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Abstract: Hydrophilic nanofibers offer promising potential for the delivery of drugs with diverse
characteristics. Yet, the effects of different drugs incorporated into these nanofibers on their properties
remain poorly understood. In this study, we systematically explored how model drugs, namely
ibuprofen, carvedilol, paracetamol, and metformin (hydrochloride), affect hydrophilic nanofibers
composed of polyethylene oxide and poloxamer 188 in a 1:1 weight ratio. Our findings reveal that
the drug affects the conductivity and viscosity of the polymer solution for electrospinning, leading to
distinct changes in the morphology of electrospun products. Specifically, drugs with low solubility
in ethanol, the chosen solvent for polymer solution preparation, led to the formation of continuous
nanofibers with uniform diameters. Additionally, the lower solubility of metformin in ethanol
resulted in particle appearance on the nanofiber surface. Furthermore, the incorporation of more
hydrophilic drugs increased the surface hydrophilicity of nanofiber mats. However, variations in
the physicochemical properties of the drugs did not affect the drug loading and drug entrapment
efficiency. Our research also shows that drug properties do not notably affect the immediate release of
drugs from nanofibers, highlighting the dominant role of the hydrophilic polymers used. This study
emphasizes the importance of considering specific drug properties, such as solubility, hydrophilicity,
and compatibility with the solvent used for electrospinning, when designing hydrophilic nanofibers
for drug delivery. Such considerations are crucial for optimizing the properties of the drug delivery
system, which is essential for achieving therapeutic efficacy and safety.

Keywords: carvedilol; drug loading; electrospinning; ibuprofen; metformin; nanodelivery systems;
nanofibers; paracetamol; poloxamer 188; polyethylene oxide

1. Introduction

In the last three decades, nanofibers have gained tremendous attention in various
applications due to their rapid development and the deepened understanding of their
preparation [1,2]. These nanostructures, defined as ultrafine fibers with nanoscale diameters
and theoretically unlimited length, show unique properties, such as large surface area and
the ability to form a highly porous three-dimensional network with nanosized intrafibrillar
pores [3,4]. The high surface area-to-volume ratio results in distinct properties of nanofibers
compared to their bulk counterparts, showing the potential to revolutionize numerous
fields, including filtration, separation, catalysis, electronics, textiles, and biomedicine [2,5].

Nanofibers can be prepared by various methods, among which electrospinning is
the most commonly used due to its simplicity [5]. It allows the preparation of nanofibers
with defined morphology and nano- or micrometer diameter in a single step, is suitable
for continuous production at an industrial scale, and is considered the most economical
method for the preparation of nanofibers [2,6,7]. During electrospinning, a viscoelastic jet
of a conductive solution is elongated and bent in the electric field established between a
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grounded collector and a metal needle connected to a high-voltage supply [1,8,9]. This pro-
cess results in the reduction of jet diameter from several hundred micrometers to nanometer
size. The simultaneous rapid evaporation of the solvent leads to the formation of solid
nanofibers deposited on the grounded collector [6,9]. The electrospinning process and
nanofiber properties are influenced by various factors such as solution properties, pro-
cess parameters, and ambient conditions, which have been thoroughly described in the
literature [1,5,10,11]. The complex interplay of these factors makes it difficult to accurately
predict the properties of the produced nanofibers [9]. The most extensively investigated
physicochemical properties of nanofibers include their morphology [12], diameter [13],
inter- and intrafibrilar porosity [14], crystallinity [15], mechanical properties (e.g., strength
and flexibility) [16,17], swelling of nanofibers [17], intermolecular interactions [18], and
surface properties [19]. Moreover, the biological properties of nanofibers, such as biocom-
patibility, immunomodulatory effects, cell mechanosensing, and effect on cells or tissues,
are also considered important aspects of nanofiber characterization [17,20]. However, when
nanofibers are designed as drug delivery systems, their crucial characteristics include
drug loading, drug entrapment efficiency, drug release kinetics, and their performance
in vivo [6].

To date, nanofibers have been prepared from more than 100 various polymers, which
enable the formation of nanofibers with different properties [21]. Thus, nanofibers can be
designed for different routes of administration and to deliver drugs with diverse characteristics (in-
cluding hydrophilic and hydrophobic drugs, small molecules, and biomacromolecules) and enable
various drug-release kinetics [6,8]. Many types of drugs have already been incorporated into dif-
ferent polymer nanofibers, including antimicrobials (e.g., metronidazole [15], ciprofloxacin [22,23],
fluconazole [24], moxifloxacin [25], nisin [26], ofloxacin [27], vancomycin [28,29], voriconazole [30],
tetracycline [31]), antioxidants (e.g., curcumin [32], resveratrol [33]), anti-inflammatory drugs (e.g.,
diclofenac [34], naproxen [35], ketoprofen [36], ibuprofen [37,38], indomethacin [39], cele-
coxib [40], meloxicam [41], dexamethasone [42,43], prednisone [44]), peptide-based drugs
(e.g., epidermal growth factor [45,46], insulin [47]), and others (e.g., paracetamol [48,49],
cyclosporine A [50], tenofovir [51], carvedilol [52,53], lovastatin [54], simvastatin [55],
lidocaine [56], donepezil [57], metformin [58,59], bevacizumab [60]). The drug loading
efficiency varies depending on the polymer type, the drug properties, and the method
of drug loading. This results in nanofibers with from as little as a few percent [34,61] up
to 60% (w/w) of drug-loaded [62]. The majority of the nanofibers is usually composed
of polymers, which thus play an important role in defining the desired properties of the
nanofibers [21]. However, as the nanofiber formulation is usually developed for a specific
drug in combination with the specific polymers, the substitution of the drug in the for-
mulation can have a significant impact not only on the drug loading [6] but also on other
properties of nanofibers.

Thus, the aim of this research was to systematically investigate the influence of the drug
on the physicochemical properties of the hydrophilic nanofibers, composed of polyethylene
oxide (PEO) and poloxamer 188 (P188). Ibuprofen, carvedilol, paracetamol, and metformin
hydrochloride were thus selected as model drugs with different properties.

2. Materials and Methods
2.1. Materials

All materials used were of reagent grade and from commercial sources. Ibuprofen was
from Fagron Hellas (Trikala, Greece), carvedilol was a gift from Krka d.d. (Novo mesto,
Slovenia), paracetamol was a gift from Lek d.d. (Ljubljana, Slovenia), and metformin
hydrochloride was a gift from Zentiva k.s. (Prague, Czech Republic). Polyethylene oxide
(PEO; Mw, 400,000 g/mol) was from Sigma-Aldrich, Co. (St. Louis, MO, USA) and polox-
amer 188 (P188; Lutrol® F68) from BASF (Ludwigshafen, Germany). Hydrochloric acid
(37%, w/w; HCl), orthophosphoric acid (85%, w/w; H3PO4), sodium hydroxide (NaOH),
potassium dihydrogen phosphate (KH2PO4), formic acid (98–100%, w/w, HCOOH), and
polysorbate 80 (Tween® 80) were from Merck KGaA (Darmstadt, Germany). Acetonitrile
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was from J.T. Baker (Gliwice, Poland), and ethanol (96%, v/v) was from Pharmachem
Sušnik Jožef (Ljubljana, Slovenia). The water used was purified by reverse osmosis and
Milli-Q water was obtained by the Millipore Milli-Q lab water system.

2.2. Preparation and Evaluation of Polymer Solutions

To prepare the polymer solutions for electrospinning (Table 1), the polymers, namely
PEO and P188 in a weight ratio of 1:1, were dissolved in ethanol at 50 ◦C by moderate
magnetic stirring. The obtained polymer solution was cooled to room temperature before
adding the selected drug (Table 1). The drug was dissolved in the polymer solution at room
temperature using moderate magnetic stirring. The polymer solution without the drug
(formulation 0) was prepared using the same procedure without the addition of the drug.

Table 1. Composition of polymer solutions for electrospinning.

Formulation Drug Name Drug [mg] P188 [mg] PEO [mg] Ethanol [g]

0 / / 150 150 10
IBU ibuprofen 75 150 150 10
CAR carvedilol 75 150 150 10
PAR paracetamol 75 150 150 10
MET metformin hydrochloride 75 150 150 10

2.2.1. Rheology Measurements

The rheological properties of the polymer solutions were analyzed using a Physica
MCR 301 rheometer (Anton Paar; Graz, Austria) equipped with a cone-plate measuring
system CP50-2 (cone diameter, 49.961 mm; cone angle, 2.001◦; sample thickness, 0.209 mm).
The rotational test was conducted at a controlled shear rate from 1 s−1 to 100 s−1 at
25 ± 0.1 ◦C to determine the viscosity of the polymer solutions. The elastic and plastic
modulus were evaluated through the oscillatory frequency sweep test, which was con-
ducted at 25 ± 0.1 ◦C, with a standard strain amplitude of 1%, and varying the angular
frequency from 0.1 rad/s to 100 rad/s.

2.2.2. Electrical Conductivity Measurements

The electrical conductivity of the polymer solutions was determined at 25 ◦C using
an MC226 Conductivity Meter with InLab® 741 electrode (Mettler-Toledo; Greifensee,
Switzerland). The measurements were performed in triplicates, and the results are given as
the average conductivity with corresponding standard deviation.

2.3. Electrospinning of Nanofibers

The polymer solutions were electrospun using Spinbox Systems® electrospinning
device (Bioinicia; Valencia, Spain) in a horizontal configuration as follows. An aliquot
(~5 mL) of the freshly prepared polymer solution was transferred into a 5 mL plastic
syringe (Chirana; Stará Turá, Slovakia), which was then placed into a syringe pump of
the electrospinning device. The syringe was connected to a metal needle (outer diameter,
0.7 mm; Bioinicia; Valencia, Spain) with a plastic tube (outer diameter, 1.3 mm). The
grounded collector was positioned 15 cm away from the tip of the metal needle. The
polymer solution was electrospun at a flow rate of 1.77 mL/h and electrical voltage of 15 kV
for ~2 h at room temperature and relative humidity ≤ 45%. The obtained nanofibers were
stored in a desiccator for at least 12 h before further use.

To prepare polymer films with the same composition as the electrospun nanofibers
and similar thickness to the nanofiber mats, ~5 g of the prepared polymer solution (Table 1)
was transferred into a Petri dish (inner diameter, 70 mm) and dried at 50 ◦C for ~1 h. The
obtained polymer films were stored in a desiccator for at least 12 h before further use.

To prepare a physical mixture of drug and polymers with the same composition as the
electrospun nanofibers, 150 mg of PEO, 150 mg of P188, and 75 mg of the selected drug
(except for formulation 0) were weighed and mixed thoroughly in a mortar.
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2.4. Evaluation of Nanofibers
2.4.1. Scanning Electron Microscopy

The morphology of nanofibers and polymer films was evaluated by scanning electron
microscopy (SEM; Supra35 VP, Carl Zeiss; Oberkochen, Germany). The samples were
attached to metal studs with double-sided conductive tape (diameter, 12 mm; Oxford
Instruments; Oxon, UK), and imaging was performed at an accelerating voltage of 1 kV
with the secondary electron detector. At least 100 measurements of nanofiber diameter were
performed on representative SEM images using the ImageJ (v1.54d) software (National
Institutes of Health; Bethesda, MD, USA), and the average nanofiber diameter, along with
the corresponding standard deviation, was calculated.

2.4.2. Fourier-Transform Infrared Analysis

To assess potential chemical interactions between the components, nanofibers, polymer
films, and physical mixtures were analyzed using the Fourier-transform infrared (FT-
IR) spectrometer Nexus with an attenuated total reflectance accessory (Thermo Nicolet,
Madison, WI, USA). The spectra were recorded in the range of 600–3900 cm−1 with 64 scans
at a resolution of 2 cm−1. Additionally, the FT-IR spectra of the individual powdered
components were recorded.

2.4.3. Contact Angle Measurements

The surface properties of nanofibers were evaluated by measuring the contact angle
between a water droplet and the surface of a nanofiber mat. A piece of nanofiber mat
(~1 cm2) was attached to a glass slide with double-sided tape Patafix (UHU GmbH & Co,
Bühl, Germany), and a 5 µL droplet of water was placed on the surface of the nanofiber
mat. The contact angle was determined 0.96 s after the first contact between the drop and
the nanofiber mat using a contact angle meter DSA 100 (Krüss; Hamburg, Germany). The
measurement was repeated 20 times for each formulation. The results are given as an
average contact angle with the corresponding standard deviation.

2.4.4. Thermogravimetric Analysis

The residual moisture content in the nanofibers and polymer films was evaluated
by thermogravimetric analysis (TGA) using the thermogravimeter TGA/DSC 1 STARe
System (Mettler-Toledo; Greifensee, Switzerland). A sample (~5 mg) was weighed in an
aluminum oxide crucible (70 µL) and placed in the cell of a thermogravimeter with an inert
atmosphere (nitrogen flow 50 mL/min). The sample was heated at a rate of 30 ◦C/min
from 30 ◦C to 95 ◦C, where it was held isothermically for 30 min before being heated at
a rate of 20 ◦C/min up to 250 ◦C. The residual moisture content was calculated using
Equation (1):

wMOISTURE =
mLOSS(30–110)

m0
× 100% (1)

where m0 is the initial mass of the sample, and mLOSS (30–110) is the mass loss over the
temperature range from 30 ◦C to 110 ◦C estimated by TGA. The measurements were
performed in triplicates, and the results are given as the average residual moisture content
with the corresponding standard deviation.

To investigate the moisture sorption ability of nanofibers and polymer films, samples
weighing ~5 mg were placed in a chamber maintained at a constant relative humidity of
46% at room temperature for 24 h. The samples were then analyzed by TGA following
the previously described procedure. Each experiment was performed in triplicate, and
the results are presented as the average moisture content along with the corresponding
standard deviation.

2.4.5. Evaluation of Nanofiber Dispersibility

The dispersibility of nanofibers in phosphate buffer (pH 7.4) containing 0.1% (w/v)
Tween® 80 was evaluated by adding ~10 mg of nanofibers to a 20 mL glass vial. Subse-
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quently, 10 mL of the aforementioned phosphate buffer (pH 7.4) with 0.1% (w/v) Tween® 80
was added to the vial, followed by vortexing until no visible nanofiber residuals or aggre-
gates were observed. The time required for the complete disintegration of the nanofibers was
recorded. Each experiment was performed in triplicate, and the results are presented as the
average time for nanofiber disintegration along with the corresponding standard deviation.

2.5. Determination of Drug Loading in Nanofibers

The drug loading in nanofibers was determined by dissolving ~10 mg of precisely
weighed nanofibers in 5 mL of ethanol in a 20 mL measuring flask. The flask was then
sonicated (Sonis 4, Iskra PIO, Šentjernej, Slovenia) for 15 min to ensure a complete nanofiber
disintegration and drug dissolution. The resulting solution was cooled to room temperature,
diluted with ethanol to 20 mL, and stirred moderately with a magnetic stirrer for 30 min.
The solution was then filtered through a 0.20 µm hydrophilic cellulose filter (Minisart®

RC, Sartorius, Göttingen, Germany) and analyzed for drug content by high-performance
liquid chromatography (HPLC) as described in Section 2.7. The drug content (wDRUG) was
calculated using Equation (2):

wDRUG =
cHPLC × 20 mL

mNF
× 100% (w/w) (2)

where cHPLC is the drug concentration determined by HPLC analysis, and mNF is the
precise mass of nanofibers used in the determination of drug loading.

In the case of formulation CAR, the obtained ethanol solution was diluted 20 times
with phosphate buffer (pH 7.4) with 0.1% (w/v) Tween® 80 before filtering through a
0.20 µm hydrophilic cellulose filter (Minisart® RC, Sartorius, Göttingen, Germany) and
HPLC analysis. The determination of drug loading was conducted in triplicates using
nanofiber samples collected from various locations on the grounded collector. The results
are presented as the average drug loading alongside the corresponding standard deviation.

Based on the determined drug loading, the drug entrapment efficiency (EE) was
calculated using Equation (3):

EE =
wDRUG

20% (w/w)
× 100% (3)

where wDRUG is the drug loading determined as described above, while 20% (w/w) is the
theoretical drug loading based on the composition of polymer solutions (Table 1).

2.6. Evaluation of Drug Release In Vitro

To evaluate the in vitro release of the drug from the nanofibers and polymer films,
~10 mg of the sample (~5 mg for formulation CAR) was accurately weighed and gently
rolled onto a plastic support and placed in a 20 mL glass vial. Next, 10 mL (75 mL for
formulation CAR) of phosphate buffer (pH 7.4) with 0.1% (w/v) Tween® 80 was added,
and the vial was incubated on a shaker (220 rpm, 37 ◦C, 24 h). At predetermined time
points, a 750 µL aliquot was withdrawn and centrifuged at 19,400× g for 4 min at 15 ◦C
(Fresco 21, Thermo Fischer Scientific, Osterode am Harz, Germany). The drug content in
the supernatant was determined by HPLC analysis as described in Section 2.7. Dissolution
of the drug in the form of a physical mixture was evaluated by the same procedure
using ~10 mg of precisely weighed physical mixture. All experiments were performed in
triplicates under sink conditions. Results are given as the mean percentage of drug released
with the corresponding standard deviation for each time point.

2.7. HPLC Analysis

The drug content in the samples was determined by HPLC analysis (Agilent 1100,
Hewlett Packard, Walbronn, Germany) with a diode array module detector. For ibuprofen
analysis, a C18 chromatographic column Luna® (5 µm, 100 Å, 150 mm × 4.6 mm; Phe-
nomenex, Torrance, CA, USA) was used; for carvedilol analysis, a C8 chromatographic
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column BetaBasic® (3 µm, 150 Å, 150 mm × 4.6 mm; Thermo Fisher Scientific, Waltham,
MA, USA) was used; for paracetamol analysis, a C18 chromatographic column Kinetex®

(2.6 µm, 150 Å, 50 mm × 4.6 mm; Phenomenex, Torrance, CA, USA) was used; and for
metformin hydrochloride analysis, a reverse phase chromatographic column SynergiTM

Hydro-RP (4 µm, 80 Å, 150 mm × 4.6 mm; Phenomenex, Torrance, CA, USA) was used.
The mobile phase for ibuprofen analysis consisted of 0.1% (w/w) H3PO4 and acetoni-

trile in a volume ratio of 35:65; for carvedilol analysis, 0.02 M KH2PO4 and acetonitrile in a
volume ratio of 65:35; for paracetamol analysis, 0.01% (w/w) HCOOH and acetonitrile in
a volume ratio of 92:8; and for metformin hydrochloride analysis, 0.01% (w/w) HCOOH
and acetonitrile in a volume ratio of 30:70. The parameters of the HPLC analyses are
summarized in Table 2.

Table 2. Parameters of HPLC analyses of investigated drugs.

Parameter/Drug Ibuprofen Carvedilol Paracetamol Metformin Hydrochloride

Injection volume 20 µL 20 µL 2 µL 1 µL
Mobile phase flow rate 1 mL/min 1 mL/min 1 mL/min 1 mL/min

Chromatographic column Luna® C18 BetaBasic® C8 Kinetex® C18 SynergiTM Hydro-RP
Column temperature 25 ◦C 35 ◦C 40 ◦C 30 ◦C
Detection wavelength 222 nm 241 nm 243 nm 237 nm

The drug content was determined based on the calibration curve, prepared with
standard solutions of drugs either in phosphate buffer (pH 7.4) with 0.1% (w/v) Tween® 80
or in ethanol.

The concentration range for ibuprofen, paracetamol, and metformin hydrochloride
determination was from 12.50 µg/mL to 200.00 µg/mL. For carvedilol, the calibration curve
was prepared in phosphate buffer (pH 7.4) with 0.1% (w/v) Tween® 80, in a concentration
range from 1.25 µg/mL to 11.25 µg/mL.

2.8. Statistical Analysis

The data are given as the average ± standard deviation. To compare the samples sta-
tistically, a one-way analysis of variance (ANOVA) with Tukey’s post hoc tests for multiple
comparisons or Student’s t-test for two-sample comparison was conducted using Origin-
Pro 2018 (v9.5.1) software (OriginLab Corporation, Northampton, MA, USA). Statistical
significance was considered at a probability level of 0.05.

3. Results and Discussion

In this study, we investigated the influence of a model drug on the most important
physicochemical properties of nanofibers. We chose ibuprofen, carvedilol, paracetamol,
and metformin hydrochloride (Figure 1), hereafter referred to as metformin, as model drugs
that differ in their physicochemical properties (Table 3).

Ibuprofen and carvedilol, despite being practically insoluble in water, demonstrate
high intestinal permeability, classifying them as class II drugs according to the Biophar-
maceutical Classification System (BCS). Conversely, paracetamol and metformin are both
freely soluble in water but exhibit low intestinal permeability, thus being classified as BCS
class III drugs [63–67]. However, it is noteworthy that all four investigated drugs exhibit
at least slight solubility in ethanol, which is essential for the preparation of ethanol-based
solutions for electrospinning. To investigate the impact of the selected model drugs on the
nanofiber properties, we adopted the formulation based on PEO and P188 in a 1:1 weight
ratio, previously developed by our research group to increase the solubility and dissolution
rate of poorly soluble drug lovastatin [54].
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Table 3. Physicochemical properties of the investigated model drugs [63–67].

Property/Drug Ibuprofen Carvedilol Paracetamol Metformin
Hydrochloride

Molecular weight 206.3 g/mol 406.5 g/mol 151.2 g/mol 165.6 g/mol

Appearance white crystal powder white crystal
powder

white crystal
powder

white crystal
powder

Water solubility * practically
insoluble

practically
insoluble

sparingly
soluble

freely
soluble

Ethanol solubility * freely soluble slightly soluble freely soluble slightly soluble
BCS class II II III III

pKa 4.5 14.0 (acid),
8.7 (base)

9.5 (acid),
−4.4 (base) 12.40

logP (experimental) 3.7 3.8 0.5 −2.6

* The solubilities of model drugs in water and ethanol are given according to the Ph. Eur. 11th Ed. (based on the
approximate volume of solvent required to dissolve a gram of the drug) [67].

3.1. Properties of Polymer Solutions

The assessment of the rheological properties of the polymer solutions for electrospin-
ning revealed that the physicochemical properties of the model drug did not significantly
affect the rheological behavior of the polymer solution (Figure S1). The dynamic viscosity
of the prepared polymer solutions, with or without the model drug, was independent of
shear rate and exhibited viscoelastic Newtonian behavior [68,69].

It was observed that carvedilol, paracetamol, and metformin hydrochloride did not
significantly alter the dynamic viscosity of the polymer solution compared to the drug-
free polymer solution with a total polymer concentration of 3% (w/w) (formulation 0),
which exhibited a dynamic viscosity of ~26.8 mPas (Table 4). On the other hand, the
addition of ibuprofen to the polymer solution resulted in a slight decrease in the solution’s
dynamic viscosity compared to the drug-free polymer solution (Table 4), possibly due to its
pronounced solubility in ethanol. According to Ph. Eur., both ibuprofen and paracetamol
are freely soluble in ethanol. However, ibuprofen exhibits approximately seven times
greater solubility in ethanol than paracetamol [70,71], making it the most soluble in ethanol
among the investigated model drugs.



Nanomaterials 2024, 14, 949 8 of 20

Table 4. Dynamic viscosities and electrical conductivities of the investigated polymer solutions at
25 ◦C.

Formulation Dynamic Viscosity [mPas] Electrical Conductivity [µS/cm]

0 26.8 ± 0.6 2.45 ± 0.43
IBU 25.0 ± 0.2 1.53 ± 0.02
CAR 27.0 ± 0.2 2.66 ± 0.23
PAR 27.0 ± 0.2 1.66 ± 0.04
MET 26.1 ± 0.2 687.10 ± 12.60

The dynamic viscosities of the polymer solutions under investigation were consistent
with literature data [18,72], confirming their suitability for electrospinning of nanofibers.
Regardless of the model drug incorporated, all polymer solutions maintained dynamic
viscosities within an optimal range. This is crucial for preventing issues such as poor flow
of the polymer solution and the formation of beaded or discontinuous nanofibers, which
can occur due to excessively high or low dynamic viscosities [73,74].

The evident prevalence of plastic properties over elastic properties, which is a prerequi-
site for successful polymer solution spinnability [5], was observed for all polymer solutions
regardless of the used model drug (Figure S2). However, the addition of ibuprofen to the
polymer solution had a minor impact on the elastic properties of the polymer solution,
potentially due to its superior solubility in ethanol compared to the other investigated
model drugs [70,71]. In contrast, the addition of carvedilol, paracetamol, or metformin to
the polymer solution significantly affected the dependency of the polymer solution’s elastic
properties on the angular frequency (Figure S2).

The model drugs, except metformin, had negligible effects on the electrical conduc-
tivity of the investigated polymer solutions (Table 4). The elevated electrical conductivity
observed in the metformin-containing polymer solution was attributed to the addition of
metformin in a salt form. The literature data show that the addition of salts in the polymer
solution for electrospinning may enhance the electrical properties and increase the electrical
conductivity more than 50 times for pure PEO solutions [75], which is in line with the
increased electric conductivity of polymer solution for formulation MET (Table 4).

While existing literature suggests that increased electrical conductivity might result in
finer nanofibers with fewer beads and potentially undesired jet instability during electro-
spinning, resulting in broader distributions of fiber diameters [73,76], our previous research
demonstrated that polymer solutions with even higher electrical conductivities remain
suitable for nanofiber formation using the electrospinning method [18]. Thus, the increased
electrical conductivity of the polymer solution in formulation MET did not raise concerns
regarding nanofiber formation. Conversely, the low electrical conductivities of the other
investigated solutions might present challenges for the electrospinning process [10].

3.2. Morphology of Electrospun Products

The solubilities of the investigated model drugs in ethanol (Table 3), which was se-
lected as a medium for the preparation of polymer solutions for electrospinning, were
shown to affect the rheological properties of the polymer solutions and the morphology of
the electrospun products (Figure 2). Thus, the incorporation of metformin hydrochloride
or carvedilol, being less soluble in ethanol among the investigated drugs, into nanofibers
resulted in the formation of continuous nanofibers with homogeneous nanofiber diameters,
resembling the plain nanofibers (formulation 0) (Figures 2 and 3), whereas the incorpo-
ration of more ethanol-soluble ibuprofen or paracetamol resulted in the formation of
discontinuous or fragmented nanofibers.



Nanomaterials 2024, 14, 949 9 of 20

Nanomaterials 2024, 14, x FOR PEER REVIEW 9 of 21 
 

 

nanofibers resulted in the formation of continuous nanofibers with homogeneous nano-
fiber diameters, resembling the plain nanofibers (formulation 0) (Figures 2 and 3), whereas 
the incorporation of more ethanol-soluble ibuprofen or paracetamol resulted in the for-
mation of discontinuous or fragmented nanofibers. 

 
Figure 2. Representative SEM images of the electrospun nanofibers and corresponding polymer 
films of all investigated formulations. 

Figure 2. Representative SEM images of the electrospun nanofibers and corresponding polymer films
of all investigated formulations.



Nanomaterials 2024, 14, 949 10 of 20
Nanomaterials 2024, 14, x FOR PEER REVIEW 10 of 21 
 

 

 
Figure 3. Distribution of nanofiber diameters for (a) formulation 0, (b) formulation IBU, (c) formu-
lation CAR, (d) formulation PAR, and (e) formulation MET determined based on representative 
SEM images. 

The nanofiber morphology in this study differed slightly from our previous findings 
[72,77]. The nanofibers in the present study were smoother and without beads, which were 
observed in our previous studies [77]. Since the bead formation is typically associated with 
the capillary instability of the jet of polymer solution [9], the observed differences in 

Figure 3. Distribution of nanofiber diameters for (a) formulation 0, (b) formulation IBU, (c) formu-
lation CAR, (d) formulation PAR, and (e) formulation MET determined based on representative
SEM images.



Nanomaterials 2024, 14, 949 11 of 20

The nanofiber morphology in this study differed slightly from our previous findings [72,77].
The nanofibers in the present study were smoother and without beads, which were observed
in our previous studies [77]. Since the bead formation is typically associated with the
capillary instability of the jet of polymer solution [9], the observed differences in nanofiber
morphology may be attributed to the difference in polymer solution composition, namely
the use of P188 instead of poloxamer 407, which was used in the previous study. This may
have affected the surface tension of the polymer solution, leading to the destabilization of
the jet of the viscoelastic polymer solution and subsequent bead formation [78].

Additionally, small particles presumably attributed to metformin were observed on
the surface of nanofibers of formulation MET and on the surface of polymer film of the
same formulation. A similar observation of small particles on the surface of nanofibers
was described in the literature when salt was added to the polymer (PEO) solution for
electrospinning [75]. However, according to European Pharmacopoeia, both metformin
and carvedilol are slightly soluble in ethanol, with metformin being less soluble than
carvedilol [79,80]. The presence of the small particles on the surface of the nanofibers and
polymer film of formulation MET could be related to the poor solubility of metformin
in ethanol, leading to its precipitation during the formation of nanofibers and polymer
film [67]. Despite this, metformin-loaded nanofiber exhibited also the narrowest nanofiber
diameter distribution among all investigated formulations (Figure 3). This is in contrast to
the literature showing that high electrical conductivity can lead to a broad distribution of
nanofiber diameters [81].

The addition of ibuprofen, which had the highest solubility in ethanol among the
drugs investigated, into the polymer solution resulted in the formation of fragmented, thick
structures spread out on the collector. This was in contrast to the continuous nanofiber
formation observed in all other investigated formulations (Figure 2). The literature suggests
that the inability to achieve continuous nanofiber formation can be attributed to the low
viscosity of the polymer solution [73]. This is in line with our results as the dynamic
viscosity of the polymer solution with ibuprofen was significantly lower compared to all
other investigated polymer solutions (Table 4). Additionally, the electrical conductivity
of the polymer solution with ibuprofen was significantly lower compared to the polymer
solutions with carvedilol (formulation CAR) and metformin (formulation MET) (Table 4).
The literature suggests that low electrical conductivity could hinder the formation of
continuous nanofibers [5]. On the other hand, low electrical conductivity may also lead to
the formation of thicker nanofibers [73], as observed in the case of formulation IBU and
formulation PAR (Table 4, Figure 3).

Thus, we showed that the physicochemical properties of the incorporated drug, in par-
ticular, its solubility in the solvent used to prepare the electrospinning solution, influenced
the morphology of the electrospun nanofibers. However, given that the nanofibers were
prepared using the same electrospinning conditions, we presume that the differences in
the morphology of electrospun nanofibers induced by the incorporation of different drugs
might potentially be alleviated by adjustments in process and ambient parameters [5].

3.3. Chemical Interactions between Components in Nanofibers

Chemical interactions between polymers and drugs in the nanofibers were exam-
ined, revealing no important changes in characteristic peaks in nanofiber FT-IR spectra
of formulations 0 and formulation MET when compared to pure polymers and drugs
(Figure 4). However, an absence of the characteristic hydroxyl group stretching vibration
above 3000 cm−1, observed in the FT-IR spectra of ibuprofen, carvedilol, and paracetamol,
was noted in the FT-IR spectra of formulation IBU, CAR, and PAR nanofibers (Figure 4).

The disappearance of the characteristic peak for ibuprofen, carvedilol, and paraceta-
mol in FT-IR spectra of nanofibers of the corresponding formulation suggests the formation
of hydrogen bonds between drugs and polymers in the nanofibers [82,83]. Although all the
investigated drugs have multiple hydrogen bond donor groups, only ibuprofen, carvedilol,
and paracetamol have the hydroxyl hydrogen bond donor group (Figure 1) [63–66]. Fur-
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thermore, PEO is a known hydrogen bond acceptor; thus, it can form hydrogen bonds
with hydrogen bond donors (e.g., hydroxyl groups of the investigated drugs) [84]. P188,
which has two PEO fragments in its structure, shares this property with PEO [85]. Thus, the
change in the FT-IR spectra above 3000 cm−1 for ibuprofen, carvedilol, and paracetamol in
nanofibers might be associated with the formation of hydrogen bonds with the polymers in
the nanofibers. This underscores the significance of the free functional groups present in
drugs, particularly the hydroxyl group, when incorporated into nanofibers, as they may
significantly contribute to the chemical interactions between drugs and polymers within
the nanofibers. The disappearance of the characteristic hydroxyl group stretching vibration
above 3000 cm−1 was observed only in the FT-IR spectra of nanofibers but not in the FT-IR
spectra of polymer films or physical mixtures (Figure 4). This confirms the important role
of the electrospinning process in facilitating the formation of hydrogen bonds between
drugs and polymers, which is consistent with the literature [86,87]. Similar changes were
not observed for metformin, which has no hydroxyl groups but has other hydrogen bond
donor groups that show less intense peaks in the FT-IR spectra [88].
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Comparison of the FT-IR spectra of pure drugs with those of nanofibers, polymer
films, or physical mixtures showed a decrease in the intensity of the characteristic peaks of
the drugs (Figure 4). This could be attributed to the relatively high polymer content (80%,
w/w) in the nanofibers compared to the drug loading (20%, w/w).
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3.4. Surface Properties of Nanofiber Mats

Incorporation of the hydrophilic drugs, namely paracetamol and metformin, in
nanofibers significantly decreased the contact angle of a water droplet on the surface
of the nanofiber mat of formulations PAR and MET, compared to the drug-free nanofiber
mat of formulation 0 (Table 5). This indicates a significant increase in the hydrophilicity
of the nanofiber mats due to the presence of hydrophilic drug in the polymer matrix.
Contrarily, the surface properties of nanofiber mats were not significantly affected by the
incorporation of more hydrophobic drugs, namely ibuprofen and carvedilol. The contact
angle of a water droplet on the surface of the nanofiber mat of formulations IBU and CAR
was comparable to that of the drug-free nanofiber mat of formulation 0 (Table 5). Thus,
our investigation revealed that the incorporation of hydrophilic drugs into nanofibers
importantly affects the surface hydrophilicity of electrospun nanofiber mats (Table 5).

Table 5. The contact angle of a water droplet on the surface of nanofiber mats.

Formulation Contact Angle [◦]

0 53.8 ± 8.8
IBU 51.8 ± 8.0
CAR 50.8 ± 10.9
PAR 29.8 ± 6.4
MET 29.1 ± 8.4

3.5. Moisture Content in Nanofibers

The residual moisture content in all nanofiber and polymer film formulations was
below the limit of detection, which is consistent with our previous findings showing that
electrospinning of ethanol-based polymer solutions yields a dry electrospun product [18].
Additional experiments revealed that all investigated nanofiber formulations and the cor-
responding polymer films can sorb moisture when exposed to an environment with 46%
relative humidity at room temperature (Figure 5), aligning with our previous studies [18].
The polymer films of all formulations investigated contained ~0.4% (w/w) moisture after
exposure to 46% relative humidity at room temperature for 24 h. In contrast, the moisture
content in the nanofibers was dependent on the drug loaded (Figure 5). The incorporation
of ibuprofen or metformin did not significantly alter the moisture content compared to the
drug-free nanofibers. Significantly higher moisture content in nanofibers after exposure
to 46% relative humidity at room temperature for 24 h was observed for nanofibers with
carvedilol and paracetamol (Figure 5). Given that paracetamol and carvedilol are known to
sorb moisture from the environment [89,90], a characteristic not shared by ibuprofen and
metformin [91,92], it can be concluded that the hygroscopic properties of nanofibers are
significantly influenced by the hygroscopic nature of the incorporated drug. The significant
difference between formulation CAR and formulation PAR in moisture sorption capacity
could be attributed to the more pronounced hygroscopic properties of paracetamol com-
pared to carvedilol [89,90]. Since the drugs were incorporated into a matrix of hygroscopic
polymers [85] and since the drug-free nanofibers also demonstrated the ability to sorb
moisture from the environment, it can be concluded that the hygroscopic behavior of
nanofibers is a consequence of the hygroscopicity of the polymers and the drugs. Further-
more, nanofibers exhibited greater hygroscopicity than the polymer films of corresponding
formulations, indicating a potential enhancement of formulation hygroscopicity through
the formation of a three-dimensional nanofiber mat. However, this was not evident in
formulation IBU and formulation MET, which contained less hygroscopic drugs, namely
ibuprofen and carvedilol.
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3.6. Drug Loading in Nanofibers and Drug Entrapment Efficiency

The determined drug loading in all investigated nanofiber formulations was found to
be slightly below 20% (w/w) (Table 6), closely aligning with the theoretical drug loading
(Table 1). Thus, the drug entrapment efficiency was slightly below 100% for all formulations
(Table 6). Drug loading in our study (20% (w/w)) was not as high as published in the
literature for ibuprofen [62], carvedilol [52,62], or paracetamol [93], but it was significantly
higher for metformin compared to the literature data (~17% (w/w)) [58]. However, the
primary aim of our study was not to achieve the maximum drug loading but rather to
investigate the effects of drug incorporation on the properties of the nanofibers.

Table 6. Drug loading and drug entrapment efficiency for all investigated nanofiber formulations.

Formulation Drug Loading [%, w/w] Entrapment Efficiency [%]

IBU 19.0 ± 0.5 94.8 ± 2.7
CAR 19.5 ± 0.9 97.5 ± 4.3
PAR 18.7 ± 0.1 93.4 ± 0.5
MET 19.9 ± 1.1 99.4 ± 5.5

A crucial factor in achieving high entrapment efficiency is preparing the electro-
spinning polymer solution in a solvent where the drug is soluble, as described in the
literature [53,77]. As all the investigated drugs are at least slightly soluble in ethanol
(Table 3), which was used as the solvent for the preparation of polymer solutions, our
findings align with the literature data. Nonetheless, slightly higher (though not statistically
significant) entrapment efficiencies were observed for carvedilol and metformin, which
are poorly soluble in ethanol compared to ibuprofen and paracetamol [67]. This suggests
that the drug solubility in the solvent used for the preparation of the polymer solution may
indeed play a role in achieving high drug entrapment efficiency.

3.7. Drug Release from Nanofibers In Vitro

In vitro drug release studies were performed in phosphate buffer (pH 7.4) with 0.1%
(w/v) Tween® 80, which ensured the sink conditions at the neutral pH, in which the
different solubility of the drugs did not hinder the drug release. The pH value of 7.4
represents a physiological pH for parenteral and ocular application, which are two of the
various possibilities for the application of nanofibers. However, the aim of the drug release
studies was not to predict the drug release in vivo but rather to compare the drug release
of different drugs from the hydrophilic nanofibers.
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In vitro drug release studies revealed that the physicochemical properties of the drugs
do not affect the drug release from nanofibers (Figure 6). Similar observations also applied
to the reference formulations represented by the polymer films (Figure 6). This highlights
the potential of the formulation, based on the combination of hydrophilic polymers (i.e.,
PEO and P188), as an effective drug delivery system capable of facilitating immediate
drug release for all drugs investigated, as nearly 100% of the drug was released from all
the nanofiber formulations in 15 min (Figure 6). The rapid drug release observed across
all formulations can be attributed to the inherent properties of the hydrophilic polymers
employed. Specifically, PEO is recognized for its ability to enable the rapid dissolution
of nanofibers, leading to accelerated drug release [94,95]. Additionally, the surface-active
properties of P188 play a role in facilitating nanofiber dissolution and subsequent rapid
drug release [85].
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Moreover, it was shown that the drug release from nanofibers might be linked to
the dispersibility of nanofibers, which is affected by the incorporated drug. However, no
clear correlation could be established between the physicochemical properties of the drug
and the dispersibility of nanofibers. Nanofibers of formulations 0, IBU, and MET were
dispersed faster in phosphate buffer (pH 7.4) with 0.1% (w/v) Tween® 80 than nanofibers
of formulations CAR and PAR. A similar, though not statistically significant, relationship
was also observed for drug release from nanofibers (Figure 6). However, the dispersibility
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and in vitro drug release studies were performed in phosphate buffer (pH 7.4) with 0.1%
(w/v) Tween® 80 to ensure the sink conditions.

The incorporation of carvedilol into nanofibers or polymer film resulted in significantly
faster drug release compared to the drug dissolution from the physical mixture of carvedilol
(Figure 6), whereas such differences were not observed for nanofibers of formulation IBU,
PAR, or MET. It should be pointed out that carvedilol was the only drug among those
investigated whose solubility in water and phosphate buffer (pH 7.4) with 0.1% (w/v)
Tween® 80 was significantly enhanced by the presence of PEO and P188 at a concentration
of 0.08% (w/v) (Table S1), which corresponds to the concentration of polymers in the drug
release studies. However, no significant difference was observed between carvedilol release
from nanofibers and polymer films of comparable thickness. This finding contradicts our
previously published results, which demonstrated that carvedilol is released more rapidly
from nanofibers than from polymer films [77]. The observed difference could be attributed
to the lower hydrophobicity of P188 compared to the poloxamer 407, which was used in
our previous study [77,85].

The comparison of the obtained drug release profiles with the literature data revealed
similar drug release kinetics irrespective of the polymer composition of nanofibers for
ibuprofen [37,96,97], carvedilol [52], and paracetamol [93,97,98]. Remarkably, in a previous
study, PEO nanofibers exhibited a slower release of carvedilol compared to the nanofibers
examined in our study [53]. This finding implies that P188 plays a crucial role in facilitating
the rapid dispersion of nanofibers and subsequent drug release.

4. Conclusions

In this study, we have demonstrated the impact of the physicochemical properties of
the incorporated drugs on the physicochemical properties of hydrophilic nanofibers. Our
findings highlight the solubility of the drug in the solvent used for the preparation of the
electrospinning polymer solution and the drug’s salt form as crucial properties affecting the
dynamic viscosity and electrical conductivity of polymer solutions. These factors, conse-
quently, importantly affect the morphology of the resulting electrospun products. Moreover,
we showed that the incorporation of more hydrophilic drugs into nanofibers enhanced
the surface hydrophilicity of nanofibers, whereas the incorporation of more hydrophobic
drugs exhibited negligible impact on the surface properties of the nanofibers. However, the
physicochemical properties of the incorporated drug had minimal influence on the drug
loading, drug entrapment efficiency, and rapid drug release, which were mainly governed
by the inherent properties of the employed hydrophilic polymers. In conclusion, our
findings emphasize the critical importance of considering drug-specific physicochemical
properties when designing and optimizing nanofiber-based drug delivery systems.
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