Zero- to One-Dimensional Zn$_{24}$ Supraclusters: Synthesis, Structures and Detection Wavelength

Yating Chen 1,2, Zhonghang Chen 1, Jiming Wang 1, Xuandi Ma 1, Linyu Yuan 1, Shuhua Zhang 1,2,*, and Fushun Tang 1,*

1 Guangxi Key Laboratory of Electrochemical and Magnetoochemical Functional Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China; 10201804608@glut.edu.cn (Y.C.); 1020180495@glut.edu.cn (X.M.)
2 College of Chemistry, Guangdong University of Petrochemical Technology, Maoming 525000, China
* Correspondence: zsh720108@163.com (S.Z.); tfushun@glut.edu.cn (F.T.)

Abstract: A zinc supracluster [Zn$_{24}$$(\text{ATZ})_{18}(\text{AcO})_{30}(\text{H}_2\text{O})_{1.5}]$$(\text{H}_2\text{O})_{3.5}$ $$(\text{Zn}_24)_{24}$$, and a 1D zinc supracluster chain [(Zn$_{24}$$(\text{ATZ})_{18}(\text{AcO})_{30}(\text{C}_2\text{H}_5\text{OH})_2(\text{H}_2\text{O})_3)]$$(\text{H}_2\text{O})_{2.5}$ $$(1-\text{D}\subset\text{Zn}_24$$) with molecular diameters of 2 nm were synthesized under regulatory solvothermal conditions or the micro bottle method. In an N,N-dimethylformamide solution of Zn$_{24}$$_{24}$, Fe$^{3+}$, Ni$^{2+}$, Cu$^{2+}$, Cr$^{3+}$, and Co$^{2+}$ ions exhibited fluorescence-quenching effects, while the rare earth ions Ce$^{3+}$, Dy$^{3+}$, Er$^{3+}$, Eu$^{3+}$, Gd$^{3+}$, Ho$^{3+}$, La$^{3+}$, Nd$^{3+}$, Sm$^{3+}$, and Tb$^{3+}$ showed no obvious fluorescence quenching. In ethanol solution, the Zn$_{24}$ supracluster can be used to selectively detect Ce$^{3+}$ ions with excellent efficiency (limit of detection (LOD) = 8.51 \times 10$^{-7}$ mol/L). The Zn$_{24}$ supracluster can also detect wavelengths between 302 and 332 nm using the intensity of the emitted light.

Keywords: supracluster; 24 nuclear; fluorescence quenching; detect wavelengths; limit of detection

1. Introduction

In recent years, polynuclear metal complexes have received considerable attention due to their functional applications in science and technology, exhibiting magnetic [1–4], fluorescence [5–8], optical [9–12], electronic [13], optoelectronic [14] and catalytic properties [15–17]. In addition, they are used in the treatment and diagnosis of various diseases [18,19], as well as in the components of sensors [20–22]. Among the diverse transition-metal polynuclear complexes, zinc complexes show unique properties and variable structural fluorescence [22] and catalytic [15,17] properties. These properties are due to the d10 electron shell structure of Zinc(II) that has ideal flexible coordination modes and various coordination numbers. In addition, many aspects of the synthesis affect the structure and nuclear number of transition-metal polynuclear complexes, including the metal ions, ligands, concentrations, counter-ions, templates, solvents, temperatures, and pH [23–25].

The careful selection of an appropriate organic ligand with specific characteristics, such as variable bonding modes and the ability to engage in supramolecular interactions, can facilitate the tailoring and construction of clusters with desirable properties [26–28]. Based on the advantages of abundant coordination modes (Scheme 1), multiple coordination sites, strong binding ability, and a particular orientation [29], tetrazole is desirable for the preparation of metal cluster/cage coordination polymers (CPs) with rich node–linker connectivity, diverse one- through three-dimensionality, specific topological structures, and superior physicochemical properties [30–33]. Among these compounds, nonadecanuclear silver cluster-based CPs have the highest nuclear number of tetrazolium and its derivatives [34]. Using 5-amino-1,2,3,4-tetrazole (Hatz), we synthesized a zinc supracluster [Zn$_{24}$$(\text{ATZ})_{18}(\text{AcO})_{30}(\text{H}_2\text{O})_{1.5}]$$(\text{H}_2\text{O})_{3.5}$ $$(\text{Zn}_24)_{24}$$, and a zinc supracluster chain [(Zn$_{24}$$(\text{ATZ})_{18}(\text{AcO})_{30}(\text{C}_2\text{H}_5\text{OH})_2(\text{H}_2\text{O})_3)]$$(\text{H}_2\text{O})_{2.5}$ $$(1-\text{D}\subset\text{Zn}_24$$). To the best of our knowledge, both Zn$_{24}$ and $1-\text{D}\subset\text{Zn}_24$ are the largest cluster or cluster-based CPs constructed
using tetrazole and its derivatives. In particular, the Zn$_{24}$ supracluster can detect wavelengths of light in the range of 300–340 nm.

Scheme 1. Coordination modes of Hatz. (a) µ$_1$1η1; (b) µ$_1$1η2; (c) µ$_2$1η12η1; (d) µ$_2$1η13η1; (e) µ$_2$2η13η1; (f) µ$_2$2η14η1; (g) µ$_3$1η12η14η1; (h) µ$_3$1η12η13η1; (i) µ$_4$1η12η13η14η1.

2. Experimental Methodology

2.1. Materials and Physical Measurements

All chemicals were bought commercially and used directly after receipt. Elemental analyses were performed using a Perkin-Elmer 240 elemental analyzer (CHN). The FT-IR spectra were captured in the 4000–400 cm$^{-1}$ region from KBr pellets on a Bio-Rad FTS-7 spectrometer. The SHELXL crystallographic program for molecular structures was used to determine the X-ray crystal structures using an Agilent G8910A CCD diffractometer. Photoluminescence experiments were performed using a Hitachi F-4600 spectrophotometer. The power X-ray diffraction (PXRD) patterns were determined using a PANalytical X’Pert power diffractometer (operating at 40 kV and 40 mA) with graphite-monochromatized Cu Kα radiation ($λ$ = 1.54056 Å). 1 H NMR spectra were recorded on Bruker AVANCE III 500 instruments.

2.2. Synthesis of L^1H_2–L^5H_2

A mixture of 5-amino-1,2,3,4-tetrazole (Hatz) (10 mmol), salicylaldehyde derivatives (10 mmol), and ethanol (20 mL) was refluxed at 353 K for 1 h in a 100 mL flask. A beige precipitate of L formed, and it was then rinsed three times with fresh ethanol (10 mL × 3) and dried at 50 °C for 24 h (refer to the ESI† for details).

2.3. Synthesis of Zn$_{24}$

A mixture of H$_2$L1 (0.5 mmol, 0.1340 g), Zn(CH$_3$COO)$_2$2H$_2$O (0.5 mmol, 0.1048 g), and ethanol (10 mL) was stirred for 30 min, with the pH adjusted to 6 through the addition of triethylamine. The mixture was then sealed in a 15 mL Teflon-lined stainless-steel vessel, and heated at 353 K for 48 h in an oven, followed by slow cooling to room temperature. Four-cornered golden yellow crystals in a double-cone shape were collected, washed with ethanol, and dried in air. Phase-pure Zn$_{24}$ crystals were obtained through manual separation (yield: 66.5 mg, ca. 64.33% based on Zn(II)). Anal. Calc. for Zn$_{24}$: C$_{78}$H$_{138}$N$_{90}$O$_{66}$Zn$_{24}$ (Mr = 4961.66), calc.: C, 18.88; H, 2.80; N, 25.39%. Found: C, 18.79; H, 2.87; N, 25.46%. The FT-IR data for Zn$_{24}$ (Figure S1, KBr, cm$^{-1}$) were as follows: 3445 s, 1578 m, 1400 w, 1165 w, 1110 m, 941 w, 758 w, 685 w, 616 w, and 483 w.
2.4. Synthesis of 1-D⊂Zn24

A mixture of H2L1 (0.5 mmol, 0.1340 g), Zn(CH3COO)2·2H2O (0.5 mmol, 0.1048 g), ethanol (10 mL) and acetonitrile (2 mL) was stirred for 30 min with the pH adjusted to 6 through the addition of triethylamine. The mixture was then sealed in a 20-mL micro bottle capable of autonomously adjusting the reaction pressure and heated at 343 K for 48 h. Subsequently, the micro bottle was slowly cooled to room temperature. Four-cornered golden yellow crystals with a double-cone shape were collected, washed with ethanol and dried in air. Phase-pure crystals of 1-D⊂Zn24 were obtained through manual separation (yield: 70.2 mg, ca. 66.67% based on Zn(II)).

Anal. Calc. for 1-D⊂Zn24: C82H150N90O68Zn24 (Mr = 5053.79), calc.: C, 19.01; H, 2.99; N, 24.93%. Found: C, 18.92; H, 3.06; N, 25.04%. The FT-IR data for Zn24 (Figure S1, KBr, cm−1) were as follows: 3445 s, 1578 m, 1400 w, 1165 w, 1101 m, 941 w, 758 w, 685 w, 616 w, and 483 w.

2.5. Single-Crystal X-ray Diffraction

The single-crystal data of the Zn24 and 1-D⊂Zn24 complexes were collected using a SuperNova (single source at offset) Eos with graphite monochromatic Mo-Kα radiation (λ = 0.71073 Å) in the ω scan mode in the ranges of 3.16° ≤ θ ≤ 25.01° and 3.30° ≤ θ ≤ 25.01°, respectively. Raw frame data were integrated using the SAINT program [35]. The Zn24 and 1-D⊂Zn24 structures were solved with direct methods using SHELXS [35] and refined with full-matrix least-squares on F² using SHELXL-2018 within the Olex2 GUI [36]. Empirical absorption correction using spherical harmonics was implemented in the SCALE3 ABSPACK scaling algorithm. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms to carbon atoms were positioned geometrically and refined as riding atoms. Calculations and graphics were performed with SHELXTL [35]. The computer programs used in this study were CrysAlis PRO (Agilent Technologies, Version 1.171.37.35 released 13-08-2014 CrysAlis171.NET compiled 13 August 2014), SHELXL [35], and Olex2 [36]. The crystallographic details of Zn24 and 1-D⊂Zn24 are provided in Table 1. Selected bond lengths and angles for Zn24 and 1-D⊂Zn24 are listed in Tables S1 and S2.

Table 1. Crystallographic data for Zn24 and 1-DZn24.

<table>
<thead>
<tr>
<th>Complexes</th>
<th>Zn24</th>
<th>1-D⊂Zn24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C78H138N90O66Zn24</td>
<td>C82H150N90O68Zn24</td>
</tr>
<tr>
<td>Formula weight</td>
<td>4961.66</td>
<td>5053.79</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
<td>triclinic</td>
</tr>
<tr>
<td>Crystal size (mm)</td>
<td>0.25 × 0.21 × 0.16</td>
<td>0.21 × 0.18 × 0.13</td>
</tr>
<tr>
<td>Space group</td>
<td>P2₁/n</td>
<td>Pñana</td>
</tr>
<tr>
<td>a (Å)</td>
<td>20.264(1)</td>
<td>16.718(1)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>23.996(1)</td>
<td>17.449(1)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>21.663(1)</td>
<td>19.054(1)</td>
</tr>
<tr>
<td>α (°)</td>
<td>90.00</td>
<td>70.651(3)</td>
</tr>
<tr>
<td>β (°)</td>
<td>108.738(4)</td>
<td>80.304(3)</td>
</tr>
<tr>
<td>γ (°)</td>
<td>90.00</td>
<td>70.651(3)</td>
</tr>
<tr>
<td>V (Å³)</td>
<td>9975.3(6)</td>
<td>5062.8(3)</td>
</tr>
<tr>
<td>F(000)</td>
<td>4968</td>
<td>2536</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Dc (g cm⁻³)</td>
<td>1.646</td>
<td>1.658</td>
</tr>
<tr>
<td>μ (mm⁻¹)</td>
<td>2.917</td>
<td>2.877</td>
</tr>
<tr>
<td>θ range (°)</td>
<td>3.16, 25.01</td>
<td>3.30, 25.01</td>
</tr>
<tr>
<td>Ref. meas./indep.</td>
<td>74,768, 17,433</td>
<td>39,147, 17,765</td>
</tr>
<tr>
<td>Obs. ref. [I > 2σ(I)]</td>
<td>11,953</td>
<td>11,953</td>
</tr>
<tr>
<td>Rint</td>
<td>0.0520</td>
<td>0.0473</td>
</tr>
<tr>
<td>R1 [I ≥ 2σ(I)]</td>
<td>0.0600</td>
<td>0.0572</td>
</tr>
<tr>
<td>ωR2(all data)</td>
<td>0.1934</td>
<td>0.2037</td>
</tr>
<tr>
<td>Goof</td>
<td>1.039</td>
<td>1.041</td>
</tr>
<tr>
<td>∆ρ(max, min) (e Å⁻³)</td>
<td>1.001, −0.867</td>
<td>1.126, −0.694</td>
</tr>
</tbody>
</table>

[^2]: R1 = Σ ||Fobs| − |Fcalc|| / Σ |Fobs|, ωR2 = [Σω(1/F²o−1/F²c)² / Σω(1/F²o)²]²/2.
3. Results and Discussion
3.1. Structural and Synthetic Details

Herein, we investigated the effects of ligand, reaction temperature, counterbalance anion, ligand/metal ion molar ratio, solvent, and synthetic method on the self-assembly of supraclusters (Scheme 2). The synthetic strategy for the Hatz system is depicted in Scheme 2. First, a mixture of Zn(OAc)$_2$·2H$_2$O (0.2 mmol), 4-bromo-2-[(1H-tetrazol-5-ylimino)-methyl]-phenol (H$_2$L$_1^1$, 0.2 mmol), and anhydrous ethanol (10 mL) was poured into a Teflon-lined autoclave (20 mL). The autoclave was cooled slowly to room temperature after heating at 80 °C for 2 days. Four-cornered golden yellow Zn$_{24}$ crystals in a double-cone shape were collected via filtration. In the Zn$_{24}$ supracluster, Hatz is produced by the decomposition of H$_2$L$_1^1$. To understand the role of H$_2$L$_1^1$ in the synthesis, we used various salicylaldehyde-derived Schiff bases (H$_2$L$_2^2$-H$_2$L$_3^3$) instead of 4-bromo-2-[(1H-tetrazol-5-ylimino)-methyl]-phenol (H$_2$L$_1^1$) to conduct the same experiment, but we could not obtain the Zn$_{24}$ supercluster or analog. Similarly, if only H$_2$L$_3^3$ was replaced by Hatz, the Zn$_{24}$ supercluster or analog was not obtained. Through previous experiments, we can draw the conclusion that although 5-bromosalicylicaldehyde does not participate in coordination in the 24-atom Zn cluster, 5-bromosalicylicaldehyde is an essential raw material for the synthesis of the Zn$_{24}$ cluster. Thus, we speculate that 5-bromosalicylicaldehyde may act as a template.

![Scheme 2. Regulatory process of Zn$_{24}$ and 1-D⊂Zn$_{24}$.](image)

According to the ring structure of Zn$_{24}$, the Zn$_{24}$ cluster can form a 1D chain or 2D network through bridging ligands. H$_2$L$_1^1$ and Zn(CH$_3$COO)$_2$·2H$_2$O were selected as the starting materials. By tuning the reaction temperature, solvent, ligand/metal salt molar ratio, and synthetic methods, the optimal synthesis conditions for the 1D Zn supracluster chain 1-D⊂Zn$_{24}$ were determined as follows: reaction temperature, 70 °C; solvent, anhydrous ethanol (8 mL), and acetonitrile (2 mL); H$_2$L$_1^1$/Zn(CH$_3$COO)$_2$·2H$_2$O molar ratio, 2:1; and reactor, micro bottle (automatically adjusting the reaction pressure).

To obtain a 2D supracluster network, we replaced acetic acid with various carboxylic acids such as oxalic acid, malonic acid, succinic acid, and terephthalic acid. However, these experiments were unsuccessful.
3.2. Crystal Structures of Zn\textsubscript{24} and 1-D⊂Zn\textsubscript{24}

Single crystal analysis confirmed Zn\textsubscript{24} to have a 0D wheel-like coordination suprastructure of the monoclinic crystal system with \(P2_1/n\) space group consisting of 24 ZnII atoms, 30 acetate groups, 1.5 coordinated water molecules, 3.5 lattice water molecules and 18 Atz ligands derived from H\textsubscript{2}L1 (Figure 1a). The Zn\textsubscript{24} cluster was stabilized by 5-amino-1,2,3,4-tetrazole, which binds along the wheel of the cluster core (Figure 1b), bridging the four neighboring zinc atoms. Acetate groups further stabilized the cluster through 18 \(\mu_2:\eta^1:\eta^1\)-acetate bridging two zinc atoms. The 12 Zn ions in the inner ring of the wheel (inner red ring shown in Figure 1a) coordinated with four N atoms from four different Atz ligands and two O atoms from two syn-syn-\(\mu_2:\eta^1:\eta^1\)-acetate bridging groups to form a distorted octahedral geometry. By contrast, the 12 Zn atoms in the outer ring (outer red ring shown in Figure 1a) coordinated with two N atoms from two different Atz ligands. They also coordinated with two or three O atoms from one syn-syn-\(\mu_2:\eta^1:\eta^1\)-acetate bridging group and one \(\mu_1:\eta^1:\eta^1\)-acetate terminal group or one \(\mu_1:\eta^1\)-acetate ligand, as well as one coordinated water molecule, to form a distorted tetragonal pyramidal, or a trigonal bipyramidal or an octahedral geometry. Close inspection of the nanosized wheel-like conformation showed approximate wheel dimensions of 8.912 × 20.491 × 9.747 Å (inner ring diameter × outer ring diameter × wheel thickness), where the inner ring diameter is the distance between tetrazole planes (i.e., planes (N31,N32,N33,N34,C27) and (N31, N32, N33, N34, C27), symmetry code: (i)-x,-y,-z); the outer ring diameter is N30···N30; and the wheel thickness is the distance between the C13-C29i-C26i-plane and the C13i-C29-C26-plane.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure1.png}
\caption{(a) Crystal structure of Zn\textsubscript{24}. (b) Zinc Atz core.}
\end{figure}
Complexes $\text{1-D} \subset \text{Zn}_{24}$ and Zn_{24} have similar basic structures, i.e., the Zn_{24} suprachain. Complex $\text{1-D} \subset \text{Zn}_{24}$ was constructed as a 1D Zn_{24} suprachain through the double $\text{sym-anti-} \mu_2: \eta^1: \eta^1$-bridging acetic group linking of Zn_{24} (Figure 2).

![Figure 2. 1D chain of $\text{1-D} \subset \text{Zn}_{24}$](image)

3.3. Luminescent Properties

Numerous studies have demonstrated the good fluorescence of clusters, especially those of Zn(II) and Cd(II) ions with closed d subshells [37,38]. In recent years, Zn(II) clusters have been widely used in luminescent probes due to their desirable advantages in detection and promising applications in biological and environmental systems [39]. Luminescent probes and complexes can selectively detect various sizes of molecules or ions through their adjustable porosity [40].

In this paper, the luminescent properties (the phase purity of Zn_{24} has been checked using PXRD patterns, Figure S7) of Zn_{24} were investigated in different solvents with concentrations of 1×10^{-6} mol·L$^{-1}$ (Figure 3). Upon photoexcitation at 404, 382, 426 and 418 nm in water, N,N-dimethylformamide (DMF), DMSO, and ethanol solvent, Zn_{24} exhibited green, blue, green and green luminescent emission bands with fluorescence maxima at 496, 459, 507, and 508 nm, respectively. These results predominantly originated from the metal-to-ligand charge-transfer excited state [41,42]. Furthermore, Zn_{24} exhibited a qualitative change in its luminescence due to the interaction between metal ions and ligands, and it had a stronger fluorescence intensity in DMF and ethanol solutions. Although Zn_{24} also had a stronger fluorescence intensity in DMSO, we did not consider DMSO for Zn_{24} luminescent probes due to its high toxicity. Thus, we discussed the Zn_{24} complex as a luminescent probe for highly selective sensing in DMF and ethanol.

![Figure 3. Luminescence of Zn_{24} in different solutions.](image)
Zn₂₄ (1 mg) was immersed in 10 mL of DMF solutions containing MCl_n (M = Al³⁺, Ba²⁺, Co²⁺, Cr²⁺, Cu²⁺, Fe³⁺, Mn²⁺, Ni²⁺, Pb²⁺, or Zn²⁺) to form complex suspensions incorporating various metal ions for luminescence studies, and Fe³⁺, Ni²⁺, Cu²⁺, Cr³⁺, and Co²⁺ ions all demonstrated a fluorescence-quenching effect (Figure 4), indicating that Zn₂₄ was not selective toward ions in DMF solution. At the same time, the rare earth ions (Ce³⁺, Dy³⁺, Er³⁺, Eu³⁺, Gd³⁺, Ho³⁺, La³⁺, Nd³⁺, Sm³⁺, and Tb³⁺) have no clear fluorescence-quenching effects (Figure S3). However, Zn₂₄ showed high selectivity in ethanol solution. The luminescence intensity of Zn₂₄ revealed that the addition of Ce³⁺ can lead to complete quenching in ethanol solution compared with other metal ions (Figure 5).

![Figure 4](image-url)
Figure 4. Liquid-state fluorescence behavior of Zn₂₄ in DMF.

![Figure 5](image-url)
Figure 5. Liquid-state fluorescence behavior of Zn₂₄ in ethanol.

The Zn₂₄ (1 mg, with a final concentration of 1 mg/mL in ethanol) and different concentrations of Ce³⁺ (from 1 × 10⁻² to 1 × 10⁻⁸ mol/L) were added to the sample tube at room temperature. The fluorescence spectrum was taken at its excitation wavelength (λ = 402 nm).

The fluorescence spectra of the Zn₂₄-Ce³⁺ system for various concentrations of Ce³⁺ are shown in Figure 6. The fluorescence intensity at 504 nm progressively increased as the concentration of Ce³⁺ decreased. In addition, we quantitatively analyzed the quenching efficiency through the Stern–Volmer equation: I₀/I = K_{sv}[C] + 1, where I₀ and I are the respective emission intensities before and after adding Ce³⁺, while C is the concentration of Ce³⁺ in ethanol solution. The quenching efficiency of Zn₂₄ was −1.68 × 10^{−1} (Figure S5). According to the limit of detection (LOD) = 3δ/K_{sv} (Figure S6), we calculated an LOD of 8.51 × 10^{−7} mol/L, which was lower than the reported LOD of the Ln-MOF [41].
The solid-state fluorescence spectra of Hatz were obtained at a slit width of 5 nm and an excitation wavelength of 402 nm, while the solid-state fluorescence spectra of Zn$_{24}$ were obtained at an excitation wavelength of 302–332 nm (Figure 7 and Figure S4). Under the same test conditions, the fluorescence spectrum of Hatz peaked at 615 nm, while that of Zn$_{24}$ peaked at 502 nm. The luminous color changed from red to blue–green, and the fluorescence intensity of Zn$_{24}$ was more than 200 times that of Hatz. The full-type Zn$^{2+}$ metal ion in Zn$_{24}$ has an extra-nuclear d10 electron, and did not undergo a d–d transition, leading to a significant enhancement in luminous intensity. At the same time, the deprotonated tetrazolium ring is an electron-deficient conjugated ring that causes the electron migration (M→L) of zinc ions to the tetrazolium ring [42,43]. As a result, the luminous color changed from red to blue–green, and the fluorescence intensity of Zn$_{24}$ was more than 200 times that of Hatz. The fluorescence intensity of Zn$_{24}$ decreased linearly with the increase in excitation wavelength (Figures 7 and 8). Between 302 and 332 nm, the wavelength of the excitation light can be determined by detecting the intensity of the emitted light.
3.5. Hirshfeld Surface Analysis of the Complex Zn$_{24}$

Hirshfeld surface analysis [44] is a useful tool for describing the surface characteristics of molecules, and was performed to visualize the different intermolecular interactions in crystal structures by employing 3D molecular surface contours. Figure 9 displays the findings of the Zn$_{24}$ Hirshfeld surface study. The middle shape index ranges from -1.000 to 1.000 Å, whereas the range of the d_{norm} surface on the left is -1.238 to 1.570 Å. The range of the curvature curvedness was -4.000 to 0.400 Å. In Figure 9, the d_{norm} surface map of Zn$_{24}$ is colored from light to dark red spots to represent the interaction force of the complex Zn$_{24}$ from weak to strong.

One useful supplement for Hirshfeld surface analysis is the 2-D fingerprint plot [45]. It quantitatively analyses the nature and type of intermolecular interaction between the molecules inside the crystals. The fingerprint plots can be decomposed to highlight particularly close contacts between the elements (Figure 10). The H····H interaction is one of the most significant contacts for the Zn$_{24}$ complex.

The main intermolecular interaction of Zn$_{24}$ is H····H contact, which is reflected in the middle of the scattered points of the 2-D fingerprint plots (the percentage of H····H contacts of Zn$_{24}$ is 40.4%). Another main intermolecular interaction of Zn$_{24}$ is O····H interaction, which is represented by double spikes in the bottom left (acceptor and donor) region of the fingerprint plots. Accordingly, we can infer that there are significant N····O hydrogen bonds (Table S3) observed in Zn$_{24}$ (the percentage of O····H contacts of Zn$_{24}$ is 22.4%). Also, the N····H contacts play important roles for Zn$_{24}$. The percentage of N····H contacts of Zn$_{24}$ is 10.0%. In addition to those above, the presence of C····H, C····O, and N····O contacts were also observed. These three forces accounted for 4.0%, 1.4% and 1.3% of the total Hirshfeld surface force, respectively.

Figure 8. Fluorescence intensity (a.u.) vs. wavelength of excitation light (nm).

Figure 9. Hirshfeld surface mapped with d_{norm} (left), shape index (middle), and curvedness (right) for complex Zn$_{24}$.

Figure 10. Fingerprint plots of complex Zn$_{24}$. The percentage of O····H contacts of Zn$_{24}$ is 22.4%. Another main intermolecular interaction of Zn$_{24}$ is O····H interaction, which is represented by double spikes in the bottom left (acceptor and donor) region of the fingerprint plots.
Figure 10. Fingerprint plots of complex Zn_{24}.

4. Conclusions

A supracluster zinc, Zn_{24}, and a zinc supracluster 1D chain, 1-D⊂Zn_{24}, were synthesized through regulatory solvothermal reactions. In an ethanol solution, Zn_{24} was synthesized at 353 K using a solvothermal method, whereas 1-D⊂Zn_{24} was formed when a mixed solution (2 mL acetonitrile + 8 mL ethanol) was used at 343 K using a micro bottle. The Zn_{24} supracluster can be used to selectively detect Ce^{3+} with excellent efficiency (LOD = 8.51 × 10^{-7} mol/L), and can be used as a potential sensor for their detection. In addition, the Zn_{24} supracluster can detect wavelengths between 302 and 332 nm, using the intensity of emitted light. Thus, the Zn_{24} supracluster can potentially be used as a spectral detection material to prepare optical wave detectors.

Supplementary Materials: The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/nano13233058/s1, Figure S1: IR of H_{2}L^{1}-H_{2}L^{3}; Figure S2: IR of Zn_{24}; Figure S3: The liquid-state fluorescence behaviors of Zn24 in DMF; Figure S4: Emission spectra of HATZ in a solid state at 402 nm excitation wavelength at room temperature; Figure S5: The fitting curve of the luminescence intensity of Zn_{24} at different Ce^{3+} concentration; Figure S6: The fluorescence spectra of blank Zn_{24} (1 mg·mL^{-1}) at different measurements; Figure S7: XRD of the complex Zn_{24}; Table S1: Selected bond lengths (Å) and angles (°) for Zn_{24}; Figure S8: 1H NMR (400 MHz, DMSO-d_{6}) for L_{1}H_{2}; Figure S9: 1H NMR (400 MHz, DMSO-d_{6}) for L_{2}H_{2}; Figure S10: 1H NMR (400 MHz, DMSO-d_{6}) for L_{3}H_{2}; Figure S11: 1H NMR (400 MHz, DMSO-d_{6}) for L_{4}H_{2}; Figure S12: 1H NMR (400 MHz, DMSO-d_{6}) for L_{5}H_{2}; Table S2: Selected bond lengths (Å) and angles (°) for 1-D⊂Zn_{24}; Table S3: Hydrogen bond lengths (Å) and angles (°) for Zn_{24}.

Author Contributions: Y.C., Z.C. and J.W.: designed and supervised the project and experiments; Y.C., Z.C., J.W., X.M. and L.Y. performed the data analysis and prepared the manuscript; S.Z., and F.T.: provided resources and acquired funding; and S.Z. and F.T. provided academic guidance. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (No. 21861014), and by the Talent Introduction Program of Guangdong Institute of Petrochemical Technology (No. 2020RC033).

Data Availability Statement: The data presented in this study are available in this article and Supplementary Material.

Conflicts of Interest: The authors declare that they have no conflict of interest to report regarding the present study.
References

37. Wei, G.H.; Yang, J.; Ma, J.F.; Liu, Y.Y.; Li, S.L.; Zhang, L.P. Synthesises, structures and luminescent properties of zinc (II) and cadmium (II) coordination complexes based on new bis (imidazoly) ether and different carboxylate ligands. Dalton Trans. 2008, 23, 3080–3092. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.