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Abstract: A new two-step method for developing a nanocomposite of polypropylene (PP) decorated
with photocatalytically active TiO2 nanoparticles (nTiO2) is proposed. This method involves the
low-temperature plasma functionalization of polypropylene followed by the ultrasound-assisted
anchoring of nTiO2. The nanoparticles, polymeric substrate, and resultant nanocomposite were
thoroughly characterized using nanoparticle tracking analysis (NTA), microscopic observations (SEM,
TEM, and EDX), spectroscopic investigations (XPS and FTIR), thermogravimetric analysis (TG/DTA),
and water contact angle (WCA) measurements. The photocatalytic activity of the nanocomposites was
evaluated through the degradation of methyl orange. The individual TiO2 nanoparticles ranged from
2 to 6 nm in size. The oxygen plasma treatment of PP generated surface functional groups (mainly
-OH and -C=O), transforming the surface from hydrophobic to hydrophilic, which facilitated the
efficient deposition of nTiO2. Optimized plasma treatment and sonochemical deposition parameters
resulted in an active photocatalytic nTiO2/PP system, degrading 80% of the methyl orange under
UVA irradiation in 200 min. The proposed approach is considered versatile for the functionalization
of polymeric materials with photoactive nanoparticles and, in a broader perspective, can be utilized
for the fabrication of self-cleaning surfaces.

Keywords: TiO2; polypropylene; surface functionalization; plasma treatment; nanocomposite;
photocatalyst

1. Introduction

Polypropylene (PP), due to its vast diversity of applications, is one of the most
widespread polymeric materials in the world. It gained popularity almost instantly after
its discovery, and the production of PP steadily increased [1]. Diverse types of industries,
including biomedical, automobile, aerospace, textiles, and packaging, to mention a few,
employ polypropylene using their unique and adjustable characteristics. The most crucial
advantages of these materials are chemical resistance, mechanical properties, and cost-
effectiveness [2]. Polypropylene properties could be additionally modified via chemical and
physical methods, among which are copolymerization and structural modification using ad-
ditives and forming composites. The resultant materials could be processed in many ways,
like injection or extrusion, and form final products. From the practical point of view, surface
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functionalization is particularly interesting, where the enhancement and/or addition of
new surface properties is achieved without changing the bulk characteristics [3,4].

Currently, one of the modern trends in polymeric surface functionalization concerns
antibacterial and self-cleaning surfaces, which can be achieved through the introduction
of photocatalytic nanoparticles on the surface [5]. When irradiated, the photocatalysts
generate reactive oxygen species such as hydroxyl radical (HO•) and superoxide radical
(O2

•–). The primarily formed O2
•– species start a cascade of ROS formation, including

H2O2, which, together with HO•, can destroy a broad range of contaminants. They typically
include inanimate matter, such as inorganic/organic substances, and living organisms, such
as bacteria, fungi, and algae. Inorganic contaminants such as dust could be washed away
due to superhydrophilic properties. In this case, the water contact angle should be below
10◦ so the water droplets can spread over and clean the surface [6]. Organic impurities
could be removed from the surface via total degradation to CO2 and H2O (mineralization)
by photogenerated charges or reactive oxygen species. The main mechanism in destroying
bacterial cell walls also involves damage to bacteria cell walls and operates for both Gram-
negative and Gram-positive strains. However, it should be noted that the generated
oxygen radicals are short-lived and are not found further than 1 µm from the photocatalyst
surface [7]. As the distance between the bacteria and the photocatalyst is essential for
the self-disinfection process of all surfaces, the preparation of a system requires a high
dispersion of photoactive nanoparticles over the polymer surface.

Titanium dioxide in the form of nanoparticles is one of the best-known robust photo-
catalysts with superior properties, particularly photoactivity, nontoxicity, and commercial
availability. TiO2-based photocatalytic systems, including films, have been shown to ef-
fectively remove organic pollutants and destroy pathogens in water, as reviewed in [8].
Thus, the deposition of titanium dioxide nanoparticles on the polymers could effectively
trigger their photocatalytic cleaning [9,10]. The most commonly used approach is to add
nanoparticles to monomers before forming them into a final product. There are several
methods reported for the successful preparation of PP-nTiO2 composites like the direct
blending of titania NPs with polymers, in situ formation of NPs within the polymeric
matrix, copolymerization of surface-modified NPs, and grafting or self-assembly of NPs
and polymers [11,12]. It is worth mentioning that in such a case, a majority of nanoparticles
are located in the bulk and, due to limited light penetration, are photocatalytically inactive.
The bulk embedment could also result in the undesired modifications of bulk properties of
the commercial polymeric materials [13].

Considering the above considerations, optimal functionalization should be limited
to the surface decoration of polymeric materials with photocatalytic nanoparticles. The
polypropylene surface is, however, chemically inert, which is a huge advantage for its
stability in harsh chemical environments. However, it also makes functionalization difficult,
especially via coating or attachment of nanoparticles [14].

From a practical point of view, the best approach is to create surface chemical bonds
between polypropylene and TiO2 nanoparticles. The strategy involves the generation of
abundant surface functional groups on the polypropylene to enhance nanoparticle anchor-
ing [15]. For this purpose, the effective modification of the PP surface can be achieved by
plasma treatment. The exposure of polymeric surfaces to ionized gas molecules, e.g., oxy-
gen plasma, effectively changes their properties, like wettability and adhesion. Using
low-temperature plasma, the surface properties can be changed effectively by generating
functional groups while preserving the bulk properties of the polymeric materials [16,17].
Moreover, the surface modification could be precisely controlled by adjusting plasma
parameters (power, oxygen partial pressure, and treatment time) [18,19]. Such function-
alized surfaces can then be decorated with photoactive nanoparticles with the use of a
sonochemical process [20,21]. The advantages of applying ultrasound for inorganic par-
ticle deposition over polymeric surface consist in employing ultrasound energy not only
for the deposition process but also for softening the polymeric matrix, thus making the
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nanoparticle embedding effective. Consequently, the final product is expected to exhibit
higher mechanical stability [22].

In this paper, oxygen plasma treatment on polypropylene material has been investi-
gated. New functional groups generated on the polymer surface after plasma treatment
were monitored by the water contact angle, while their chemical nature was characterized
by employing FTIR and XPS analysis. The process of depositing nanoparticles on the
surface was performed using the sonochemical method, modifying the sonication time
and concentration of the nTiO2 suspension. The influence of oxygen surface groups on the
attachment and dispersion of the TiO2 nanoparticles was documented by SEM images. The
photocatalytic activity was tested in the methyl orange (as model contamination compound)
degradation test using UV irradiation. The effect of plasma treatment on the properties of
the obtained nTiO2/PP composites is discussed in terms of the nanoparticle dispersion and
related photocatalytic activity.

2. Materials and Methods
2.1. Material Preparation

Titanium dioxide nanoparticles (CCA 100 BS) were purchased from Cinkarna Celje
d. d. (Celje, Slovenia). The TiO2 had an anatase crystal structure with a specific surface
area of approximately 250 m2/g. The nanoparticles were supplied in a 20% stabilized
aqueous suspension with a neutral pH (7–9), which was diluted to 1% or 0.1% before
the experiments.

In the experiments, 1 mm thick polypropylene sheets (Merck, Darmstadt, Germany)
were used. The sheets were washed with isopropanol and dried in air to prepare the surface
for further functionalization and measurement.

To functionalize the polymer’s surface, oxygen plasma treatment (FEMTO system,
Diener Electronics, Ebhausen, Germany) was used with a controlled oxygen partial pressure
of 0.2 mbar, plasma generator power of 100 W, and a defined sample exposure time (0, 1, 2,
5, or 10 min).

A sonochemical method was used to anchor the nanoparticles to oxygen plasma-
modified polypropylene. After the plasma treatment, the polymer was immediately im-
mersed in 5 mL of titanium dioxide solution (0.1%/0.2%/0.5%/1%). The samples were
irradiated at a frequency of 20 kHz, amplitude of 30%, and time from 1 min to 5 min using
a homogenizer (Ti-horn, Q500, QSonica, Newtown, CT, USA). A cold-water bath was used
to avoid overheating.

2.2. Nanoparticle Tracking Analysis (NTA)

The hydrodynamic diameter of the nanoparticles was investigated using the nanopar-
ticle tracking analysis method with Nanosight LM10 (A.P. Instruments, Warsaw, Poland).
The instrument’s software calculates the particle diffusion coefficient and counts the par-
ticles’ hydrodynamic diameter using the Stokes–Einstein equation. Every solution was
investigated three times.

2.3. Attenuated Total Reflection–Fourier Transformation Infrared Spectroscopy (ATR-FTIR)

To examine changes in chemical groups on the surface after the plasma treatment, the
ATR-FTIR method was used with the Nicolet Summit FTIR Spectrometer (Thermo Fisher
Scientific, Waltham, MA, USA) equipment. The polypropylene samples were measured
right after the plasma treatment. Each studied sample was scanned 64 times in the range of
600–4000 cm−1.

2.4. X-ray Photoelectron Spectroscopy (XPS)

To identify the surface functional groups formed during the plasma treatment, the
polypropylene samples were investigated by XPS. The measurements were conducted
in an ultrahigh vacuum chamber (vacuum level > 5 × 10−9 mbar) using an SES R4000
analyzer (Gammadata Scienta, Seattle, WA, USA) with a monochromatic Al Kα X-ray
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source (1486.6 eV) at 250 W (pass energy: 100 eV) for the survey and narrow scans. The
received XPS spectra were analyzed using the Casa-XPS 2.3.15 software. The electron
binding energy of the C 1s peak was calibrated at 285 eV.

2.5. SEM

The fabricated nanocomposites were investigated using an FEI (Hillsboro, OR, USA)
Quanta 3D FEG field-emission scanning electron microscope (SEM) at low vacuum condi-
tions (10 mbar of H2O pressure, evaporated from a distilled water reservoir) in the so-called
Environmental SEM (ESEM) mode. This experimental setting was required due to the non-
conductive nature of the polymeric substrate. To avoid disturbing the morphology of the
nanocomposite, the samples were investigated in their native forms without any additional
coatings. To verify the elemental composition of the nanocomposite, EDX measurements
were also carried out for specific areas of interest.

2.6. TG/DTA

Thermogravimetric measurements with differential thermal analysis were performed
with TGA 3+ equipment (Mettler Toledo, Warsaw, Poland). The measurements were carried
out under airflow in the temperature range of 30–700 ◦C with a heating rate of 10 ◦C/min.
The measured mass loss of samples (~7 mg) was normalized to 100% for the reliable
comparison of the thermogravimetric profiles.

2.7. Photocatalytic Tests

The photocatalytic activity was tested using the methyl orange photodegradation
reaction under UV-A light (365 nm) using a Sylvania blacklight bulb 20 W (Newhaven,
UK). The prepared nanocomposites—polypropylene (35 mm × 8 mm) with different
nTiO2 coatings—were placed in a quartz cuvette with standard 3.5 mL of methyl orange
aqueous solution (25 mmol/dm3). Absorbance was measured periodically by UV-Vis
spectrometer (model 1900i, Shimadzu, Kioto, Japan) to determine changes in the methyl
orange concentration upon illumination. The characteristic absorbance maximum for
methyl orange at 464 nm was used for kinetic measurements.

2.8. Diffusion Reflectance Spectroscopy

Ultraviolet-visible diffuse reflectance spectra (UV-vis DRS) were recorded for the
nanocomposites (nTiO2/PP) using a Perkin Elmer (Waltham, MA, USA) Lambda
365 instrument equipped with an integrating sphere. The results were calculated using the
Kubelka–Munk equation.

2.9. XRD Measurements

The crystallinity of the photocatalyst (TiO2 powder) was examined using XRD mea-
surements before and after the photocatalytic processes. PXRD patterns were collected
using a Bruker (Billerica, MA, USA) D8 Advance Eco diffractometer equipped with a Cu
sealed tube radiation source and a capillary stage. Powder samples were loaded into glass
capillaries (0.5 mm in diameter). The background in the obtained diffractograms was
corrected using the DIFFRAC algorithm implemented in the DIFFRAC.EVA V5 program.

3. Results
3.1. Polypropylene Substrate

Before the preparation of the nTiO2/PP nanocomposite, the main constituents were
characterized in their pristine forms. The SEM and FTIR characterization of the polypropy-
lene substrate is shown in Figure 1. The SEM image demonstrates that the polypropylene
exhibits a fairly smooth surface morphology on the micrometer scale, with scratches or
irregularities caused by the production process not typically observed for polymers. A sur-
face examination using ATR-FTIR (Figure 1b) provides insight into the chemical structure
of the polypropylene. All the characteristic bands present in the polypropylene fingerprint
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can be easily observed [23], whereas no maxima characteristic for any contaminants or
impurities was identified.
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Figure 1. Pristine polypropylene substrate: (a) SEM image and (b) ATR-FTIR spectrum indicating the
main functional groups in the polypropylene structure.

3.2. Characteristics of Titanium Dioxide Nanoparticles

As the photocatalytic reactions occur on the surface of the photocatalyst, the size of
the photocatalyst particles is a crucial factor for the efficacy of photocatalytic processes.
Therefore, the second constituent of the prepared nanocomposites—photoactive titania
nanoparticles—was characterized in terms of their size. The results are presented in
Figure 2a–f. The most abundant hydrodynamic diameter of the used nTiO2 determined
with the method of nanoparticle tracking analysis was found to be 35 nm (Figure 2a). It is
worth noting that other peaks at 70 nm, 140 nm, and 210 nm represent the multiplicity of
the smallest particle diameter and can be attributed to agglomerates, which are formed due
to a strong interaction between nanoparticles. The size distribution of the nanoparticles
was also examined by SEM, showing a particle size range between 20 and 55 nm (Figure 2b).
The majority of the particles present are approximately 35 nm in size, as can be inferred
from the particle size distribution presented in Figure 2c. However, bigger particles of
around 200 nm were also occasionally observed. The results of the EDX analysis confirmed
that all the particles contain only titanium and oxygen. To analyze the nanoparticles in
more detail, the TEM analysis was conducted. Figure 2d shows a typical TEM image of
the TiO2 nanoparticles, revealing that the nanoparticles observed in the SEM are actually
agglomerates of much smaller crystallites. An inset in Figure 2d provides an HR-TEM
image, illustrating the individual nanoparticles at higher magnification. As shown in
Figure 2e, the size distribution of the individual TiO2 crystallites ranges from 2 to 6 nm.
However, when the entire agglomerates are measured based on the TEM images (Figure 2f),
their size matches the 35 nm diameter observed in SEM.
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crystallites, with the insert presenting a high resolution (HR-TEM) image; (e) size distribution of
individual TiO2 crystallites; and (f) size distribution of agglomerates from TEM images.

3.3. Surface Functional Groups

The oxygen plasma treatment was used to increase surface adhesion and facilitate
the attachment of nanoparticles to polypropylene. The main changes introduced by low-
temperature oxygen plasma on the polypropylene surface consist of generating surface
functional groups. Modifying the polypropylene surface depends on the chemical nature
and the surface concentration of the functional groups. Therefore, the surfaces before and
after the plasma treatment were characterized by XPS. The results are shown in Figure 3.
The XPS survey scans show only the main constituents of the polymeric substrate: oxygen
O 1s at 533 eV and carbon C 1s at 285 eV. It can be observed that before the plasma treatment,
the polypropylene contained surface oxygen at a level as low as 2.8%. Its concentration,
however, dramatically changes upon the plasma surface modification, as can be seen
comparing the ratio of C 1s to O 1s. The longer the plasma treatment was applied, the
higher the surface oxygen concentration was observed on the polypropylene, with 21.3%
reached after 10 min.

The XPS results also permit us to characterize the chemical nature of the generated
functional groups. The narrow scan XPS spectra, including the analysis of C 1s peak, are
shown in Figure 3b. As expected, a broadening of the C 1s peak was observed after the
plasma treatment, which is related to its oxidation resulting from the generation of oxygen
groups. After 1 min of oxygen plasma, the new component can be distinguished at 287 eV,
corresponding to hydroxyl (-OH) and carbonyl groups (-C=O). After 5 min of the plasma
treatment, a new peak at 288 eV can be distinguished and assigned to carboxyl bonds
(O–C=O) [23]. Following the application of a plasma treatment for 10 min, the peak with
the broadest distribution is observed, corresponding to the carbon–oxygen bonds. This
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clearly indicates the increase in the concentration of functional groups on the surface of the
polypropylene with the time of exposure to oxygen plasma.
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The surface changes induced by plasma were also confirmed by the FTIR measure-
ments (Figure S1). After the plasma treatment, two new bands appeared in the polypropy-
lene spectra. A broad band at 3000–3500 cm−1 corresponds to the vibration of –OH bonds.
A second band at 1730 cm−1 can be assigned to –C=O vibrations [23]. Both of these maxima
indicate surface oxidation. Additionally, the intensity of the observed bands increased with
the time of exposure to plasma, which aligns with the XPS results described above.

Introducing surface functional groups on the hydrophobic surface of polypropylene
has very important practical implications. Since oxygen-containing functional groups are
polar in nature, they stimulate stronger interactions with water molecules. Consequently,
the surface becomes more hydrophilic as can be quantified experimentally by water contact
angle values. They are presented as a function of the plasma treatment time in Figure 4. It
can be noticed that after just 1 min of plasma, the water contact angle drops down from
95◦ for pristine PP to 30◦. After that, a gentler water contact angle decrease is observed,
reaching a stable level of about 20◦ after 5 min of plasma. The induced wettability of PP
has a further impact on the deposition of nTiO2, as discussed below.

During the plasma treatment, several processes occur on the polymer surface that can
be distinguished, such as cleaning, functionalization, and etching. The optimal strategy of
polymer functionalization via plasma treatment is to add functional groups to the surface
without disturbing the optimized bulk properties of the polymer. The effect of plasma
treatment on the structural properties of the polypropylene can be easily checked by the
TG/DTA measurements. The results of such thermogravimetric analysis are presented
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in Figure 5. The TG profiles clearly illustrated that the polymeric material is stable up
to 270 ◦C independently of the plasma treatment time. This result strongly supports the
working hypothesis that bulk polymeric properties are preserved. Additionally, there
is no change in the melting temperature after the plasma treatment for 1 to 5 min (the
typical melting temperature of polypropylene is approximately 170 ◦C [2]). Even the rapid
thermal degradation of the untreated and plasma-treated polypropylene, observed in the
temperature range of 270–400 ◦C, is the same within the experimental error.
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Figure 5. Thermogravimetric analysis of pristine polypropylene and PP after plasma treatment:
(a) loss of mass profile and the corresponding (b) differential thermal analysis.

Summarizing the effect of oxygen plasma on the polypropylene substrate, it can
be concluded that while the XPS and FTIR spectroscopic results, as well as the water
contact angle measurement, confirm the generation of the oxygen functional groups on
the polymeric surface, its bulk properties remain unchanged. Such surface-modified
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polypropylene was then used as the substrate for nTiO2 deposition to prepare a functional
nanocomposite, which is described in the next section.

3.4. Nanocomposite

The deposition of titania nanoparticles on the untreated or plasma-modified polypropy-
lene substrates was performed via the sonochemical method. Figure 6 presents the SEM
images comparing the effectiveness of the nTiO2 deposition on these surfaces together
with the pristine PP substrate. The images represent the surfaces of (a) polypropylene,
(b) polypropylene untreated by plasma after the deposition of nanoparticles from a 1%
titanium dioxide suspension, and (c) the plasma-treated polypropylene after the deposition
of nanoparticles from a 1% titanium dioxide suspension. As can be inferred from the
images in Figure 6b,c, the effect of oxygen plasms is tremendous. To assure a rational com-
parison during the deposition process on the untreated and plasma-treated PP surfaces, the
identical sonication parameters, i.e., TiO2 concentration (1%), deposition time, power, and
amplitude, were employed. Single titania nanoparticles were deposited on the untreated
polypropylene substrate by oxygen plasma, whereas the plasma-treated surface exhibited
a completely covered surface with TiO2 nanoparticles. It is evident that the efficiency
of nanoparticle deposition on polymer substrates is influenced by the plasma treatment
process and the introduction of functional groups on their surfaces.
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In order to ascertain the optimal degree of surface coverage and, consequently, the
most developed photocatalytically active surface, the effect of nanoparticle suspension
concentrations on the application process was also screened. Figure 7 illustrates the
scanning electron microscopy (SEM) images of a polypropylene substrate following the
application of TiO2 from 0.1% and 1% suspensions (Figure 7b, Figure 7c, respectively).
Figure 7a presents a polypropylene substrate as a reference; the surface of this polymer is
not decorated with nanoparticles. As expected, reduced surface coverage is evident when
employing a lower initial concentration (Figure 7b). Individual nanoparticles, as well as
clusters and polymer uncovered surface regions, can be distinguished. Figure 7c illustrates
the full coverage of polypropylene with nanoparticles. However, the SEM image also shows
pores formed between the TiO2 nanoparticles at high coverage. Although these pores may
influence the photodegradation process, it is important to note that UV light penetration
will be limited in comparison to the outermost surface of the photocatalyst. The optimal
concentration of TiO2 in the initial suspension and the most effective sonication time will
yield the most favorable results. The obtained results showed that by optimizing both the
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plasma treatment and sonochemical deposition parameters, the surface concentration and
the accessibility of the photocatalyst surface can be controlled.
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3.5. Photocatalytic Tests

The photocatalytic activity was investigated in the degradation of methyl orange
(as a model pollutant). The degradation of methyl orange in the presence of TiO2/PP
nanocomposite upon UVA light exposure was observed by monitoring the decrease in
absorbance at the characteristic band of 464 nm in a time range of 0–200 min (Figure 8a).
Based on these results, the degradation kinetics curves were determined and are presented
in Figure 8b. The rate constants for the photocatalytic decomposition of methyl orange
have been calculated based on the first-order reaction kinetics and the resulting values are
presented beside the corresponding kinetic curves in Figure 8c. It can be observed that
the polymer (PP) without nanoparticles (reference sample) does not exhibit photocatalytic
activity. However, the deposition of the TiO2 nanoparticles onto its surface strongly pro-
motes its activity. A huge difference between the plasma-untreated (degradation of ~20%
of methyl orange after 200 min) and plasma-treated PP (~80% degradation for 200 min) can
also be noted. This results from the much more efficient attachment of nanoparticles onto
the functionalized PP substrate (see Figure 6c).

Nanomaterials 2024, 14, x FOR PEER REVIEW 10 of 14 
 

 

 
Figure 7. SEM images of polypropylene substrate after deposition of TiO2 from suspension with 
varying nanoparticle concentrations: (a) reference polypropylene substrate before nanoparticle dep-
osition, (b) polypropylene surface after deposition from TiO2 0.1% suspension, and (c) polypropyl-
ene surface after deposition from 1% TiO2 suspension. 

3.5. Photocatalytic Tests 
The photocatalytic activity was investigated in the degradation of methyl orange (as 

a model pollutant). The degradation of methyl orange in the presence of TiO2/PP nano-
composite upon UVA light exposure was observed by monitoring the decrease in absorb-
ance at the characteristic band of 464 nm in a time range of 0–200 min (Figure 8a). Based 
on these results, the degradation kinetics curves were determined and are presented in 
Figure 8b. The rate constants for the photocatalytic decomposition of methyl orange have 
been calculated based on the first-order reaction kinetics and the resulting values are pre-
sented beside the corresponding kinetic curves in Figure 8c. It can be observed that the 
polymer (PP) without nanoparticles (reference sample) does not exhibit photocatalytic ac-
tivity. However, the deposition of the TiO₂ nanoparticles onto its surface strongly pro-
motes its activity. A huge difference between the plasma-untreated (degradation of ~20% 
of methyl orange after 200 min) and plasma-treated PP (~80% degradation for 200 min) 
can also be noted. This results from the much more efficient attachment of nanoparticles 
onto the functionalized PP substrate (see Figure 6c).  

 
Figure 8. Photocatalytic activity of nTiO2/PP nanocomposite in methyl orange degradation under 
UVA irradiation: (a) absorbance decrease at 464 nm upon irradiation, (b) kinetic curves illustrating 
enhanced activity for plasma-treated PP composite, and (c) the linearized kinetic data together with 
the rate constants calculated based on first-order reaction kinetics. 

Figure 8. Photocatalytic activity of nTiO2/PP nanocomposite in methyl orange degradation under
UVA irradiation: (a) absorbance decrease at 464 nm upon irradiation, (b) kinetic curves illustrating
enhanced activity for plasma-treated PP composite, and (c) the linearized kinetic data together with
the rate constants calculated based on first-order reaction kinetics.
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The effect of plasma treatment is schematically presented in Figure 9. It can be noted
that a 1 min plasma treatment is enough to make a significant impact on the activity, and a
further increase in the plasma treatment time does not result in any discernible changes To
investigate the relationship between the photocatalytic activity and light absorption, UV
light absorption measurements for the nanocomposites (nTiO2/PP) were also conducted.
As shown in Figure S2 (Supplementary Information), absorption increases significantly with
TiO2 loading. However, comparing these results with the data in Figure 9, where all the
plasma-treated samples exhibit similar photocatalytic activity regardless of TiO2 loading,
suggests that UV light absorption may not be the critical factor for the dye degradation.
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Figure 9. Schematic representation of the plasma treatment effect on the photocatalytic performance
of the developed nTiO2/PP composite.

To assess the stability and photocatalytic activity of the nanocomposite systems, the
dye degradation process was conducted over five cycles. The results are shown in Figure 10.
In each cycle, the model pollutant was degraded by 70% to 85%. Although there is a slight
decrease in the degradation of methyl orange in the subsequent cycles, it remains at a
reasonably high level. This stability suggests that the nanocomposite systems maintain
their photocatalytic efficiency over multiple uses. Additionally, the crystallinity of the pho-
tocatalyst (TiO2 powder) was examined using the XRD measurements before and after the
photocatalytic processes to investigate any potential structural changes. The results show
that there are no visible changes in the TiO2 structure after the UV irradiation, indicating
that the nanocomposite maintains its bulk integrity under photocatalytic conditions The
corresponding diffractograms can be found in the Supplementary Information in Figure S3.

Figure 11a illustrates the effect of the initial concentration of the nTiO2 suspension on
the degradation of methyl orange (MO) with the irradiation time. As the concentration of
the TiO2 suspension used increases, the level of MO degradation increases in the whole-
time range of irradiation. After 200 min of irradiation, for 0.1% TiO2 and 0.2% TiO2,
approximately 40% and 60% degradation of the model pollutant was achieved, whereas for
higher nTiO2 concentrations of 0.5% and 1%, the MO degradation reached 80%. As can be
observed, the degradation of the model pollutant did not increase linearly with the content
of TiO2. This may be attributed to the addition of the subsequent layers of nanoparticles,
which lead to limitations in the accessibility of the TiO2 surface for photocatalytic processes.
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Figure 11. Optimization of sonochemical deposition parameters for enhanced photocatalytic activity:
(a) effect of initial nTiO2 suspension concentration, (b) effect of sonication time on methyl orange
degradation using 0.1% TiO2 suspension, (c) photocatalytic activity as a function of sonodeposition
time, with 2 min identified as the optimal for maximum efficiency.

To achieve optimal photocatalytic effect, the optimization of the sonochemical deposi-
tion stage was essential. The degradation results of methyl orange upon light exposure,
as a function of sonication time using a 0.1% TiO2 suspension, are depicted in Figure 11b,
while the relationship between photocatalytic activity and sonodeposition time is illus-
trated in Figure 11c. It becomes evident that insufficient and excessive sonication times can
reduce the effective anchoring of the nanoparticles onto the polypropylene surface. The
experimental data indicate that a sonication time of precisely two minutes is required to
maximize the photocatalytic efficiency of the nTiO2/PP nanocomposite system.

Furthermore, the analysis of the plasma treatment durations revealed that beyond
one minute, there were no significant improvements in the photocatalytic properties of
the nTiO2/PP. This suggests that while initial plasma exposure is crucial for generat-
ing surface functional groups necessary for nanoparticle adhesion, extended treatment
times do not proportionally enhance photocatalytic activity. Therefore, a balanced ap-
proach is necessary: ensuring adequate plasma treatment to functionalize the surface,
coupled with optimized sonochemical deposition parameters, is essential for achieving
high photocatalytic performance. The findings illustrate the importance of both surface
functionalization and precise control of sonodeposition conditions in the development
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of effective photocatalytic nanocomposites. Finally, it is worth noting that the proposed
approach combining oxygen plasma treatment and ultrasound shows significant potential
and can be used for any polymer–nanoparticle system to develop functional composites
for diverse specific applications.

4. Conclusions

The low-temperature oxygen plasma treatment effectively introduced polar surface
functional groups (mainly -OH and -C=O) on the polypropylene, transforming its surface
from hydrophobic to hydrophilic. This increase in wettability is evidenced by a significant
reduction in the water contact angle from 95◦ to 20◦. Moreover, the generated surface
oxygen groups were found to be crucial as they enhance the interaction between the poly-
mer and nanoparticles and thus significantly improve the anchoring efficiency of the TiO2
nanoparticles. The optimized parameters for the plasma treatment (100 W power, 0.2 mbar
O2 pressure, and 1 min duration) ensured effective surface modification. The sonochemical
method was found to be facile and effective for depositing the TiO2 nanoparticles on the
plasma-treated PP surface. Optimal nanoparticle dispersion and surface coverage were
achieved with a 1% TiO2 suspension and a sonication time of 2 min at 20 kHz, resulting
in well-distributed photocatalytic TiO2 nanoparticles on the PP substrate. The developed
nTiO2/PP nanocomposite demonstrated significant photocatalytic activity, degrading 80%
of methyl orange under UVA irradiation within 200 min. Despite the superior surface
modifications, the bulk properties of PP remained unchanged, as confirmed by the ther-
mogravimetric analysis (TG/DTA). The polymer maintained its stability up to 270 ◦C and
did not exhibit any changes in the melting temperature after the plasma treatment. The
proposed two-step method (plasma treatment followed by sonochemical deposition) can be
considered universal, versatile, and scalable, making it applicable for functionalizing vari-
ous polymeric materials with photoactive nanoparticles. From a broader perspective, this
approach shows high potential for designing and fabricating self-cleaning and antibacterial
polymeric surfaces for diverse applications.
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https://www.mdpi.com/article/10.3390/nano14161372/s1, Figure S1. Introducing functional groups
after plasma treatment on ATR-FTIR spectra. Figure S2. Kubelka–Munk function of nTiO2/PP
nanocomposites showing material absorbance Figure S3. XRD pattern of photocatalytic phase (TiO2)
before and after the photocatalytic processes indexing with characteristic peaks of the anatase. All
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