
Citation: Carlino, E.; Taurino, A.;
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Abstract: Seeing the atomic configuration of single organic nanoparticles at a sub-Å spatial resolution
by transmission electron microscopy has been so far prevented by the high sensitivity of soft matter
to radiation damage. This difficulty is related to the need to irradiate the particle with a total
dose of a few electrons/Å2, not compatible with the electron beam density necessary to search
the low-contrast nanoparticle, to control its drift, finely adjust the electron-optical conditions and
particle orientation, and finally acquire an effective atomic-resolution image. On the other hand,
the capability to study individual pristine nanoparticles, such as proteins, active pharmaceutical
ingredients, and polymers, with peculiar sensitivity to the variation in the local structure, defects, and
strain, would provide advancements in many fields, including materials science, medicine, biology,
and pharmacology. Here, we report the direct sub-ångström-resolution imaging at room temperature
of pristine unstained crystalline polymer-based nanoparticles. This result is obtained by combining
low-dose in-line electron holography and phase-contrast imaging on state-of-the-art equipment,
providing an effective tool for the quantitative sub-ångström imaging of soft matter.

Keywords: radiation damage; polymers; soft matter; HoloTEM; atomic-resolution imaging; in-line
holography; HRTEM

1. Introduction

Transmission electron microscopy (TEM) methods have been extremely successful in
the improvement in our understanding of the structural, electromagnetic, and chemical
properties of matter, pushing the development of physics, materials science, and chem-
istry [1–3]. Richard Feynman stated the following in his famous lecture “Plenty of room at
the bottom” in 1959: “It would be very easy to make an analysis of any complicated chemical struc-
ture; all one would have to do would be to look at it and see where the atoms are. The only trouble is
that the electron microscope is one hundred times too poor. . . I put this out as a challenge: Is there
no way to make the electron microscope more powerful?” [4]. Since then, research in electron
microscopy, both on the technological and methodological sides, focused on overcoming
the limitations to the spatial resolution power of the electron microscope [5–7], with the aim
to enable the highest resolution and accuracy in the understanding of matter at the atomic
level, for a conscious advance in a wide variety of fields of scientific and industrial rele-
vance [1–3]. Nowadays, sub-ångström resolution is achievable by TEM and scanning TEM
(STEM) imaging methodologies, owing mainly to the development of spherical aberration
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correctors [8] and high-coherence and high-brilliance field emission sources [9]. Further-
more, the recent progress in direct-conversion electron detectors enables atomic-resolution
imaging with unsurpassed signal-to-noise ratios and acquisition speeds [10]. Unfortunately,
however, the high-resolution TEM (HRTEM) imaging of soft matter at a sub-ångström reso-
lution remains practically impossible [11–13] because of the severe and, so far, unavoidable
specimen radiation damage occurring during the experiments [14]. Therefore, the biggest
challenges in the development of TEM/STEM imaging and spectroscopies continue to be
related to radiation damage, which is caused by the high density of electrons targeting
the specimen [15]. For the typical HRTEM imaging of inorganic specimens, a density
of electrons ρ of some thousands of e−/Å2 or more is delivered [16], while the study of
organic matter requires extremely small electron doses to avoid structural damage. As a
conservative rule of thumb, Henderson reports that, even at a cryogenic temperature, the
electron density delivered to the biologic specimen should not exceed 5 e−/Å2 at a liquid
nitrogen temperature and 20 e−/Å2 at a liquid helium temperature [17], which are orders
of magnitude lower than those currently applied for the HRTEM imaging of single-particle
inorganic materials, like metals or semiconductors, which are relatively robust to radiation
damage. Furthermore, the higher the spatial resolution to be achieved, the higher the
dose of electrons necessary for effective imaging [18]. A successful high-spatial-resolution
imaging experiment should answer our need to know where the atoms in a structure (and
which atoms) are but also, for example, if the bonds are locally strained or the structure is
affected by a defect, as the properties of a material depend not only on the structure but
are largely governed by strain and defects [19]. The steps necessary for effective HRTEM
imaging experiments of single nanoparticles are numerous and mainly consist in finding,
on the TEM grid, the nanoparticle well oriented along a zone axis, waiting until the drift of
the specimen holder stops, accurately fine-tuning the electron optical conditions on the area
of interest, namely, fine-focusing and illumination convergence angle adjustment (this latter
step is mandatory to properly simulate the image to extract all the information encoded
in the frame), and finally acquiring a high-signal-to-noise HRTEM image [2]. All these
steps must be performed without damaging the nanoparticle structure and be repeated
for a number of nanoparticles high enough to have statistical significance in addressing
quantitatively the specimen properties.

This is why the sub-ångström HRTEM imaging of soft matter has not been reported
so far in the literature despite several attempts [12,13]. Among soft matter, polymers are an
example of extremely radiation-sensitive materials because electron densities lower than
0.2 e−/Å2 should be mandatory for imaging at a 1 Å resolution [18]. At these values of ρ,
even the use of the most advanced high-sensitivity direct-conversion cameras results in
images with a faint contrast, which are practically useless for quantitative measurements
of the specimen properties. Furthermore, all the steps necessary before the acquisition
of the HRTEM image might have already damaged the particle. Examples of the recent
literature dealing with HRTEM on radiation-sensitive materials report the experimental
difficulties in achieving effective imaging experiments even when they do not tackle the
most sensitive case of small nanoparticles. For example, few-ångström-resolution imaging
was obtained from large crystalline metal–organic framework specimens containing also
heavy metals [13]. In other cases [12], the authors increased the spatial resolution in the
HRTEM imaging of polymers, from 2.1 nm to 0.36 nm, by means of a special specimen
preparation procedure which adds oxidants to the pristine materials.

The need to image small proteins, difficult to be crystallised for typical X-ray protein
crystallography methods [20,21], at a high resolution was tackled by Cryo-EM, which was
acknowledged with the Nobel Prize in chemistry in 2017 [22]. The method does not image
but reconstruct, at a typical resolution which has, so far, ranged between about 4 Å and
2 Å, the three-dimensional structure of individual macromolecules, assumed to be in an
identical or similar conformation, in specimens vitrified at cryogenic temperatures [23,24].
Cryo-EM requires the acquisition of numerous two-dimensional low-dose TEM images
of macromolecules in different projections, which are then computationally combined to



Nanomaterials 2024, 14, 872 3 of 14

finally provide a three-dimensional reconstruction which can be interpreted as an electron
density map. There are some limitations in the size of the protein particles that can be
reconstructed, which should not exceed about 35 kDa, due mainly to the fact that the
molecules are embedded in amorphous ice. Additionally, the models derived by Cryo-EM
need to be validated, and large workgroups are committed to this aim, especially in the
near-atomic resolution range [24]. A comprehensive review of the limits, performances,
and ultimate perspectives in cryo-EM was provided by R. M. Glaeser [25].

Here is shown that the sub-ångström high-contrast direct imaging of pristine soft
matter at room temperature is, conversely, possible by a recent experimental method that
uses a combination of in-line electron holography and low-dose HRTEM, hence named
HoloTEM. The main aim here is not to solve a specific material problem but make evident
that soft matter can be imaged at the ultimate instrumental resolution by following a
procedure capable of overcoming the experimental limitations encountered when imaging
soft matter by HRTEM. The experiments were performed on advanced field emission
gun spherical aberration-corrected TEM [26], equipped with high-speed, high-sensitivity
direct-detection cameras. As a case study, we tackled a crystalline polymer-based material,
highly sensitive to radiation damage. This approach is effective even on single nanometric
pristine crystalline particles, and the relevant experimental atomic-resolution images can
be quantitatively simulated, opening new perspectives in the study of radiation-sensitive
materials.

In–line electron holography was established in the 1940s by Gabor [27] to overcome
the spatial resolution limitations in TEM due to electron lens’ aberration. Since then, elec-
tron holography has been used for several different aims in electron microscopy (see [28]
and references therein). The HoloTEM method uses extremely low-dose-rate real-time
in-line holograms for the specimen survey, capable of detecting crystalline particles suitably
oriented for HRTEM imaging. Once a particle has been found, the hologram enables one
to safely check when the specimen drift stops. Then, the hologram is used for tuning the
electron optical conditions by fine-focusing the objective lens and spreading the illumina-
tion conditions on the area of interest to minimise the electron dose while achieving the
best illumination condition for a highly coherent electron wave ideal for HRTEM imaging.
All these steps can be carried out while delivering a total dose well below the structural
damage threshold [28]. As evidenced in the following, the possibility to use the low-dose
hologram to evaluate in advance the diffracting conditions of the particles enables one to
use doses of electrons for HRTEM imaging higher than the ones theoretically predicted [28].
The final low-dose HRTEM image is hence acquired using state-of-the-art high-speed high-
sensitivity direct-detection imaging cameras that enable one to grab series of hundreds of
low-dose HRTEM images to check offline the possible appearance of structural damage as a
function of the density of electrons delivered to the specimen. The result of the experiments
is a high-signal-to-noise-ratio HRTEM image, which is the sum of individual damage-free
images whose spatial resolution, in our experiments, depends on the equipment set-up
and, hence, could reach sub-ångström performances on state-of-the-art TEM instruments.
It is worthwhile to remark that HoloTEM enables one to perform room-temperature atomic-
resolution imaging on pristine organic materials without any staining or special specimen
preparation procedures and can be applied not only to large specimens [13] but also to
small, individual, not-identical nanoparticles, with their own crystal structure and poly-
morph statistical distribution within the material [29], enabling one to perform quantitative
HRTEM experiments on soft matter like those possible so far only on radiation-robust
inorganic nanomaterials.

2. Materials and Methods

In this study, two different polymers based on polyethylene glycol (PEG), a ubiquitous
polymer with applications in a variety of fields like medicine, biology, and chemistry, were
used in combination with caffeine (caf) and fluoroanthranilic acid (ana), as precursors for
cocrystal synthesis in a polymer-assisted grinding (POLAG) process [30]. The discovery of a
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cocrystal between caf, 6-fluoroanthranilic acid (6Fana), and PEG-DME 1000 in our previous
study prompted us to perform a cocrystal screen using other fluorinated anthranilic acid
derivatives, which led to the discovery of a new cocrystal composed of caf, 5Fana, and PEG-
DME 1000 (CAPeg). The new polymer-based cocrystals were prepared mechanochemically
in the absence of liquid additives (see §1 in the Supplementary Information). During
the screening stage, we also observed that the replacement of PEG-DME with PEG-PPG
produced an isostructural solid (CAP). The solid products obtained mechanochemically
were preliminarily characterised using powder X-ray diffraction and differential scanning
calorimetry.

The powder X-ray diffraction (PXRD) patterns of the mechanochemically prepared
solids were collected at room temperature using a Bruker D2 Phaser diffractometer (Bruker,
Mannheim, Germany) equipped with a low-power (300 W) X-ray source (30 kV at 10 mA)
generating Ni-filtered Cu Ka radiation (λ = 1.54184 Å) and an SSD160-2 detector. The
steel sample holder had an internal volume of 300 µL, which could be reduced to 100 µL
through a home-made cylindrical gearbox in polyvinylidene fluoride. The measurement
parameters were 2θ angles from 5◦ to 35◦, 2θ steps of 0.02◦, and a counting time of 0.6 s
per step. The measurements are reported in Figures S1–S3 and are compared with the
simulated diffractograms (see Supplementary Information §2).

Differential scanning calorimetric (DSC) measurements were performed on a Mettler
Toledo DSC 3 instrument. Approximately 3 mg of each solid was weighed in a 40 µL alumina
pan and covered with an alumina lid. The samples were heated under the flow of dry
nitrogen gas from 30 ◦C to 250 ◦C, with a heating rate of 10 ◦C min−1. The DSC curves were
processed using the Mettler STARe data evaluation software (version 16.40). The relevant
measurements are reported in Figure S4 of Supplementary Information.

Single crystals of CAPeg were obtained through recrystallisation from the melt (see
§2 in Supplementary Information) and studied at the XRD1 beamline at the Elettra Syn-
chrotron to determine the material’s crystallographic structure (see §3 in Supplementary
Information). Standard low-dose TEM/STEM experiments performed on pristine materi-
als at room temperature immediately resulted in the disruption of the polymeric matter,
already during the survey necessary to find the particles of interest. This evidence urged
the use of a different approach for TEM investigation. As demonstrated here, HoloTEM
enabled us to achieve the ultimate resolution in low-dose HRTEM experiments while avoid-
ing specimen damage. Details on the TEM specimen’s preparation and the state-of-the-art
equipment used for the HoloTEM experiments are reported in §4 and §5 of Supplementary
Information, respectively.

In-line electron holography (see Scheme 1) enabled us to detect, with high-contrast, the
nanoparticles of the polymeric matter sustained on a standard TEM Cu grid covered with a
thin carbon film, while delivering an extremely small density of electrons: ρ ≈ 0.1 e−/Å2.

The ray diagram in Scheme 1 points out that, by tuning the electron optics, an in-line
hologram (magnified ten times in Scheme 1 for reader convenience) is formed in the back
focal plane of the objective lens, where the interference between the reference wave and the
wave diffused by the specimen makes the nanoparticle sharply visible despite the low-dose,
with the latter being insufficient for a standard multibeam imaging live survey as formed
on the image plane (see Scheme 1). The experimental hologram and the multibeam image
shown in Scheme 1 are representative of what is actually seen by the scientist in real time,
at a density rate of current ≤ 1.2 e−/s Å2, during the survey to find the area of interest on a
standard Cu (C-coated) grid by live low-dose in-line holography or standard live low-dose
imaging, respectively.

The nanoparticles imaged in Scheme 1 are cocrystals made of caffein, 5-fluoranthranilic
acid, and polyethylene-polypropylene copolymer (CAP) that were dispersed on the TEM
grid (see below and Supplementary Information §4.). The peculiarities of the HoloTEM
method for the specimen survey are evident by comparing the in-line hologram and the
relevant TEM image in terms of contrast (see red lines’ intensity profiles on the hologram
and on the image) and field of view. The high contrast of the hologram (about 33%)
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compared to the faint contrast of the conventional multibeam image (less than 4%), points
out that, according to Rose’s criterion [31], the particles are practically invisible in a standard
imaging survey at a low dose, whereas the holograms ensure immediate and good particle
detection (see also Figure S7 in Supplementary Information). Furthermore, the field of view
of the in-line hologram is thousands of times wider than the one of the standard images,
enabling a realistic search for the particles of interest across a standard TEM specimen that
can contain particles of different sizes and kinds (see §4 in Supplementary Information). It
is worth further underlining that the HRTEM image in Scheme 1 is representative of the
conditions of low-dose live particle search and not the HRTEM image that can be acquired
by the HoloTEM procedure. The difference between the two conditions is immediately
evident when comparing the low-contrast HRTEM in Scheme 1 with the high-contrast
HRTEM image on the same particle, as shown in Figure S7 of Supplementary Information.
The latter has a contrast that enables sub-Å-resolution imaging on equipment like the
one used in this work, as it can be derived from the relationship between the fluence, the
contrast, and the attainable resolution according to the Rose criterion [14,28,30]. The data in
Scheme 1 also represent a synopsis of a HoloTEM experiment: using the real-time hologram
at a low dose and a low dose rate, the particle can be located, choosing those well oriented
for HRTEM imaging. The electron optics can then be optimised, as detailed below, and
the specimen holder drift can be checked, until it stops. Hence, the set-up can rapidly be
switched to the HRTEM mode, acquiring 100–200 images in the same area, with an exposure
time for each image on the millisecond scale (see §5 in Supplementary Information). This
procedure ensures a safe density of current ρ < 2 e−/Å2 for each image and enables full
control over the appearance and eventual development of radiation damage (see Figure S6
in Supplementary Information). Finally, the images can be summed to obtain a final
HRTEM micrograph with a good signal-to-noise ratio that can be numerically simulated to
quantify the specimen properties (see §5 and §6 in Supplementary Information).
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Scheme 1. HoloTEM experiment layout: on the left part the high-coherence illumination source,
the illumination lenses, the specimen position within the illuminating electron wave field, and the
objective lens are sketched. On the right part, the experimental live low-dose hologram (magnified
ten times) formed in the back-focal plane of the objective lens and the relevant live low-dose HRTEM
image are reported to show what is being live-observed during the survey to find the particles on the
TEM grid. The one order of magnitude contrast difference between the captured live hologram and
the relevant captured live multibeam image is quantified by the intensity profile measured across
the particle, pointing out how the hologram enables one to detect particles otherwise invisible via
low-dose multibeam imaging.

The crystallographic structure of the material derived by the synchrotron XRD experi-
ments was used in the quantitative simulations of the atomic-resolution imaging experi-
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ments here. Further details and examples are reported in Supplementary Information, at §5
and §6. HoloTEM combines the use of in-line holograms with low-dose HRTEM, resulting
in an experimental procedure which enables an extremely accurate control of the equipment
illumination system and an effective way to detect the particle of interest, with diffraction
conditions suitable for HRTEM imaging, on a standard unstained TEM specimen, while
monitoring the possible radiation damage [28]. It should be remarked that, in a conven-
tional HRTEM experiment for single-nanoparticle imaging, the dose delivered during the
exposure time for image acquisition is only a fraction of the problem [13]. The greater
issue is due to the irradiation to which the specimen is exposed while finding the particles
of interest on the TEM grid. At the values of ρ necessary not to damage the specimen,
it is impossible, in a standard imaging experiment, to distinguish any organic unstained
particle due to the low scattering power of the light elements [18,28] (see Scheme 1). Further
specimen irradiation occurs while waiting until the mechanical inertia of the specimen
holder ends, during particle orientation and during the fine-tuning of electron optics in
the region of interest. All these operations are mandatory before imaging acquisition for a
quantitative analysis and can be properly performed by HoloTEM [16].

3. Results and Discussion

The results reported in the following show representative HoloTEM experiments on
polymer-based specimens that provide evidence that sub-ångström HRTEM images on soft
matter can be obtained with an unprecedent confidence on all the experimental parameters
necessary for the quantitative HRTEM imaging of single pristine nanoparticles, on the dose
reaching the specimen, and on its effect.

Figure 1 shows the raw HRTEM image of a CAP particle, together with the relevant
hologram (see the inset), and demonstrates that high-quality low-dose HRTEM images can
be obtained on a pristine polymeric material.
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Figure 1. HRTEM image of a cluster of crystalline pristine polymeric nanoparticles: (a) HRTEM image,
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(a) and list of the lattice spacing measured within each nanoparticle.

The HRTEM image is the sum of 100 images, where each image received a ρ~7 e−/Å2

without showing detectable damage (see Materials and Methods and Supplementary Infor-
mation §6). The experiments point out that monitoring the possible damage by HoloTEM
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procedures enables one to maximise the electron dose delivered to the specimen before the
onset of structural damage. In fact, the expected dose limits [17] can be properly relaxed
when a particle is well oriented along a zone axis; a very low dose rate is used [1,30,32,33];
protective layers of hydrocarbon contaminants are formed [14,33,34]; the illumination
spread is maximised; and the possible damage development is monitored by multiple
low-dose image acquisition (see §6, Figure S6 in Supplementary Information). During the
experiments we noticed that the particle disruption is strongly related to its diffraction
conditions. A reason that can contribute to this behaviour is that, when the particle is well
oriented along a zone axis, the scattering is eminently elastic [35], whereas the damage
to the crystal structure is mainly due to inelastic scattering [36], the latter being reduced
in electron-channelling conditions [37]. Leaving unchanged all the other experimental
parameters, this leads to a higher robustness to the damage of well-oriented particles
with respect to particles not oriented for high-channelling conditions (see Supplementary
Information §6.6 and Figure S10), even if, according to the knowledge up until now, the
effect of the channelling alone could not explain quantitatively the observed phenomenon.
To our knowledge, the role of the particle diffraction conditions has not been considered
so far when calculating the maximum resolution reachable in TEM imaging before dam-
age [14,28]. Hence, the values reported in the literature represent the minimum in the
electron dose deliverable to a particle irrespective of its diffraction condition. On the
contrary, higher dose values could be safely delivered when a particle is well oriented
along a zone axis, enabling one to achieve a higher spatial resolution. Low-dose live in-line
holograms enable a conscious choice of particle orientation during a specimen survey. A
systematic study on tailored specimens would be necessary to quantify this aspect, but the
results in Figure S10 evidence how the dose delivered to a well-oriented crystalline polymer
particle can be at least two orders of magnitude higher than previously believed. Indeed,
for reader convenience, we report in Supplementary Information §6.6 and Figure S10 an
example of an irradiation experiment on a pristine unstained particle of pure PEG, where a
density of electrons up to at least 102 e−/Å2 does not cause the evidence of particle damage,
and a density of electrons of 85.4 × 103 e−/Å2 is necessary to make most of the particle
volume amorphous.

The high signal-to-noise ratio of the experimental HRTEM image obtained by HoloTEM,
which is, at a first glance, from Figure 1, comparable to the one achievable in inorganic
matter, enables us to quantify the material’s properties by measuring the lattice spacing
of each nanoparticle forming a cluster, as shown by the diffractogram in Figure 1b and
the relevant list of the measured lattice spacings. It is worth noting that the cluster shape
immediately highlights the tendency of polymer-based cocrystals to form closed structures
while maintaining mechanical flexibility, as already observed in our previous studies [30].

Figure 2a is the raw HRTEM image of a 12 nm × 18 nm thin nanoparticle of a CAPeg
cocrystal, isostructural to a CAP cocrystal (see Materials and Methods and §1, §2, and §3 in
Supplementary Information). The micrograph is the sum of 100 images. Each image has
been exposed to a density of electrons ρ = 2 e−/Å2. The structure of CAPeg, as derived
by the synchrotron XRD experiments (see Figure 2c below, §2 and §3 in Supplementary
Information, and the associated content CIF structural file), was used to simulate the
HRTEM results (see Figure 2b and the inset marked in pale blue in Figure 2a) by a JEMS
computer program using multislice full dynamical calculations [38]. The orientation of
the particle with respect to the microscope optical axis was addressed by comparing the
experimental diffractograms with those calculated by JEMS using the structural CIF file
obtained by the XRD experiments (see the CIF file supplied in Supplementary Information).
The simulation marked by the pale blue square within the raw experimental HRTEM image
is calculated for the [3, 6, 4] zone axis of the triclinic crystal cell and well matches the
experimental contrast. It is worthwhile to remark that the influence of the mutual transfer
function (MTF) of the detector (see the manual of JEMS [38]) would rescale and, hence,
decreases the simulated intensity, making the agreement between the experimental and
simulated images even better. The effect of the MTF has to be mandatory considered in the
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simulation, for example, if the aim is to solve the crystal structure from the HRTEM, but
not for the purpose of this study, where the structure is known from the XRD experiments.
In Figure 2, the experimental diffractogram (d), the simulated diffraction pattern (e), and
the measured (dexp) and calculated (dtheo) lattice spacings are also reported. The HRTEM
image and the relevant diffractogram evidence that the particle is a crystalline monodomain.
The structure and size of these nanoparticles are directly accessed by HoloTEM atomic-
resolution imaging experiments and related to the synthesis conditions [30], demonstrating
that HRTEM imaging and relevant simulations can be performed on polymeric materials,
despite their sensitivity to radiation damage.
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Figure 2. Atomic resolution quantitative imaging experiment on a single CAPeg nanoparticle:
(a) HRTEM image in the [3, 6, 4] zone axis of a polymer-based cocrystal CAPeg particle; in the pale
blue inset, the relevant multislice simulation is reported. (b) Magnified view of the HRTEM contrast
simulation. (c) Crystal structure derived from single-crystal XRD experiments and displayed using
the computer program Mercury [39]; the unit cell is viewed along the [3, 6, 4] zone axis, like in the
experimental image. The sticks and balls represent, with different colours, the atoms and the bonding
of the chemical species: hydrogen = green; fluorine = yellow; oxygen = red; carbon = grey; and
nitrogen = blue. (d) Experimental diffractogram. (e) Simulated diffraction pattern in the [3, 6, 4] zone
axis and experimental (dexp) and calculated (dtheo) spacing, along with the relevant Miller indexes.

Moreover, further subtle structural features at a sub-Å spatial resolution can be quanti-
tatively achieved on the specimen, as shown in Figure 3. Figure 3a is a raw HRTEM image
showing part of a large thin foil of CAPeg in the [10, 3, 2] zone axis. The experimental image
is the sum of 100 frames. Each frame has been exposed to ρ = 0.8 e−/Å2 to check offline for
possible damage (see §6.1 and Figure S6 in Supplementary Information). The analysis of
Figure 3 is helpful for understanding some subtle peculiarities of the cocrystal system stud-
ied. Indeed, the HRTEM images of CAPeg have some uncommon features, mostly evident
on relatively large foils some hundreds of nm in size, which could be related to the typical
flexibility of polymers, well known at a macroscopic scale and here directly evidenced at an
atomic scale. In fact, we observed small in-plane and out-of-plane tilts making the lattice
fringes’ spacing slightly different from place to place. Some areas showed compressive
strain and others tensile strain; the distortion was hardly visible without comparing the
experimental image with a reference (see Supplementary Information §6.5 and Figure S9).
Interestingly, such local strain did not generate visible extended defects and cracks, as it
would have been the case in other, more rigid solids [40]. These results demonstrate that the
study of crystalline polymeric materials at atomic resolutions allowed by HoloTEM would
very likely require the modification of some of the paradigms we are used to, including the
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concept of rigidity often associated with the concept of crystal, where, when the crystal
symmetry is broken by stress, it results in regions bounded by extended defects [40].
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and experimental (dexp) and calculated (dtheo) spacings, together with the corresponding Miller
indexes. The blue square in (a) marks the area shown at a higher magnification in (c). In (c), two
image simulations are superimposed onto the HRTEM raw image, fitting the experimental contrast
for two different thickness values: 18 nm in the upper-left part of (c), and 27 nm in the central-lower
part of (c). (d) is the diffractogram of (c), evidencing two basic vectors for the plane perpendicular
to the [10, 3, 2] direction and the reflections (4, −6, −11) at 93 pm and (3, 10, 0) at 85 pm. (e) Cell
of CAPeg seen along the [10, 3, 2] zone axis displayed by the Mercury software [39], highlighting
in pale-red the traces of planes (4, −6, −11) and (3, −10, 0) and the relevant oxygen–carbon and
carbon–carbon dumbbells, respectively. The grey rectangle marks the atomic configuration of CAPeg
seen magnified in the lower-right part of (e), where the two sub-Å dumbbells are underlined by grey
and red dashed lines. This atomic configuration is then also shown superimposed onto the HRTEM
image and simulations in the central-lower part of (c).

Figure 3b shows the diffractogram of the HRTEM image in (a). The intensities are
distributed on rings, and their anisotropic distribution on the rings indicates that the foil
consists of grains with the same orientation in the direction normal to the foil and textured
in the plane of the foil [41]. Some of the most visible spacings have been numbered from 1
to 11 in the diffractogram in Figure 3b, and the relevant experimental values are reported
together with Miller’s indexes and the spacing calculated by JEMS. The blue square in (a)
marks an individual grain shown at a high magnification in Figure 3c, where fine structural
details can be distinguished but, to be quantified and rationalised, need comparison with
the pertinent image simulation [42]. The relevant diffractogram is shown in Figure 3d,
where the (0, −2, 3) and (1, −2, −2) reflections are marked. The relevant vectors are the base
vectors for the plane perpendicular to the [10, 3, 2] direction, which is parallel to the one of
the primary beam. The comparison between the experimental and simulated diffractogram
is reported in Figure S8 of Supplementary Information, where the experimental pattern
is superimposed onto the simulated one for ease of comparison. In the diffractogram, the
reflections (4, −6, −11) and (3, −10, 0) are also marked by circles, as they correspond to two
distinguished sub-Å spacings, pointing that the highest spatial resolution enabled by the
equipment can be reached here on soft matter (see Supplementary Information §5), despite
its sensitivity to radiation damage. It is worthwhile to remark that dynamical scattering
could result in non-linear effects producing sub-Å intensities in the diffractogram that
could not correspond to real structural features within the particles, hence not contributing
to the image’s resolution [43,44]. A way to disclose this subtle point is to simulate the
HRTEM image and identify the structural features generating the measured sub-Å spacing.
In the experimental image in Figure 3c, this task is a bit complicated by the complexity of
the atom arrangement within the unit cell, the distortion in the bonds, and some thickness
variations within the observed area. Indeed, the fitting image simulation superimposed
in the top-left part of Figure 3c has been calculated for a thickness of 27 nm, whereas the
area in the centre of the image has been simulated for a thickness of 18 nm. The details
of the image simulation are reported in Supplementary Information §6.4. Figure 3e is the
crystal cell of CAPeg as calculated from the synchrotron X-ray diffraction measurements,
shown in the same orientation [10, 3, 2] as the experimental HRTEM image. The grey
rectangle marks part of the atomic configuration of the CAPeg crystal cell that is shown
magnified in the lower-right part of the figure. The display has been obtained using the
Mercury software [39]. The atoms in the cell are shown with different colours: the H
atoms are green; the F atoms are yellow; the O atoms are red; the C atoms are grey; and
the N atoms are blue. The pale-red lines in Figure 3e are the traces of planes (3, −10,
0) and (4, −6, −11). These lattice planes are those generating the intensities marked in
the experimental diffractogram, corresponding to the measured spacings of 85 pm and
93 pm, respectively. In the lower-right part of Figure 3e, these spacings are marked with
the dashed grey and red lines, respectively. This result evidences that the spacing at 93 pm
is due mainly to the marked carbon–oxygen dumbbell, whereas the spacing at 85 pm is
due mainly to the marked carbon–carbon atoms. The same atomic configuration has been
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superimposed for reader convenience onto the image simulation in Figure 3c to underline
their structural correspondence. It should be marked that not only the distances but also
the angles formed by the dumbbell in the (4, −6, −11) and (3, −10, 0) planes are coherent
between the experiments and the simulations, as shown in Figure 3, pointing out the
structural correspondence and ruling out that the sub-Å spacing in the diffractogram in
Figure 3e could have been due to a non-linear effect in the HRTEM image.

4. Conclusions

The HoloTEM experiments demonstrated that pristine polymeric nanomaterials could
be imaged at a sub-ångström resolution at room temperature. Up until now, it was believed
to be impossible to directly study soft matter at this degree of spatial resolution and accu-
racy and compare quantitatively an experimental atomic-resolution image to the geometry
of a simulated one to understand the subtle properties of these materials. Here, the direct
comparison between experiments and simulations using full dynamical calculations was
enabled by the relatively high signal-to-noise ratio of the experimental images, despite the
low scattering power of the organic materials, and it was made possible by the accurate
control of both the electron optical and particle scattering conditions achievable by the
hologram at a dose below the threshold for structural damage. To our knowledge, the
direct comparison between atomic-resolution HRTEM experiments and image simulations
had not been previously reported in the literature for soft matter. Furthermore, the above
experiments pointed out that the well-controlled imaging conditions allowed by HoloTEM,
the possibility to recognise in advance, through the holograms, the channelling conditions
suitable for HRTEM, and the use of a low dose rate of electrons, coupled with the formation
of a very thin, protective hydrocarbon layer, enabled the use of a total density of electrons
higher than the one previously believed possible for the imaging of soft matter [14,28].
Direct imaging at a sub-ångström resolution opens new scenarios for understanding the
properties of soft matter, and, as recently theoretically predicted, it is key for the appli-
cation of in-line electron holography to the atomic-resolution three-dimensional shape
reconstruction of crystalline soft matter nanoparticle from a single projection [45]. In the
case of CryoEM, the accuracy of HRTEM imaging and the relevant simulations enabled by
HoloTEM can be used to improve the knowledge and constraints necessary for accurate
and reliable CryoEM reconstruction. Among the other aspects which HoloTEM opens in
the study of soft matter, there is the development that can be foreseen from the quantitative
understanding of the phase shift information contained in the holograms [46].

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/nano14100872/s1. CIF file for the structure of CAPeg,
solved by synchrotron X-ray diffraction on a single crystal; PDF file of the Platon report on the
structural CIF file; DM4 files of the image series for Figure S6; and Supplementary Information file
containing the following paragraphs, figures, and tables: §1. Mechanochemical synthesis of polymer-
based cocrystals. §2. Preparation of a single crystal of CAPeg. §3. Single crystals’ X-ray diffraction
studies. §4. TEM sample preparation for HoloTEM. §5. Experimental HoloTEM. §6. Additional
information on HoloTEM experiments, HRTEM image simulations, and EDXS experimental results.
Figure S1: XRD measurements. Figure S2: XRD measurements. Figure S3: XRD measurements.
Figure S4: DSC measurements. Figure S5: Structure determination. Figure S6: Example of multiple
low-dose HRTEM image series. Figure S7: High-spatial-resolution experiment on CAP multidomain
nanoparticle. Figure S8: Simulated and experimental diffraction pattern. Figure S9: Strain in CAPeg
foils. Figure S10: Radiation damage in a pure PEG particle; diffraction conditions heavily influ-
ence the particle’s robustness to electron irradiation. Figure S11: EDXS spectra on CAPeg particles.
Table S1: Structural determination and refinement parameters of CAPeg. References [47–58] are cited
in the Supplementary Materials.

https://www.mdpi.com/article/10.3390/nano14100872/s1
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