicated that the parameters of total distance traveled, average velocity, ab-
solute sinuosity, absolute turn angle and absolute angular velocity obviously reduced when
the zebrafish were exposed to Kocide® 3000 (≥0.2 mg/L), PEG@Cu NCs and Cu(CH3COO)2
at 0.05 mg/L or higher concentrations (Figure 5). This suggested that the swimming behav-
ior of the larvae was impaired obviously by the copper fungicides. Reference [39] reported
that Cu (CuSO4·5H2O) at 125 µg/L reduced the mean velocity, total distance traveled and
absolute turn angle of larvae. The 50 mg/L copper oxide nanoparticles (CuO NPs) reduced
obviously the total movement distance, velocity, and angular velocity of larvae [42]. Oxine
copper (10, 20, 40 µg/L) decreased the total distance, average speed and movement time of
larvae [34]. The disorder in behavioral patterns may be associated with abnormalities in
musculoskeletal structure and changes in the nervous system [39,41,43].

5. Conclusions

The results in this study indicated that copper fungicides (Kocide® 3000, PEG@Cu
NCs and Cu(CH3COO)2) exhibited developmental and behavioral toxicity to embryos
or zebrafish in early-life stages. In contrast, the adverse effects of PEG@Cu NCs on the
growth and development of zebrafish in early-life stages seems to be less than Kocide®

3000 and Cu(CH3COO)2 according to the parameters of spontaneous movements of em-
bryo, heartbeat and body length. However, the mechanisms underlying the developmental
and behavioral toxicity are not clear and need to be thoroughly investigated in subse-
quent experiments.
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//www.mdpi.com/article/10.3390/nano13192629/s1. Figure S1: Transmission electron microscopy
(TEM) images of PEG@Cu NCs (A) and Kocide® 3000 (B); Figure S2: Hydrodynamic particle size
distribution of Kocide® 3000; Table S1: The 96 hpf mortality of zebrafish embryo exposed to PEG@Cu
NCs, Kocide® 3000 and Cu(CH3COO)2.
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