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Abstract: Identifying the grain distribution and grain boundaries of nanoparticles is important for
predicting their properties. Experimental methods for identifying the crystallographic distribution,
such as precession electron diffraction, are limited by their probe size. In this study, we developed an
unsupervised learning method by applying a Gabor filter to HAADF-STEM images at the atomic
level for image segmentation and automatic counting of grains in polycrystalline nanoparticles. The
methodology comprises a Gabor filter for feature extraction, non-negative matrix factorization for
dimension reduction, and K-means clustering. We set the threshold distance and angle between the
clusters required for the number of clusters to converge so as to automatically determine the optimal
number of grains. This approach can shed new light on the nature of polycrystalline nanoparticles
and their structure–property relationships.

Keywords: unsupervised learning; Gabor filter; K-means clustering; automated image segmentation

1. Introduction

Mapping the grain distribution in polycrystalline nanoparticles is important to under-
standing the relationships among their structure, properties, and functionality. For instance,
the grain size of gold nanoparticles significantly influences their optical properties [1].
Similarly, in the case of Fe3O4 nanoparticles, both the particle size and grain structure
determine their magnetic properties [2]. Therefore, counting the number of grains and
mapping their distribution is crucial for elucidating the physiochemical and functional
properties of these nanoparticles. Transmission electron microscopy (TEM) and scanning
TEM (STEM), with their atomic-scale resolutions, are powerful techniques for investigating
the atomic structure and nanoscale grain distribution of nanoparticles [3–6]. Analyzing
the grain distribution of nanoparticles by human eyes is laborious and is associated with
bias in the determination process. Therefore, manual grain-number counting and grain
segmentation are far from being accurate [7,8].

To overcome the limitations of manual TEM image analysis, automated methods
utilizing machine learning (ML) and deep learning (DL) have emerged as techniques for
an automated analysis; these methods can process and analyze large volumes of TEM and
STEM images with high accuracy and efficiency [9]. ML, including supervised and unsuper-
vised learning, has been employed in image processing and particle segmentation [10–14].
In the case of particle segmentation, ML helps define the shape, size, and crystallographic
orientation of nanoparticles [15,16]. Recently, Xu et al. developed a U-net-based DL model
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for an automated analysis of the grain morphology from TEM images [17]. The DL model
automatically extracted relevant features from raw data, making it highly effective for
identifying and quantifying grain structures. Applying ML and DL for (S)TEM image
analysis can not only reduce the labor and time required for manual examination but can
also significantly enhance the precision and consistency of the results. Furthermore, these
automated techniques can continuously improve the performance by learning from new
data, thus ensuring adaptability to various types of nanoparticles and imaging conditions.

Despite their advantages, ML and DL methods demand a large number of labeled
datasets for training to achieve high accuracy and reliability. Obtaining such extensive
datasets can be challenging and time consuming because it requires manual annotation by
experts. Moreover, the performance of these models is limited by the quality and diversity
of the training data. Insufficient or biased datasets can lead to inaccurate predictions and
limit the generalizability of models to new, unseen data. Although a DL-based microscopy
image analysis provides good performance, it cannot sufficiently explain the process of
producing the analysis results. In the meantime, Bárcena-González et al. succeeded in the
segmentation of polycrystalline nanoparticles using unsupervised learning, but the work
showed limit potentials and the methodology still needs automation [18].

In this study, we applied a Gabor-filter-based unsupervised clustering method to
count the number of grains and map the grain distribution in polycrystalline nanoparticles.
Unsupervised clustering involves constructing a feature matrix using filtered images and
non-negative matrix factorization (NMF) of the feature matrix, followed by the K-means
clustering. We set the threshold value of the distance between clusters for automated
segmentation. In comparison with previous ML-based segmentation methods, we used
only 252 filtered images as a dataset. Moreover, this methodology not only divides grains
with different crystallographic orientations but also shows surface-reconstructed regions
(particularly the Pt-skin layer of PtNi intermetallic nanoparticles) as independent features.

2. Materials and Methods
2.1. Gabor Filter

The Gabor filter, developed by the Nobel Prize-winning physicist Dennis Gabor in
1971, is a linear filter that is widely used in image processing for texture analysis. It is
particularly effective in edge detection, fingerprint extraction, and pattern recognition.
Since Gabor’s pioneering work, this technique has evolved significantly, enabling phase
retrieval to achieve sub-nanometric resolution using high-resolution transmission electron
microscopy (HRTEM). The phase information extracted from electron micrographs provides
insights into the physical properties of a sample, such as its electrostatic and magnetostatic
potentials and strain, which are typically analyzed using Fourier space methods [19–23].

Gabor discovered that the uncertainty principle is relevant to signals, revealing that it
is impossible to accurately determine a signal’s exact location in both the frequency and
time domains at the same time. This introduces a trade-off between the time and frequency
resolutions, with a minimum bound on the combined product. Gabor demonstrated that the
most general function achieving this minimum is a Gaussian-shaped envelope multiplied
by a complex sinusoid, which maximizes the accuracy in the time–frequency domain.
Originally, the Gabor filter was designed as a linear filter for 1D signal analyses. Daugman
later expanded this concept to two dimensions, significantly enhancing its usefulness for
texture analysis, feature extraction, edge detection, image compression, and various other
image-processing applications. In two dimensions, a Gabor filter is typically represented
as a sinusoidal Gaussian function. In the spatial domain, a 2D Gabor filter is defined as a
Gaussian function modulated by a complex sinusoidal plane wave. These are expressed as
follows:

g (x, y) = w (x, y) ∗ s (x, y), (1)

w (x, y) =
1√
2πσ
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2 (
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where σ represents the standard deviation of the Gaussian function, and σ2
x and σ2

y are
the variances along the x-axis and y-axis, respectively, defining the width of the major
and minor axes of the Gaussian envelope. The parameters u0 and v0 define the spatial
frequency of the sinusoid, and ϕ determines its phase. Since a Gabor filter is the product
of a Gaussian function and a sinusoid, its Fourier transform is the convolution of their
individual transforms. This results in a Gaussian centered at the frequency of the harmonic
function associated with the sinusoid. This characteristic is crucial for understanding
why Gabor filters are highly effective in feature extraction based on fringe orientation and
spacing, making them an invaluable tool for analyzing the electron microscopy images of
crystalline materials.

The Gabor filter can be expressed in a simplified form as a combination of two com-
ponents: a Gaussian function and a complex exponential. The Gaussian part controls the
spatial extent, while the complex exponential introduces oscillations. The parameters in
the filter include σx and σy which define the spread in the x and y directions, respectively;
θ, which represents the orientation of the filter; γ, the aspect ratio; λ, the wavelength of
the sinusoidal component; and φ, the phase offset. Additionally, the variables x′ and y′

represent rotated coordinates, with x′ being a combination of x and y based on the angle θ,
and y′ being a similar combination but with a different sign for the sine component. These
rotated coordinates adjust the filter’s response based on its orientation in space.

The critical parameters of a Gabor filter are the orientation angle (θ) and the wavelength
(λ), which determine the spacing between the fringes and, thus, the filtering channel. The
impact of varying the wavelength is shown in Figure S1 (Supporting Information), where λ
directly influences the width of the filter channel. Figure S1 (Supporting Information) show
changes in the orientation of a Gabor filter. To apply Gabor filtering to an image f (x,y), it is
convolved using the Gabor filter.

Gabor filtering accentuates the local texture that matches the orientation and wave-
length of the filter. By adjusting the orientation, the filter can pass features that are aligned
in a specific direction. Similarly, altering the wavelength highlights the textures with fringe
patterns of different spacings. The parameters σx and σy control the bandwidth of the 2D
filter, defining the size of the image region contributing to a pixel value in the filtered image.

A Gabor filter bank can be designed to extract significant features from an image,
comprising a set of Gabor filters with various orientations and spacings, typically covering
the entire spatial and orientation spectra. As shown in Figure S1, the output from this filter
bank characterizes each pixel in the original image based on fringe patterns in its vicinity.

2.2. Non-Negative Matrix Factorization

NMF is a dimensionality reduction technique used for data analysis. It decomposes
a non-negative matrix V into a product of two lower-dimensional non-negative matrices
W and H. This method is particularly effective for extracting meaningful features from
high-dimensional datasets, such as in image processing and text mining.

2.3. K-Means Clustering

A common task in data analysis is to identify groups of similar data points, often
referred to as clusters, in an unsupervised manner without prior labeling of the data.
Clustering algorithms group sets of items based on their similarities. In this study, the
K-means clustering method was used, with the Euclidean distance serving as the similarity
metric. K-means is a straightforward and widely used clustering approach. The algorithm
is described as follows:

Let K represent the desired number of clusters, and a dataset of N points, each
described by M features, is considered.

(xi ∈ RM, i = 1. . .N)

K initial centroids (often chosen from the data points) are randomly defined.
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This is repeated until a stopping criterion is met: (a) assigning each item to the nearest
centroid based on the Euclidean distance, and (b) recalculating the centroids as the mean of
all points assigned to each centroid.

In the method presented herein, N corresponds to the number of pixels in the analyzed
image, and M corresponds to the number of Gabor features per pixel, which are determined
by the number of orientations and spacings used in the filtering process. Ultimately,
each pixel is classified into one of the K clusters based on its similarity to the others,
as determined by its Gabor features. A primary limitation of the K-means algorithm
is that it cannot guarantee convergence to a global optimum, because the final result
depends on the initial centroids chosen at random. However, as the algorithm is typically
fast, it is commonly run multiple times with different initializations. In our experiments,
convergence was consistently achieved without any problems.

2.4. Synthesis of Au Nanoparticles

Gold (III) chloride hydrate salt (HAuCl4·3H2O) (99%) was purchased from Sigma-
Aldrich. Anhydrous sodium citrate (99.5%) was purchased from Daejung Chemicals. A
solution of 20 mL HAuCl4 (1.0 mM) was placed on a hot plate in a glass jar (100 mL)
and heated until the solution temperature was reached at 100 ◦C. Thereafter, 2 mL of
sodium citrate solution (40 mM) was rapidly injected into a glass jar. During the synthesis
protocol, the vial was sealed to prevent water evaporation. Anhydrous sodium citrate
was used as a reducing agent. After the injection, the solution turned dark blue. Finally,
after a few minutes, a red wine color appeared, which is evidence of the synthesized gold
nanoparticles [24]. The solution was maintained at 100 ◦C while stirring for 30 min to finish
the nanoparticle growth process [25].

2.5. Synthesis of PtNi Intermetallic Nanoparticles

To produce the optimal PtNi intermetallic nanoparticles, a two-step annealing process
was utilized. Initially, the precursor was heated to 1100 ◦C at a rate of 5 ◦C per minute for 2 h.
This was followed by a second heating stage at 550 ◦C for 12 h in a 5% H2/Ar atmosphere,
after which the material was allowed to cool naturally to room temperature [26].

2.6. Synthesis of PtCo Intermetallic Nanoparticles

H2PtCo6·H2O (chloroplatinic acid hexahydrate) and CoCl2·6H2O (cobalt(II) chloride
hexahydrate) were purchased from Sigma-Aldrich from Seoul, Republic of Korea. All the
chemicals were used as received without further purification.

PtCo intermetallic nanoparticles were synthesized using an impregnation reduction
method followed by thermal annealing. In a typical synthesis of the PtCo intermetallic
nanoparticles, H2PtCo6·H2O 0.0669 g (0.135 mmol), CoCl2·6H2O 0.0214 g (0.09 mmol),
carbon support (Vulcan XC-72, Naracelltech from Seoul, Republic of Korea) 0.08 g, and
100 mL of DI water were prepared in a 250 mL round-bottom flask (RBF). To achieve a
homogeneous dispersion, the mixed solution underwent sonication in an ice bath for 1 h.
Subsequently, the RBF was placed directly in a preheated oil bath at 90 ◦C for 4 h. During
this process, all the deionized water evaporated, leaving behind a powder mixture of
the carbon support and metal precursor. Finally, the resulting composite was thermally
annealed at 600 ◦C for 2 h using a tube furnace, with the annealing temperature increasing
by 1 ◦C per 1 min from room temperature to 600 ◦C.

2.7. STEM Characterization and Simulation of Nanoparticles

To obtain high-angle annular dark-field (HAADF) STEM images, an FEI double Cs-
corrected Titan Themis transmission electron microscope was operated at 300 kV. A STEM
simulation was performed using a Dr. Probe (Version 1.11.0) [27].
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3. Results and Discussion
3.1. Segmentation of Polycrystalline Nanoparticles

Figure 1 illustrates the methodology. First, multiple Gabor filters are defined. Thirty-
six different orientations and seven wavelengths were set, and 252 filtered images were
generated. Each filtered image shows how much of the nanoparticle contains faces in a
particular orientation. A feature vector was constructed using filtered images such that the
matrix has a size of 252 rows and 512 × 512 = 262,144 columns (images have a pixel size
of 512 × 512). NMF was applied to the feature matrix, followed by K-means clustering
of the dimensionally reduced feature vector. K-means clustering allows for clustering
of grains that contain planes with the same orientation and interplanar distance within
a nanoparticle. A clustered matrix comprising class numbers and different colors was
assigned to different class numbers. When various types of nanoparticles are applied to
the methodology, the segmentation results are sensitive to the parameters of Gabor-filter.
Hence, different values of optimal parameters had been set.
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Figure 1. Schematic of the Gabor-filter-based clustering for particle segmentation. (1) Application of
multiple Gabor filters, (2) creation of a feature vector for each pixel to obtain a feature matrix, and
(3) dimension reduction using NMF followed by K-means clustering. The class vectors are rearranged
into a 2D matrix, illustrating the segmented image.

The Gabor-filter-based unsupervised methodology was first applied to a simulated
HAADF image of an Au nanoparticle with a five-fold twin.

We constructed an atomic model (see Figure S2) and simulated the HAADF-STEM
image using Dr. Probe. Figure 2a illustrates a simulated HAADF-STEM image of the Au
nanoparticle with five-fold twins; Figure 2b–e illustrate the image segmentation results for
four different k values. Ground truth segmentation result is included as shown in Figure 2f.
We found that k = 6 yielded the best segmentation result, which shows the most similarity to
the ground truth. Table S1 shows each segmentation result with various k values, compared
with the ground truth by evaluating image similarity. As expected, segmentation result with
k = 6 shows the best similarity result. Moreover, surface and boundaries between phases
and grains are assigned as grey lines. The segmentation results demonstrated that applying
the NMF can help effectively divide grains with different orientations. The reliability of the
methodology is verified by a comparative test with other clustering methods, as shown
in Figure S3. NMF followed by the K-median method (see Figure S3b) and the K-means
method without NMF (see Figure S3c) are used for comparison, showing that the suggested
clustering method provides the best segmentation results.
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Figure 2. Sequence of k in the Au nanoparticles with five-fold twin and colorized segmentation,
which are compared with the ground truth. (a) HAADF-STEM image, showing five-fold twins of the
particle. Segmentation and colored classes for (b) k = 2; (c) k = 4; (d) k = 6; (e) k = 8. (f) Ground truth
of the segmentation of (a). The different colors indicate the different classes after clustering.

Next, the experimental image was segmented. Figure 3a illustrates a high-resolution
HAADF-STEM image of a twinned Au nanoparticle coalesced with a smaller one; Figure 3b–e
illustrate the image segmentation results with four different k values. We found that NMF
is an appropriate method for image segmentation. Such a dimension reduction method
can help cluster the feature matrix and perform semantic segmentation of polycrystalline
nanoparticles. Note that the grain number “7” is classified as the background when k = 7
(see Figure 3b). Since there is no clear lattice fringe in the grain “7”, it is possible to cluster
it as the background.
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The algorithm converges for k = 10. The counting of grains was successful; however,
the segmentation of the grains along the boundaries was not precise. This issue was
particularly evident in grains 4 and 5, as shown in Figure 3a, where the grains exhibited
irregular shapes, resulting in imperfect boundary delineation.
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3.2. Potential of the Methodology: Capturing Unknown Features

To extend the scope of the unsupervised clustering method to images of nanopar-
ticles with more complicated microstructures, we applied image segmentation to the
HAADF-STEM image of PtNi intermetallic nanoparticles with more than two different
crystallographic grains. For PtNi, approximately 2–3 atomic layers of Pt were wrapped
around the intermetallic phase. The segmentation results with k = 6 show that not only
the grains but also the surface and interface regions, marked as orange and red regions,
respectively, are independent classes (See Figure 4b). Because Gabor �lters with seven
different wavelengths were used for the �ltering process and the lattice parameters of
the Pt skin layer and PtNi intermetallics were different, they were classi�ed into different
classes of clusters. The segmentation process revealed the heterogeneity within the PtNi
intermetallic nanoparticles, highlighting regions with distinct textural characteristics, which
is crucial for understanding the microstructure and catalytic property relationship of the
material. The electrochemical properties of PtNi intermetallic nanoparticles are affected by
the distribution of the Pt-skin layers. By employing advanced image-processing techniques,
we can quantitatively assess the structural differences and gain insights into the behavior
of the material under various conditions. This detailed segmentation and classi�cation
provides a more comprehensive understanding of nanoparticle composition and can be
useful in future material design and optimization efforts.

Figure 4. Segmentation of PtNi intermetallic nanoparticles. ( a) HAADF-STEM image of PtNi
intermetallic nanoparticle; ( b) segmented image with k = 5. The different colors indicate the different
classes after clustering.

Our methodology can distinguish and segment grains that cannot be visualized man-
ually. Figure 5a shows a HAADF-STEM image of the PtCo intermetallic nanoparticle,
where the grain distribution is indiscernible to the naked eye. In comparison, as shown in
Figure 5b, our methodology can automatically distinguish between the phase and grain
distributions. The yellow region corresponds to the surface region, whose atomic arrange-
ment and lattice parameters are not equal to those of the PtCo intermetallic phase; thus, it is
classi�ed as a different cluster. Thus far, the phase segmentation of intermetallic nanoparti-
cles has been achieved through 3D reconstruction using electron tomography [28–32]. This
technique requires a considerable number of rotational images, and because nanoparticles
tend to undergo phase transformation or degradation under electron-beam irradiation,
this process is time-consuming. In contrast, our methodology can schematically show the
grain and phase distributions without providing detailed information about the phases of
the nanocrystals.
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Figure 5. Segmentation of the PtNi intermetallic nanoparticles. ( a) HAADF STEM image of the
PtNi intermetallic nanoparticle; ( b) segmentated image with k = 6. The different colors indicate the
different classes after clustering.

3.3. Automated Segmentation of Nanoparticles

Unsupervised clustering with different k values is limited because it cannot automati-
cally determine the number of grains in a nanoparticle. This shortcoming arises from the
dependency of the k-means algorithm on the person determining the optimal k value. In
addition, our methodology assigned a class of other nanoparticles from the image that
were not of interest, as illustrated in Figure S3. When the segmentation of nanoparticles
is performed, conventional K-means clustering requires a manual determination of the
optimized K value, and it cannot distinguish between the nanoparticles, which is the re-
search of interest, and other nanoparticles with low crystallinity. Here, we set threshold
values for the distance between clusters such that the number of clusters converges, even
with high k values. Figure 3 illustrates the results of clustering with the threshold values,
which enable automated segmentation. Compared with Figure S3b,c, the automated seg-
mentation helped classify low-crystallization nanoparticles of interest into a class similar to
the background (see Figure 6g,h). The proposed methodology addresses the limitations of
conventional k-means clustering by introducing threshold values for distances between
clusters, thereby enabling automated segmentation. This approach not only converges the
number of clusters at high k values but also effectively distinguishes between nanoparticles
of interest and other nanoparticles with low crystallinity, thus improving the accuracy
and ef�ciency of nanoparticle segmentation. To show the computational complexity, a
pseudo-code schematization is included in the Supplementary Materials.

Figure 6. Automated segmentation by setting threshold value with k = 10. (a–d) HAADF-STEM
images of intermetallic nanoparticles for image segmentation. With the same k values, those images
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are segmented with optimal k values of (e) 5, (f ) 5, (g) 4, and (h) 9. The different colors indicate the
different classes after clustering.

4. Conclusions

We developed a methodology for the automated segmentation of polycrystalline
nanoparticles based on (1) the application of a series of Gabor �lters for the powerful
feature extraction of grains, (2) unsupervised clustering for particle segmentation, and
(3) automation of clustering by setting the threshold value. We not only demonstrated the
automated segmentation of the nanoparticles but also revealed hidden features using this
methodology even with relatively small number of training datasets. The unsupervised
clustering method for the segmentation can help visualize the phase distribution of complex
intermetallic nanoparticles, thus enabling the quantitative analysis of multigrain/phase
nanoparticles, such as the calculation of the ratio of individual grains.

We believe that this methodology can not only provide crystallographic information
but also new shed light on the structure–property relationship of nanocrystals.

Supplementary Materials: The following supporting information can be downloaded from https:
//www.mdpi.com/article/10.3390/nano14201614/s1, Figure S1: Visualization of the real part of a
Gabor �lter for different wavelengths and orientations. Figure S2: Atomic model of Au nanoparticles
with �vefold twins. Table S1. Image similarity test result. Ground truth is set for criteria. In case of
CORREL and INTERSECT, the image shows the best similarity if the value is closest to 1. However,
in the case of CHISQR and BHATTACHARYYA, the image shows the best similarity if the value
is closest to 0. Figure S3. Segmentation of nanoparticles with various clustering methods. The
number of clusters is 6. (a) Simulated HAADF STEM image of the Au nanoparticle. Segmentation
result with (b) NMF followed by K-medians method and (c) K-means method without NMF process.
Figure S4. (a,c,e): Complete �eld of view of the micrograph containing intermetallic and amorphous
nanoparticles. (b1–b4), (d1–d4), and (f1–f4): Segmentation of images with variousk values.
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