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Abstract: Cooperative edge offloading to nearby end devices via Device-to-Device (D2D) links in
edge networks with sliced computing resources has mainly been studied for end devices (helper
nodes) that are stationary (or follow predetermined mobility paths) and for independent computation
tasks. However, end devices are often mobile, and a given application request commonly requires a
set of dependent computation tasks. We formulate a novel model for the cooperative edge offloading
of dependent computation tasks to mobile helper nodes. We model the task dependencies with a
general task dependency graph. Our model employs the state-of-the-art deep-learning-based PECNet
mobility model and offloads a task only when the sojourn time in the coverage area of a helper node
or Multi-access Edge Computing (MEC) server is sufficiently long. We formulate the minimization
problem for the consumed battery energy for task execution, task data transmission, and waiting for
offloaded task results on end devices. We convert the resulting non-convex mixed integer nonlinear
programming problem into an equivalent quadratically constrained quadratic programming (QCQP)
problem, which we solve via a novel Energy-Efficient Task Offloading (EETO) algorithm. The
numerical evaluations indicate that the EETO approach consistently reduces the battery energy
consumption across a wide range of task complexities and task completion deadlines and can thus
extend the battery lifetimes of mobile devices operating with sliced edge computing resources.

Keywords: battery energy; device-enhanced edge computing; device-to-device (D2D) communication;
mobility; multi-access edge computing (MEC); sliced edge computing; task dependencies; task
offloading

1. Introduction
1.1. Motivation

The introduction of Multi-access Edge Computing (MEC) has facilitated the rapid
growth of low-latency services provided by emerging paradigms, such as the Tactile Inter-
net [1], the Internet of Things (IoT) [2–4], and Machine-Type-Communications (MTC) [5],
as well as demanding applications, such as online gaming, virtual or augmented real-
ity [6,7], and real-time data analytics [8]. The MEC concept brings the computation and
storage resources as close as possible to the mobile end devices, namely towards the edge
of the network, e.g., to cellular base stations (BSs) and WiFi access points [9–13]. Essen-
tially, the MEC concept is a part of the ongoing trend to jointly provide communication,

Network 2021, 1, 191–214. https://doi.org/10.3390/network1020012 https://www.mdpi.com/journal/network

https://www.mdpi.com/journal/network
https://www.mdpi.com
https://orcid.org/0000-0001-9712-4322
https://orcid.org/0000-0002-5456-9548
https://orcid.org/0000-0003-0194-2545
https://orcid.org/0000-0003-2075-1648
https://orcid.org/0000-0002-7372-5139
https://orcid.org/0000-0003-1343-1312
https://orcid.org/0000-0003-1606-233X
https://orcid.org/0000-0001-8469-9573
https://doi.org/10.3390/network1020012
https://doi.org/10.3390/network1020012
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/network1020012
https://www.mdpi.com/journal/network
https://www.mdpi.com/article/10.3390/network1020012?type=check_update&version=2


Network 2021, 1 192

computing, and storage services in edge networks. In order to provide these edge net-
work services in an economical manner, the slicing of the edge network communication,
computing, and storage resources and the efficient management of the sliced resources
are critical [14,15]. This study focuses on the efficient resource management of sliced
computing resources in edge networks.

More specifically, this study considers sliced computing resources that are provided
by installed MEC infrastructures as well as sliced computing resources that are provided
by the mobile end devices with spare computing resources that are in the vicinity of a
mobile device with a set of demanding computing tasks. In particular, the computing and
communication resources of the adjacent end devices can be utilized to enhance the total
system performance and spectral efficiency [16]. Thus, the computation tasks of a given
mobile end device can be offloaded to computing slices of adjacent mobile user end devices
and installed stationary MEC servers to achieve the so-called cooperative edge computing
(cooperative task computing) paradigm, which is also referred to as the device-enhanced
MEC paradigm [17,18].

Energy efficiency has recently emerged as an important concern for computing service
provisioning in edge networks (see, e.g., [19–23]). The present study seeks to minimize
the battery energy consumption on wireless end devices that operate within the device-
enhanced MEC paradigm. Specifically, we consider the battery energy consumption for
sets of dependent computing tasks, wherein the execution of a particular computing task
may depend on the result of a preceding computing task. As elaborated in the review of
related work in Section 2, the energy consumption minimization has not been previously
studied in detail for mobile nodes that offload dependent computation tasks to mobile
helper nodes.

1.2. Overview of Contributions and Structure of This Article

Our main contribution of this article, which extends the conference paper [24], is
the development and evaluation of the online Energy-Efficient Task Offloading (EETO)
algorithm that minimizes the battery energy consumption in mobile end devices with
dependent computation tasks. Towards the development of EETO, we explicitly model
the dependencies of the individual computation tasks of an application request in a task
dependency graph in Section 3.2. We incorporate the recently developed and validated
deep-learning-based PECNet user trajectory prediction into our model in Section 3.5 to
account for the sojourn times of a mobile UE that offloads tasks within the coverage areas
of the various prospective presently nearby (but mobile) helper nodes that can assist by
taking over computation tasks or relaying computation tasks to a stationary MEC server.

We formulate the energy minimization problem in Section 4, considering the bat-
tery energy expenditures for task computation, task data transmission, and waiting for
offloaded tasks to complete. In order to efficiently solve the energy minimization problem,
which is a non-convex mixed integer nonlinear program, we conduct a transformation
to a quadratically constrained quadratic programming (QCQP) problem in Section 5.1
and specify the EETO algorithm in Section 5.2. To the best of our knowledge, the EETO
algorithm is the first task offloading algorithm in a device-enhanced MEC setting that
accommodates dependent computation tasks and employs deep-learning-based trajectory
prediction for both the mobile UE that offloads tasks as well as the mobile helper nodes.
The performance evaluation in Section 6 indicates that EETO flexibly accommodates a wide
range of scenarios and parameter settings and consistently achieves low battery energy
consumption, whereas benchmarks typically perform well only for a specific scenario or
narrow parameter range.

2. Related Work
2.1. General Cooperative Edge Computing Approaches

Various cooperative task computing approaches that utilize D2D task offloading to
nearby end devices have recently been proposed in order to improve the MEC system
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performance in terms of energy efficiency [25–28], time delay [29,30], joint optimization of
energy consumption and latency [31–33], IoT service enhancement [34], resource manage-
ment [35–42], as well as security [43,44] and privacy [45].

2.2. Mobility Models

User mobility, i.e., the movement of devices or vehicles in the area of an MEC network,
introduces several challenges for task offloading in cooperative MEC networks, which
have been considered in relatively few prior studies. A matching-based algorithm for
choosing the proper task offloading method to road side units (RSUs) and nearby vehicles in
vehicular edge computing has been proposed in [46]. The matching-based algorithm aims at
optimizing the system utility in terms of latency as well as computing and communication
costs. The vehicle locations in [46] are modeled by 2D Euclidean coordinates, while their
mobility follows a constant velocity model which is predetermined along roadways; a
similar roadways-based mobility model has been considered in [47] (various other studies,
e.g., [48], have examined similar mobility models for offloading to RSUs only, not to other
vehicles). The mobility models based on roadways are appropriate for the specific case of
vehicular networks but are not suitable for general mobility scenarios that are not restricted
to predetermined roadways. The study [49] considered cooperative task offloading with
mobile MEC servers that are mounted on unmanned aerial vehicles (UAVs), and a non-
cooperative version of this UAV-assisted MEC is studied in [50]. The flight path of the
UAVs is optimized to effectively support the offloading of independent tasks that can be
partitioned. In contrast to these preceding studies, we consider general mobility scenarios
for the end devices and stationary MEC servers.

The study [51] used a deep-learning-based algorithm to predict the user mobility
trajectories and locations in general mobility scenarios to develop an online algorithm for
the non-cooperative offloading of tasks from a mobile end device to stationary MEC servers.
However, the study [51] did not consider the cooperation between adjacent end devices.
In contrast, we consider cooperative task offloading to adjacent mobile end devices reached
with D2D communication and to stationary MEC servers with cellular communication.

The study [52] considered an elementary position and direction vector mobility model
for cooperative task offloading. A generic three-layer cooperative edge computing network
architecture is presented in [53] taking into account the mobility effects of the users by
considering the sojourn time with exponential distribution for the coverage of fog nodes.
The study [53] parameterizes the exponential distribution for the sojourn times via a
Gaussian distribution and notes that a future work direction is to employ machine learning
for mobility modeling. The study [54] considered the cooperative task offloading of
independent tasks utilizing human pedestrian trajectories that are predicted via data
mining techniques [55,56]. In the present paper, we tackle the future work direction noted
in [53] and advance the mobility modeling in [54] by formulating the task offloading model
with the PECNet deep learning trajectory method, as elaborated in Section 3.5, in the
context of dependent computation tasks.

2.3. Task Dependency Models

The existing task offloading studies typically considered independent computation
tasks. To the best of our knowledge, only the non-cooperative MEC task offloading
study [51] considered task dependencies. However, the task dependencies in [51] are
limited to a simple sequential (linear) task dependency, where each task depends only on
the immediately preceding task in a linear task sequence. A general task dependency graph
has been considered in the non-cooperative task offloading study [57]. However, both
studies [51,57] offloaded tasks in a non-cooperative fashion, i.e., only to installed stationary
MEC and cloud servers (not to mobile helper end devices). In contrast, we consider
arbitrary task dependencies that are represented by a general task dependency graph for
cooperative task offloading to mobile helper end devices and stationary MEC servers.
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To the best of our knowledge, the present study is the first to develop and evaluate
a task offloading algorithm that minimizes the battery energy consumption for arbitrary
task dependencies in a cooperative edge computing setting with mobile helper nodes.
The proposed EETO algorithm employs a state-of-the-art deep-learning-based trajectory
prediction for general mobility settings.

3. System Model
3.1. Overview

We consider a three-layer heterogeneous network with multiple devices and small
cells. As illustrated in Figure 1, each small cell has a base station (BS), which could,
for instance, be a Wi-Fi access point or a femto cell base station. In addition, each BS is
affiliated with an MEC server, e.g., an MEC server could be directly attached to the BS,
or the MEC service could be provided to the BS via an edge cloud network architecture [58].
The devices, which in the 3GPP standardization language are referred to as user equipment
nodes, are mobile.

Figure 1. System model: A user equipment node (UE) with a set of computation tasks moves through
the coverage regions of different base stations (BSs) with associated MEC servers, with potentially
overlapping coverage areas, and within the D2D link ranges of potential helper/relay (UH) nodes.
The macro BS coordinates the task offloading.

While the 3GPP standardization language uses the abbreviation UE for all user equip-
ment nodes, we reserve the UE abbreviation for a device with a set of computation-intensive
tasks. The remaining devices that have sufficient computation/communication resources
to be able to act as helpers or relays, such as mobile phones, tablets, and laptop computers,
are referred to as user equipment helper nodes (UHs). For simplicity of the system model,
we consider a single UE with a set of computation-intensive tasks in this study. The system
model with a single UE is directly applicable for scenarios that combine a low density of end
devices (UEs) with computation-intensive tasks with a generally high density of UHs, such
that each UE can essentially form its own surrounding cloud of adjacent D2D-connected
UHs. Similar to our system model, the preceding non-cooperative dependent-task offload-
ing studies considered either a single UE with a set of dependent tasks [51] or a set of
UEs (each with one task) that, in the aggregate, form one set of dependent tasks [57]. The
system model in this article can serve as a basis for future model extensions to multiple
UEs (each with a set of dependent tasks) or, effectively, to multiple independent sets of
dependent tasks. One possible strategy for this extension is to model the UHs with already
assigned tasks as being outside of the D2D ranges of UEs that seek to offload tasks.

The UHs are randomly distributed along the UE’s path, and we let
I = {UH1, UH2, . . . , UHI} represent the set of UHs. A UHi ∈ I has a service cover-
age radius Ri. Similarly, we denote M = {S1, S2, . . . , SM} as the set of edge servers,
whereby server Sm ∈ M has the service coverage radius Rm. The offloading process is
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controlled by the macro BS (MBS), which knows the channel states and the user positions,
whereby the computational load and reliability aspects of the MBS control can be addressed
through decentralized control plane techniques [59]. The MBS is responsible for making
the offloading decisions. The system model notations are summarized in Table 1.

Table 1. Model notations, with default parameters for evaluation in Section 6.

Symbol Definition

I Set of helper/relay nodes UHi, i ∈ I ; total # of helpers/relays I = |I| = 10
M Set of MEC servers Sm, m ∈ M; total # of MEC servers M = |M| = 2
K Set of computation tasks; total # of tasks K = |K| = 25
bk Data size [in bits] of task k; bk = 200–400 KB (unif. random)
ck Required computation per bit of task k; ck = 30–50 cycles/bit (unif. random)
Tmax

d Deadline for execution of set of K tasks; Tmax
d = 4.4 s

B Bandwidth of wireless channel; B = 5 MHz
Hk Wireless channel gain; Hk = 10−7 for UE to UHi, and for UHi to server;

Hk = 10−8 for UE to server
Ptr

k Transmission power for task k; Ptr
k = 0.2 W

Pwait
k UE’s idle circuit power; Pwait

k = 0.05 W
f UE
k UE CPU cycle frequency allocated to task k; f UE

k = 0.1 · 109 cycles/s
f UHi
k CPU cycle frequency of helper node i; f UHi

k = 0.5 · 109 cycles/s
f Sm
k CPU cycle frequency of MEC server m; f Sm

k = 2 · 109 cycles/s
H Set of helper node selection variables
S Set of MEC server selection variables
HS Set of relays and MEC server selection variables
XUE

t , XUHi
t Position of UE, helper/relay UHi at time t

Ri, Rm Coverage area radius of helper UHi, server Sm

Thi
s,t UE sojourn time in coverage of helper node UHi

L # of iterations of stochastic mapping in EETO alg.; L = 1000

3.2. Task Model

We assume that the computation-intensive applications can be divided into tasks of
different sizes which have to be executed within limited time frame constraints, whereby
parallel execution of tasks is possible, subject to the task dependency constraints. For ex-
ample, a video navigation application running on a smartphone [60] can be modeled as
a set of tasks with dependencies as characterized by a general dependency graph. More
formally, we denote K = {1, 2, . . . , K} for the set of tasks in a computation-intensive ap-
plication. Each task is associated with a set of parameters {bk, ck}, whereby bk is the data
size of computation task k (in bits), and ck denotes the required computation resources to
execute the computations for each bit in task k (in CPU cycles/bit), corresponding to a
total amount of bkck computation resources (in CPU cycles) required to execute the task
k. The computationally intensive application has a deadline Tmax

d for the execution of all
K tasks.

The dependency relationship of tasks implies an execution order, according to which a
given task may have to wait for its predecessor to be executed first (see Figure 2). We define
the concepts of the start and finish time of a task to model this effect for the computation
offloading decision algorithm as follows:

• Finish time is the time instant of the execution completion of task k:

FTk = STk + Texe
k , (1)

whereby STk is the start time of task k as defined next, and Texe
k is the execution time

(span) for task k.
• Start time is the time instant when the execution of task k can commence:
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STk =

{
max

j∈P(k)
FTj if P(k) 6= ∅,

0 if P(k) = ∅,
(2)

whereby the setP(k) contains all predecessor tasks of task k. According to Equation (2),
the execution of a task k without predecessors (P(k) = ∅) can start immediately, while
the start time of a task k that depends on predecessor tasks (P(k) 6= ∅) equals the
maximum finish time FTj of the respective predecessor tasks j ∈ P(k).

Figure 2. Example illustration of general task dependency graph specifying the required task
execution order for an application with a total of K = 10 tasks. Tasks k = 2, 3, and 4 depend on the
prior completion of task k = 1. The last task K = 10 has to be completed by the deadline Tmax

d .

3.3. Communication Model

The achievable up-link data rate for the transmission of task k can be obtained based
on the Shannon theorem as

rk = B log2

(
1 +

Ptr
k Hk

σ2

)
, (3)

whereby B is the channel bandwidth between the sender and receiver. The sender options
include the UE and the UHs, and the receivers can be the UHs and the MEC servers. We
denote Ptr

k for the transmission power for task k, denote Hk for the channel gain between the
sender and receiver while transmitting task k, and denote σ2 for the Gaussian channel noise
variance (with default value σ2 = 10−9 W). We note that more complex channel models,
e.g., models that include fading and shadowing, can be substituted into our overall task
offloading model in a straightforward manner and are left as a future research direction.

In our scenario, the computed results of a task are of negligible size, and their downlink
transmission is not explicitly modeled. We note that in order to mitigate interference, the UE
should be actively uploading (transmitting) only one task at a time to a server via the
cellular channel and one task at a time to a helper or relay node via the D2D channel,
whereby both cellular and D2D transmission can occur simultaneously as they do not
interfere with each other. We model both the cellular channel and the D2D channel to have
bandwidth B. We do not consider the transmission sequencing to at most one cellular
and one D2D transmission at a time in the current model and leave this transmission
sequencing as a future model refinement.

3.4. Computation Model

There are four alternative decisions for task execution in our dynamic offloading
decision algorithm: (a) local execution on the UE, (b) remote execution on a helper UH,
or (c) remote execution on the MEC server, whereby a task can be transmitted directly by
the UE to the MEC server or via a relay (UH). We proceed to define each possible decision
in detail.
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3.4.1. Local Execution

If our optimization algorithm decides to execute task k locally at the UE, then the
execution time is

Tl
k =

bkck

f UE
k

, (4)

where bk is the data size of task k in bits, ck denotes the required computational CPU
cycles per bit for task k, and f UE

k is the UE’s CPU cycle frequency allocated to execute task
k. Based on Equation (4) and the effective switched capacitance e, which characterizes
the chip architecture [61], the UE battery energy consumption for local execution can be
estimated as

El
k = ( f UE

k )2ebkck, ∀k ∈ K, (5)

whereby we set the default effective switched capacitance e values to eUE = 10−25 F and
eUHi = 0.8 · 10−27 F in our evaluations in Section 6. We set the decision variable xk = 1 if
task k is executed locally; otherwise, xk = 0.

3.4.2. Helper Execution

The task execution process by a helper UHi consists of two steps. First, the UE transfers
task k to the helper UHi via D2D communication on the up-link, and then task k is executed
by UHi. As illustrated in Figure 3, the total execution delay is

Thi
k =

bk

rUHi
k

+
bkck

f UHi
k

, (6)

whereby rUHi
k is the transmission rate from the UE toUHi, and f UHi

k is the CPU cycle
frequency of UHi allocated for the execution of task k. We neglect the delay for sending
the result back from helper node UHi to the UE in our model due to the typically small
number of output bits.

Figure 3. Timing diagram for the execution of task k by an external computing resource (helper UHi):
The total task execution delay Thi

k consists of the transmission delay ttr
k = bk/rUHi

k , the execution
delay texe

k = bkck/ f UHi
k , and the transmission delay for returning the computation result (which is

neglected in our model).

Following Equation (6), the battery energy consumption of the helper execution mode
consists of (a) the transmission from the UE to the helper UHi, (b) the helper energy
consumption for task execution, and (c) the energy that the UE consumes to wait for
receiving the result back from the helper node:
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Ehi
k = Ptr

k

(
bk

rUHi
k

)
+ e
(

f UHi
k

)2
bkck + Pwait

k

(
bkck
f UHi

)
, (7)

where Ptr
k is the UE transmission power, and Pwait

k is the UE idle circuit power while the
UE is waiting to receive the result back.

As described in Section 3.1, there are I number of helpers available for the UE in the
area. Let hi

k = 1, hi
k ∈ H, indicate that the UE chose to offload task k to UHi, whereby the

set H = {hi
k|k ∈ K, i ∈ I} contains all helper node selection variables. Since task k can

only be offloaded to at most one helper at the same time, an offloading selection algorithm
should follow the constraint

∑
i∈H

hi
k ≤ 1 ∀k ∈ K. (8)

3.4.3. Server Execution

For task execution on the server, there are two possible paths for offloading the tasks.

3.4.3.1. Direct Offloading from UE to MEC Server

The time delay for executing task k can be calculated as

Tsm
k =

bk

rSm
k

+
bkck

f Sm
k

, (9)

where rSm
k is the transmission rate from the UE to server Sm, and f Sm

k denotes the CPU
computation cycle frequency of server Sm for the execution of task k. The corresponding
UE battery energy consumption is

Esm
k = Ptr

k

(
bk

rSm
k

)
+ Pwait

k

(
bkck

f Sm
k

)
, (10)

In Equation (10), the MEC server energy consumption for executing task k is not
included, since MEC servers do not typically rely on battery power. Throughout this study,
the focus is on saving battery energy consumption. Incorporating the saving of energy
consumption in the MEC servers, which are powered from the wired grid, is an interesting
direction for future research.

Since there are M servers available for the UE in the area, the UE can choose to offload
task k to Sm, and in this case, sm

k = 1, whereby the set sm
k ∈ S , S = {sm

k |k ∈ K, m ∈ M}
contains all MEC server node selection variables. Since a given task k can only be offloaded
to one MEC server (and not split among multiple MEC servers), the offloading selection
algorithm should follow the constraint

∑
m∈M

sm
k ≤ 1 ∀k ∈ K. (11)

3.4.3.2. Offloading from UE via Relay UHi to MEC Server

The UE first sends task k to the relay UHi, which then forwards the task to the server
Sm. The delay consists of three steps for transmissions and computation:

Tsi,m
k =

bk

rUHi
k

+
bk

rSm,i
k

+
bkck

f Sm
k

, (12)

whereby rUHi
k is the transmission rate from the UE to UHi, and rSm,i

k is the transmission rate
from UHi to server Sm. The UE and UH battery energy consumption is
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Esi,m
k = Ptr

k

(
bk

rUHi
k

)
+ Pwait

k

(
bk

rSm,i
k

+
bkck

f Sm
k

)
+ Ptr,i

k

(
bk

rSm
k

)
, (13)

where Ptr,i
k is the transmission power of UHi. We assume that the computation result is

sent back directly from server Sm to the UE and that the transmission delay for the result is
negligible. We define the selection variables si,m

k = 1, si,m
k ∈ HS for offloading task k via

UHi to Sm, whereby the setHS = {si,m
k |k ∈ K, i ∈ I , m ∈ M} contains all relays and MEC

server selection variables. Since a given task k can only be serviced via a single helper node
UHi by a single server Sm, the offloading selection algorithm should follow the constraint

∑
m∈M

∑
i∈I

si,m
k ≤ 1 ∀k ∈ K. (14)

3.5. Mobility Model

Based on recent studies, most user trajectories contain similar patterns [51,62]. To in-
corporate this insight so as to achieve effective mobility-aware task offloading, we employ
machine learning to predict the UE’s and the UHs’ paths to estimate their available service
coverage time. Specifically, we employ a Predicted Endpoint Conditioned Network (PEC-
Net) [63] as a deep-learning-based method for predicting socially compliant trajectories
which infer users’ destinations to assist prediction. This enhances the plausibility of pre-
dictions for trajectories in addition to using the historical data of motion paths, yielding
coherent user trajectories. The main idea of PECNet is to divide the prediction problem
into two parts. The first part estimates the potential destinations of users using an endpoint
estimation variational autoencoder (VAE). The second part predicts socially compliant
trajectories while jointly considering the motion history and potential destinations of all
users in the scene.

The PECNet system model [63], which is illustrated in Figure 4, includes three key
elements: a past trajectory encoder, endpoint VAE, and social pooling module. First,
a user’s motion histories are encoded via the past trajectory encoder. Then, the result is fed
into the endpoint VAE to estimate the user’s destination. Subsequently, the social pooling
module uses the encoded past trajectory and the estimated destinations of all users to
jointly predict the future path of every user in the scene. The final output are paths whose
future segments (i.e., the predictions) are strongly dependent on the past locations (i.e.,
the inputs).

Figure 4. PECNet system model [63]: Past trajectory encoder and endpoint estimation variational
encoder (VAE) feed into social pooling module to predict paths.

Similar to prior studies involving mobility prediction, e.g., [12,54], we consider time
to be suitably slotted (whereby we consider the typical 0.4 s slot duration for pedestrian
mobility). In our scenario, the positions of the UE and a helper node UHi at time t are
defined as XUE

t = (xt, yt) and XUHi
t = (xt

i , yt
i), respectively. The trajectories of the UE and

helpers UHi from time (t− n + 1) to t are:

XUE =
{

XUE
t−n+1, XUE

t−n+2, . . . , XUE
t

}
(15)
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XUHi =
{

XUHi
t−n+1, XUHi

t−n+2, . . . , XUHi
t

}
. (16)

This information can be collected by the macro BS. The PECNet takes as input the
trajectories of the UE and helpers UHi and outputs the predicted movements from time
(t + 1) to (t + l):

ŶUE =
{

ŶUE
t+1, ŶUE

t+2, . . . , ŶUE
t+l

}
(17)

ŶUHi =
{

ŶUHi
t+1 , ŶUHi

t+2 , . . . , ŶUHi
t+l

}
, (18)

where ŶUE
t = (x̂t, ŷt) and ŶUHi

t = (x̂t
i , ŷt

i). A D2D link can be established between the UE
and helper UHi at time t if the UE is in the coverage area of helper UHi with radius Ri,
i.e., if √

(x̂t − x̂t
i )

2 + (ŷt − ŷt
i)

2 ≤ Ri. (19)

The sojourn time of the UE in UHi’s coverage from time t is then

Thi
s,t = max l, s.t.

√
(x̂τ − x̂τ

i )
2 + (ŷτ − ŷτ

i )
2 ≤ Ri, ∀τ ∈ [t, t + l], τ ∈ Z. (20)

The same process can be utilized to obtain the sojourn time Tsm
s,t of the UE in the

coverage of MEC server Sm, as well as the sojourn time Tsi,m
s,t of UHi in the coverage of MEC

server Sm.
As we observe from Figure 1, due to the users’ mobility, the service coverage is limited;

however, in our method, by defining the concept of sojourn time Ts,t and finish time FTk of
the tasks, users only choose a destination if the period of the coverage availability (Ts,t) is
longer than the required time (FTk) for the task execution.

The validations in [63] indicate that PECNet is highly accurate. We assume that the
PECNet predictions are correct, similar to related studies that assume perfectly correct
mobility predictions, e.g., [48,53]. Various mechanisms for mitigating any rarely occurring
prediction errors can be examined in future research. One strategy for reducing the
chance of prediction errors could be to impose “safety margins” on the predicted sojourn
times. Another strategy could be to classify the tasks according to their level of criticality
and to classify the helpers according to their reliability; then, tasks could be assigned
under consideration of the task criticality and helper reliability to minimize potential
offloading failures.

4. Dynamic Computation Offloading Problem Formulation

Considering the offloading decision options defined in Section 3, our joint cost opti-
mization of the computation and communication cooperation in the device-enhanced MEC
system for the execution of task k considering the task’s execution deadline can be defined
based on the battery energy consumption for the execution of task k:

Eexe
k = xkEl

k + hi
kEhi

k + sm
k Esm

k + si,m
k Esi,m

k , (21)

where xk, hi
k, sm

k , and si,m
k represent the binary variables for the offloading decision according

to the strategies introduced in Section 3.4. For the execution of task k, only one of these
variables can be 1, and the rest are 0, giving the task execution time

Texe
k = xkTl

k + hi
kThi

k + sm
k Tsm

k + si,m
k Tsi,m

k . (22)

Hence, the finish time FTk of task k is obtained by inserting Texe
k from Equation (22)

into Equation (1).
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The optimization problem of minimizing the energy cost considering the service
execution deadline, the mobility of the end devices, and the task dependencies can be
formulated based on the total energy consumption Eexe

tot = ∑k∈K Eexe
k :

OP1 : min
α,β

Eexe
tot

s.t : C1 : xk, hi
k, sm

k , si,m
k ∈ {0, 1}, ∀k ∈ K, ∀i ∈ I , ∀m ∈ M

C2 : xk +
I

∑
i=1

hi
k +

M

∑
m=1

sm
k +

M

∑
m=1

I

∑
i=1

si,m
k = 1, ∀k ∈ K

C3 : STk =

{
max

j∈P(k)
FTj if P(k) 6= ∅,

0 if P(k) = ∅,
∀k ∈ K

C4 : FTK ≤ Tmax
d ,

C5 : FTk ≤ Ts,k, ∀k ∈ K,

(23)

where α = [x1, h1
1, . . . , hI

1, s1
1, . . . , sM

1 , s1,1
1 , . . . , sI,M

1 , . . . , xK, h1
K, . . . , hI

K, s1
K, . . . , sM

K , s1,1
K , . . . , sI,M

K ]
are the per-task offloading decision making variables, and β = [ST1, ST2, . . . , STK] are the
start times. The decision-making variables are present in the constraints C1 and C2. Con-
straint C3 defines the start time for each task k based on its predecessor tasks. The execution
of tasks without predecessor tasks can start immediately, and the start time of all other
tasks equals the maximum finish time of their respective predecessors. Constraint C4
indicates that the finish time of the last task K should be less than or equal to the total time
deadline Tmax

d of the application.
Constraint C5 represents that an offloading destination may only be chosen if the

sojourn time Ts,k of the UE in the range of the computation resource is longer than the
time FTk needed to finish executing task k. Utilizing Equation (20), the sojourn time for the
different offloading options can be calculated as

Ts,k =


Thi

s,t if hi
k = 1

Tsm
s,t if sm

k = 1
min{Thi

s,t, Tsm
s,t , Tsi,m

s,t } if si,m
k = 1.

(24)

In Equation (24), Thi
s,t denotes the UE sojourn time in the range of helper node UHi,

Tsm
s,t is the UE sojourn time in the range of MEC server Sm, and Tsi,m

s,t is the sojourn time of
helper UHi in the coverage area of MEC server Sm. If the decision is made to offload task
k to either the helper node UHi (hi

k = 1) or MEC server Sm (sm
k = 1), the finish time FTk

of task k should be shorter than the sojourn time Ts,k in the coverage of that computation
resource, meaning that any chosen resource should remain in range until the completion
of the execution of task k. The offloading to server Sm via relaying by helper node UHi
requires that the UE is in the coverage area of the helper (with corresponding sojourn time
Thi

s,t), that the helper is in the coverage of the server (Tsi ,m
s,t ), and that the UE is still in the

coverage of the server (Tsm
s,t ) for directly returning the computation results from the server

to the UE.
We further note that the sojourn time Ts,k in constraint C5 depends on the time t,

as explicitly indicated by the t subscript on the right-hand side of Equation (24) and in
Equation (20). In order to avoid notational clutter, we have omitted the t subscript on the
left-hand side of Equation (24) and in the optimization problem in Equation (23). However,
we emphasize that the optimization problem in Equation (23) is solved in an online fashion
at a particular time t when a UE request for computing a set of K tasks arrives. The start
time STk of a task (with ST1 = 0) is relative to the UE request arrival time t.
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5. Solution of Dynamic Computation Offloading Optimization Problem

The optimization problem OP1 is a non-convex mixed integer nonlinear programming
problem due to the binary constraints and, therefore, hard to solve in polynomial time [64].
To facilitate an efficient solution, it should first be transformed to an equivalent quadrati-
cally constrained quadratic programming (QCQP) problem. Then, the binary offloading
decisions can be recovered using a semidefinite relaxation (SDR) and stochastic mapping
method. The QCQP can be efficiently solved, e.g., with conic optimization solvers [65],
especially with accelerators [66,67]. On a contemporary personal computer with a moder-
ate performance level, the QCQP solution takes on the order of 1 second for the typical
problems considered in the evaluation in Section 6. With the appropriate computing hard-
ware at BSs and suitable accelerators, solution times on the order of 0.1 seconds or less
are anticipated, making the online solution of the optimization feasible for scenarios with
pedestrian-level mobility. We outline additional strategies for speeding up the offloading
decision making in future research in Section 7.2.

5.1. Conversion of OP1 into QCQP

The first conversion step for OP1 is to convert the integer constraints to a quadratic formulation:

xk(xk − 1) = 0, hi
k

(
hi

k − 1
)
= 0, sm

k (s
m
k − 1) = 0,

si,m
k

(
si,m

k − 1
)
= 0, ∀k ∈ K, ∀i ∈ I , ∀m ∈ M.

(25)

With these quadratic constraint formulations, the QCQP transformation of OP1 becomes

OP2 : min
α,β

Eexe
tot

s.t : C1 : xk(xk − 1) = 0, hi
k

(
hi

k − 1
)
= 0,

sm
k (s

m
k − 1) = 0, si,m

k

(
si,m

k − 1
)
= 0,

∀k ∈ K, ∀i ∈ I , ∀m ∈ M;

C2 : xk +
I

∑
i=1

hi
k +

M

∑
m=1

sm
k +

M

∑
m=1

I

∑
i=1

si,m
k = 1, ∀k ∈ K;

C30 : STk = 0 ∀j ∈ P(k),P(k) = ∅, ∀k ∈ K;

C31 : STk − FTj ≥ 0, ∀j ∈ P(k),P(k) 6= ∅, ∀k ∈ K;

C4 : FTK ≤ Tmax
d ; C5 : FTk ≤ Ts,k, ∀k ∈ K;

(26)

where we reformulated C1 and vectorized C3.
Next, we define a vector v of dimension ((2+ I + M + IM)K + 1)× 1 as v = [α, β, 1]T ,

and a standard unit vector ej with the jth entry equal to 1 and dimension ((2 + I + M +
IM)K + 1)× 1. Furthermore, we define

v =[x1, h1
1, . . . , hI

1, s1
1, . . . , sM

1 , s1,1
1 , . . . , sI,M

1 , . . . , xK,

h1
K, . . . , hI

K, s1
K, . . . , sM

K , s1,1
K , . . . , sI,M

K , ST1, . . . , STK, 1]T ,

n0 =[El
1, Eh1

1 , . . . , EhI
1 , Es1

1 , . . . , EsM
1 , Es1,1

1 , . . . ,

EsI,M
1 , . . . , El

K, Eh1
K , . . . , EhI

K , Es1
K , . . . , EsM

K ,

Es1,1
K , . . . , EsI,M

K , 01×(K+1)]

(27)

as the set of decisions to which devices the tasks should be offloaded to or through,
respectively; n0 is the vector of energy consumptions associated with a full set of decisions,
extended by a row of zeros for the optimizer, and
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n1k =e(1+I+M+IM)(k−1)+1 + · · ·+ e(1+I+M+IM)k−1

+ e(1+I+M+IM)k + e(1+I+M+IM)K+k

n2 =[01×(2+I+M+IM)(K−1), Tl
K, Th1

K , . . . , ThI
K ,

Ts1
K , . . . , TsM

K , Ts1,1
K , . . . , TsI,M

K , 01×(K−1), 1, 0]T

n3 =e(2+I+M+IM)(j−1)+1 + · · ·+ e(2+I+M+IM)j−1

+ e(2+I+M+IM)j + e(2+I+M+IM)K+j

nT =[Tl
1, Th1

1 , . . . , ThI
1 , Ts1

1 , . . . , TsM
1 , Ts1,1

1 , . . . ,

TsI,M
1 , . . . , Tl

K, Th1
K , . . . , ThI

K , Ts1
K , . . . , TsM

K ,

Ts1,1
K , . . . , TsI,M

K , 11×(K+1)]
T

nTs =[Tmax
d , Th1

s,t , . . . , ThI
s,t , Ts1

s,t, . . . , TsM
s,t , Ts1,1

s,t , . . . ,

TsI,M
s,t , . . . , Tmax

d , Th1
s,t , . . . , ThI

s,t , Ts1
s,t, . . . , TsM

s,t ,

Ts1,1
s,t , . . . , TsI,M

s,t , 11×(K+1)]
T

(28)

are the reformulated equations for the constraints, consisting of standard unit vectors
as well as task execution times and sojourn times. The vector n1k corresponds to the
(1 + I + M + IM) probabilities of the offloading strategies for task k and additionally the
task k deadline (used in C5). In the definition of n2, Tl

K is the local task K execution time
from Equation (4), Thi

K is the UHi task K execution time from Equation (6), Tsm
K is the server

m task K execution time from Equation (9), and Tsi,m
K is the task k execution time with

relaying via UHi to server m from Equation (12); these execution times for the various tasks
k, k = 1, . . . , K, are also used in the definition of nT . The vector nTs of the sojourn times has
the same dimension as nT . Thus, the QCQP transformation of OP2 can be written as

OP3 : min
v

(n0)
Tv

s.t : C1 : vTdiag(ej)v− (ej)
Tv = 0, j = 1, . . . , (1 + I + M + IM)K;

C2 : (n1k)
Tv = 1, ∀k ∈ K;

C30 : (e(1+I+M+IM)K+1)
Tv = 0, ∀j ∈ P(k),P(k) = ∅, ∀k ∈ K;

C31 : (e(1+I+M+IM)K+k)
Tv ≥ (nT)

Tdiag(n3)v, ∀j ∈ P(k),P(k) 6= ∅, ∀k ∈ K;

C4 : (n2)
Tv 6 Tmax

d ;

C5 : (nT − nTs)
Tdiag(n1k)v ≤ 0, ∀k ∈ K.

(29)

For the further change to the homogeneous QCQP OP4, we define g = [vT1],
n′1 = diag(n1k), n′3 = diag(n3), a = (2 + I + M + IM)K, b = (1 + I + M + IM)K + 1,
and c = (1 + I + M + IM)K + k. In order to convert the necessary constraints for the
variety of device roles into the standard form for QCQP solvers, we convert all constraints
into the matrix form
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M0 =

[
0(a+1)×(a+1)

1
2 n0

1
2 (n0)

T 0

]
;

M1 =

[
diag(ej) − 1

2 ej
− 1

2 (ej)
T 0

]
;

M2 =

[
0(a+1)×(a+1)

1
2 n1k

1
2 (n1k)

T 0

]
;

M3 =

[
0(a+1)×(a+1)

1
2 eb

1
2 (eb)

T 0

]
;

M′3 =

 0a×a − 1
2 ((nT)

Tn′3)
T 1

2 (ec)T

− 1
2 ((nT)

Tn′3) 0 0
1
2 (ec)T 0 0

;

M4 =

[
0(a+1)×(a+1)

1
2 (n2)

1
2 (n2)

T 0

]
;

M5 =

[
0(a+1)×(a+1)

1
2 [(nT − nTs)

Tn′1k]
T

1
2 [(nT − nTs)

Tn′1k] 0

]
.

Then,
OP4 : min

g
gT(M0)g

s.t : C1 : gT M1g = 0, j = 1, . . . , (1 + I + M + IM)K;

C2 : gT M2g = 1, ∀k ∈ K,

C30 : gT M3g = 0, ∀j ∈ P(k),P(k) = ∅, ∀k ∈ K;

C31 : gT M′3g ≥ 0, ∀j ∈ P(k),P(k) 6= ∅, ∀k ∈ K;

C4 : gT M4g 6 Tmax
d ;

C5 : gT M5g ≤ 0, ∀k ∈ K.

(30)

For the final conversion step, we define the symmetric, positive semidefinite matrix
G = ggT and write with Tr(·) denoting the trace of a square matrix:

OP5 : min
G

Tr(M0G)

s.t : C1 : Tr(M1G) = 0, j = 1, . . . , (1 + I + M + IM)K;

C2 : Tr(M2G) = 1, ∀k ∈ K;

C30 : Tr(M3G) = 0, ∀j ∈ P(k),P(k) = ∅, ∀k ∈ K;

C31 : Tr(M′3G) ≥ 0, ∀j ∈ P(k),P(k) 6= ∅, ∀k ∈ K;

C4 : Tr(M4G) 6 Tmax
d ;

C5 : Tr(M5G) ≤ 0, ∀k ∈ K;

C6 : G[a + 1, a + 1] = 1;

C7 : G[a + 1, a + 2] = 1;

C8 : G[a + 2, a + 1] = 1;

C9 : G[a + 2, a + 2] = 1;

C10 : rank(G) = 1.

(31)
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While this problem OP5 has a few additional constraints, the single constraints are
much easier to handle for the solver. For example, constraints C6–C9 are simple checks for
single elements of the matrix G.

5.2. Energy-Efficient Task Offloading (EETO) Algorithm

In this section, we propose a stochastic mapping method to obtain the optimized
offloading strategy according to the inter-task dependency and the whole application
completion time Tmax

d . We apply SDR by dropping the last non-convex constraint of
rank 1 to obtain an approximate solution G̃, the last row of which includes [α, β, 1, 1].
If rank(G̃) = 1, then we directly extract α as an offloading decision for all tasks from the
last row of G̃. Otherwise, we employ a probability-based stochastic mapping method to
recover the solution. For each task k, we select the largest value of each offloading decision
from the elements group with index k in α and denote them as t1, t2, t3, and t4. We map t1,
t2, t3, and t4 with the probability-based stochastic mapping method:

q1t1 + q2t2 + q3t3 + q4t4 = 1 (32)

Q1 = q1t1, Q2 = q2t2, Q3 = q3t3, Q4 = q4t4, (33)

where Q1, Q2, Q3, and Q4 are the probabilities of the corresponding offloading decision
being 1. We randomly set ti = 1 according to the probabilities Qi, and the other elements
in α are set to 0. For example, when I = 2, M = 2, and K = 3, then the dimension of
vector α would be (1 + I + M + IM)K = 27. For each task, there are 1 + I + M + IM = 9
elements; if the solution were not rank 1, each element could be a value between 0 and 1
and the sum of the nine elements equals 1. Taking out the first nine elements in vector α,
for instance, as [0.25, 0.15, 0.05, 0.05, 0.10, 0.10, 0.05, 0.15, 0.10], we can find that the largest
numbers of each offloading decision are 0.25, 0.15, 0.10, and 0.15, i.e., t1 = 0.25, t2 = 0.15,
t3 = 0.10, and t4 = 0.15. According to Equations (32) and (33), we stochastically map the
probabilities that the corresponding offloading decision would be selected with Q1, Q2, Q3,
and Q4, respectively. Then, we randomly set one of the two numbers to 1, while we set
the rest of the nine elements to 0, which means that only one offloading decision would be
selected for the currently considered task. For each task, we perform the same stochastic
mapping, and after a decision has been made for each task, we obtain the offloading
strategy α̃. Furthermore, we compare FTK with Tmax

d , and the strategy could be a final
solution only if FTK ≤ Tmax

d . For higher accuracy, we repeat the process L times to obtain a
set of solutions and select the solution that yields the minimum energy cost. The algorithm
can be summarized as Algorithm 1.

We note that if none of the task execution strategies from Section 3.4 are feasible for a
task, then the task is too complex, and the solution of the QCQP will fail, i.e., there is no
feasible solution for the EETO algorithm.
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Algorithm 1: Energy-Efficient Task Offloading (EETO) Algorithm

Input: L, K, I ,M, Tmax
d , B, P(k), bk, ck, Ptr

k , Pwait
k , f UE

k , f UHi
k , f Sm

k , ∀k ∈ K, XUE,
XUHi (see Table 1)

Output: Offloading strategy α
Initialize: Predict paths of UE and helpers with PECNet with historical paths XUE,
XUHi , calculate sojourn times Ts,k with Equation (24). Initialize all matrices in
Equation (31). Solve the SDP in Equation (31) without the rank-1 constraint to get
the optimal solution G̃. Extract the first (1 + I + M + IM)K elements of the last
row in G̃ as α′;

if rank(G̃)==1 then
α = α′;

else
for l = 1:L do

for k = 1 : K do
s(k) = (1 + I + M + IM) elements in α′(l) related to task k;
Perform probab. based stoch. mapping: Set one element of s(k) to 1,
and others to 0;

Compute the current FTk by α′(l) and Equations (1) and (22);
if FTk > Ts,k then

Discard α′(l);

if FTK > Tmax
d then

Discard α′(l);
else

α′(l) saved as a feasible solution and calculate total energy
consumption by α′(l) and Equation (21);

Select the offloading strategy α̃ among α′(1),. . . ,α′(L) that yields the minimum
energy cost;

α = α̃.

6. EETO Evaluation

This section presents simulation results to evaluate the performance of our joint
communication and computation cooperation offloading method (EETO) for mobile helper
nodes with dependent computation tasks.

6.1. Simulation Setup

The simulations employ the parameters in Table 1. The UE and UHs are initially
randomly distributed and follow the mobility pattern of the publicly available PECNet
dataset [63]. The coverage ranges of the BSs (servers) and each user end device are
400 m and 50 m, respectively, i.e., the UE can reach a BS that is 400 m away, but the UE can
only reach a UHi, i = 1, . . . , I, that is 50 m or less away. We employ the PECNet model
for the Stanford Drone Dataset, which is a common mobility benchmark containing over
11,000 unique pedestrians in a university campus setting [63]. Initially, we set the UE
mobility speed to 1 m/s.

As outlined in Section 2.3, there is no prior benchmark for offloading dependent
computation tasks in a cooperative edge computing setting. Therefore, we compare
EETO with the following four alternate task offloading approaches for the dependent-
task edge computing setting: all local (ALO), all sever (ASO), computation cooperation
optimization (CPCO), and communication cooperation optimization (CMCO). In ALO,
the tasks are all executed locally on the UE (corresponding to local execution, Section 3.4.1).
In ASO, all tasks are executed remotely on MEC servers (i.e., directly offloaded from the
UE to an MEC server, Section 3.4.3.1). In CPCO, the computation resources of adjacent
devices can be used, and therefore, the UHi can act as helper nodes, i.e., the options
from Sections 3.4.1, 3.4.2, and 3.4.3.1 are available to the optimization. In CMCO, the UHi
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can only act as relay nodes to transmit the computation tasks to an MEC server, i.e., the
options from Sections 3.4.1, 3.4.3.1, and 3.4.3.2 are available to the optimization. Thus,
the main difference between CPCO and CMCO pertains to the function of the helper nodes
UHi: in CPCO, the UHi help only with task execution (computation) but not with relay
communication, whereas in CMCO, the UHi help only with relay communication for task
offloading to the MEC server but not with helper execution.

We ran 50 independent simulation replications for each evaluation. The resulting 95%
confidence intervals are less than 5% of the corresponding sample means and are omitted
from the plots to avoid visual clutter.

6.2. Simulation Results
6.2.1. Impact of Task Complexity ck and Size bk

The average battery energy consumption as a function of the computation CPU cycles
ck needed for execution of each bit of task k for the five methods is shown in Figure 5a.
We observe from Figure 5a that the ALO energy consumption increases linearly as the
computations ck per bit increase. Specifically, when the required CPU cycles ck per bit are
less than 10 cycles/bit, ALO attains the minimum energy consumption. The left part of
Table 2 indicates that when the required computations ck increase to 15 cycles/bit, ALO can
still satisfy the deadline requirements (marked in blue); however, the energy consumption
is higher than for the other algorithms (see Figure 5a). The left part of Table 2 indicates
that for computation-intensive tasks with ck ≥ 20 cycles/bit, ALO fails to finish the task
execution within the deadline Tmax

d (marked in red), which clearly demonstrates the need
for a task offloading method.

(a) (b)
Figure 5. Average battery energy consumption Eexe

tot vs. task computation demands ck and data size
bk; default bk, ck, and Tmax

d from Table 1; random task dependency. (a) Task computation demands ck,
(b) data size bk.

Table 2. Finish time FTK of local computing (ALO) for different computation demands ck and data
sizes bk; default bk, ck, and Tmax

d from Table 1; random task dependency.

Comput. Cycles ck
Per Bit

Finish Time of Last
Task (s) FTK

Data Size bk in KB Finish Time FTK of
Last Task (s)

0 0 0 0
5 1.2155 50 1.6038
10 2.4201 100 3.248

15 3.6314 150 5.1438

20 4.8343 200 6.1856
25 6.0631 250 8.256
30 7.2743 300 9.9504
35 8.4917 350 11.5976
40 9.6840 400 12.9008
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Figure 5a indicates that the ASO battery energy consumption is nearly constant with a
slight increase. In the ASO case, the UE consumes battery energy for transmitting the data
directly to the server. When the computations ck per bit increase, the UE consumes slightly
more energy for waiting for the server (however, the energy consumption for waiting is
far lower compared to the transmission energy). For simple tasks (with small ck), the task
transmission to the MEC server (directly, ASO, or indirectly via helper relays, CMCO)
consumes more UE and UH battery energy than executing the simple tasks locally (ALO)
or on nearby helpers (CPCO). However, as tasks become more complicated (i.e., as ck
increases), the battery energy consumption for task execution on nearby helpers (CPCO)
starts to exceed the battery energy consumption for transmitting the tasks via helpers
(CMCO) to the MEC server.

We observe from Figure 5a that our proposed EETO method achieves the lowest
average battery energy consumption compared to the other approaches. EETO trades
optimally between the computation cooperation (CPCO) and the communication coopera-
tion (CMCO) functionalities of the helper nodes, i.e., optimally trades off between all task
execution options in Section 3.4, and thus achieves the minimal average battery energy con-
sumption across the full range of task complexities, i.e., required computation cycles ck per
bit for task k. Importantly, in typically heterogeneous operating scenarios with a wide range
of task complexities ck (as further examined in Figure 8), our proposed EETO approach
makes the optimal decision for each task k depending on the individual characteristics of
each task k and thus can extract substantial energy consumption reductions compared to
the CPCO or CMCO benchmarks, which could exploit only one type of cooperation.

Figure 5b shows that when the task data size bk increases, more battery energy is
required to offload the tasks to the helper or server, and more computation resources
are required to complete the execution process. Therefore, the average battery energy
consumption of all approaches increases as bk increases. However, the EETO energy
consumption is lower compared to the other methods for each data size bk. The right part
of Table 2 indicates that for increasing task data size bk, ALO cannot satisfy the latency
requirements, thus demonstrating again the need for an offloading method.

6.2.2. Impact of Transmission Power Pt
k and UE Speed

Figure 6a shows the average battery energy consumption as a function of the transmit
power Ptr

k , indicting an overall growing trend of the average battery energy consump-
tion with increasing Ptr

k . This is mainly because Ptr
k influences the transmission data rate

logarithmically (see Equation (3)) and the battery energy consumption for task offload-
ing linearly (see Equations (7), (10), and (13)). We observe from Figure 6a that for low
Ptr

k = 45 mW, CMCO and EETO consume only about two-thirds of the battery energy of
CPCO and less than half of ASO, mainly due to the energy-efficient relay task transmission
to the MEC servers (however, a low Ptr

k reduces the offloading speed and makes it harder
to meet the task deadlines). In contrast, for a high transmission power, EETO and CPCO
achieve substantial battery energy savings compared to ASO and CMCO by avoiding the
energy-expensive direct transmission to an MEC server and the relay transmission by a
helper (whereby the CMCO transmits the task data twice, once from the UE to the UH and
then from the UH to the MEC server).

Figure 6b shows the average battery energy consumption as a function of the UE speed,
while the UHi are maintained at their default speeds which have an average of roughly
0.7 m/s in the Stanford data set [63]. We observe from Figure 6b an initially decreasing
energy consumption as the UE speed increases to 1.5 m/s and then an increasing energy
consumption as the UE speed increases above 1.5 m/s. This is mainly because a UE with a
similar moving speed as the surrounding UHi has typically more UHi in its vicinity for
a longer sojourn time. Importantly, Figure 6b indicates that EETO consistently reduces
the battery energy consumption compared to CPCO and CMCO across the full range of
considered UE speeds.
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(a) (b)
Figure 6. Average battery energy consumption Eexe

tot vs. transmit power and UE speed; fixed parame-
ters: bk, ck, Tmax

d , (and Ptr
k for plot (b)) from Table 1; random task dependency (UE speed 1 m/s for

plot (a)). (a) Transmit power Ptr
k , (b) UE speed.

6.2.3. Impact of Task Dependency

Figure 7a,b show the finish time FTK and average energy consumption Eexe
tot of the five

algorithms for various task dependency relationship graphs, namely sequential, random,
and parallel. In the sequential dependency graph, each task k has one predecessor and
to start the task execution, its predecessor task needs to be completed. However, in the
random dependency graphs, each task k can have zero or multiple predecessor tasks, which
requires totally different offloading decisions compared to the sequential dependency
graph. Since we can execute multiple tasks at the same time with the random and parallel
graphs, the execution time is less than for the sequential graph for all methods (for ALO,
the sequential finish time is 21.2 s, i.e., outside the range plotted in Figure 7a). We can
also see that EETO does not always have the shortest execution time since the aim is to
minimize the energy while keeping the time within the deadline Tmax

d . However, the EETO
execution time is very close to the shortest execution time.

(a) (b)
Figure 7. Impact of task dependency graph; fixed parameters: uniform random data size
bk = 280–320 KB, ck = 30–50 cycles/bit (uniform random), task deadline Tmax

d = 9 s. (a) Finish
time, (b) average battery energy consumption.

Focusing on the energy consumption, we observe from Figure 7b that the parallel task
dependency leads to the lowest energy consumption. This reduction in energy consump-
tion is mainly due to the reduced waiting time, i.e., the more independent the tasks are,
the less energy is consumed for waiting for the completion of predecessor tasks. Overall,
we observe from Figure 7b that among all methods and all task dependency cases, our
proposed EETO achieves the lowest battery energy consumption.
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6.2.4. Impact of Task Deadline Tmax
d

Figure 8 shows the average battery energy consumption as a function of the task
completion deadline Tmax

d for two different types of task heterogeneity. Figure 8a considers
a wide range of computational complexities ck of the individual tasks k, k = 1, . . . , K, that
are drawn uniformly randomly over the range [15, 55] cycles/bit with a prescribed latency
requirement Tmax

d for the entire set of K tasks. Figure 8b considers specified deadlines for
tasks k = 1–7 of FTk = [0.2, 0.4, 0.4, 0.4, 0.6, 0.6, 0.6] s, while tasks k = 8–25 have the deadline
Tmax

d ranging from 2 to 4 s, for a narrower range of task complexities ck.

(a) (b)
Figure 8. Average battery energy consumption vs. task execution deadline Tmax

d ; fixed parame-
ters: uniform random data size bk = 150–180 KB, random task dependency. (a) Overall deadline
FTK < Tmax

d , ck = 15–55 cycles/bit, (b) deadlines for ind. tasks FTk, ck = 32–38 cycles/bit.

ASO and CMCO execute all tasks on MEC servers within 2 s; thus, even if the
deadline Tmax

d increases, the energy consumption remains essentially constant. However,
an increasing deadline Tmax

d allows energy-efficient helpers to execute tasks, even if they
have long processing times, thus reducing the CPCO and EETO energy consumption.
By optimally trading off the task execution options, EETO achieves some moderate energy
reductions for the heterogeneous task scenarios in Figure 8 compared to the minimum
of the CMCO and CPCO energy consumptions. Importantly, EETO flexibly achieves the
minimum energy consumption across the entire examined Tmax

d range.

7. Conclusions
7.1. Summary of This Article

We developed and evaluated the novel Energy-Efficient Task Offloading (EETO)
algorithm for dependent computation tasks in a cooperative edge computing setting with
mobile end devices that contribute computation and communication relay support in a
sliced edge network environment. EETO accommodates arbitrary task dependencies that
are characterized by a general task dependency graph and employs a deep-learning-based
trajectory prediction for the device sojourn times in the wireless transmission ranges. We
have formulated the task offloading optimization problem as a quadratically constrained
quadratic programming (QCQP) problem and developed a solution strategy that obtains
the task offloading decisions through a semidefinite relaxation and stochastic mapping
from the QCQP solution.

The simulation evaluations indicate the EETO consistently achieves low battery en-
ergy consumption across heterogeneous parameter settings and scenarios. In particular,
the EETO substantially outperforms naive benchmarks that compute the tasks locally or
offload all tasks to MEC servers. EETO also outperforms benchmarks with a limited set
of offloading decision options; specifically, we considered benchmarks that allow helper
nodes to only function as task processing (computations) nodes (CPCO) or to only function
as task communication (relay) nodes for offloading to an MEC server (CMCO). We found
that the CPCO and CMCO benchmarks attain the EETO performance in some scenarios,
while in other scenarios, the EETO achieves significant performance gains.
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7.2. Limitations and Future Research Directions

A limitation of the developed EETO algorithm is the computational effort for solving
the QCQP, as noted in Section 5. One strategy for simplifying the QCQP could be to reduce
the considered task offloading options for scenarios where a limited set of options achieve
or nearly achieve the optimal EETO performance. For instance, a machine learning ap-
proach could learn the scenarios where a limited set of offloading options, such as the naive
options or CPCO or CMCO, closely approach the EETO performance and then consider
only the reduced set of offloading options in the solution of the optimization problem.
Based on training data sets that can be created with the optimal EETO offloading decision
making developed in this article, future research could investigate such simplified offload-
ing strategies for scenarios that would need to be identified with pre-trained machine
learning models.

Another strategy for simplifying the QCQP could be to “thin” out the set of potential
helper nodes or MEC server nodes that are considered for task offloading, that is, the helper
and MEC server nodes to be considered in the solution of the QCQP could be pre-selected
according to criteria that indicate a high level of potential usefulness of a helper or MEC
server. In scenarios with a high density of potential helper nodes in the vicinity of a UE
that seeks to offload tasks, the helper nodes could be thinned out randomly. Alternatively,
the pre-selection could be based on the distance from the UE to the helper and MEC
server nodes or the wireless channel conditions. The pre-selection could be aided by
machine learning strategies. For the development of such machine learning strategies,
the formal optimization model and QCQP formulation and solution could be utilized to
generate solution data sets for training. A related machine learning strategy could learn
a direct mapping, i.e., a mapping from a given set of task properties as well as available
communication and computing resources to a set of task offloading decisions. A model
trained with solution data sets obtained from the QCQP solutions could potentially provide
such a direct mapping with a simple neural network forward pass.

The present study has focused on developing a general mathematical model for the
offloading of dependent computation tasks to mobile helper nodes, whereby the task
properties as well as available communication and computation resources are character-
ized through parsimonious model parameters. A future research direction is to conduct
end-to-end evaluations of the task offloading in testbeds with popular distributed comput-
ing applications, such as distributed data management and database operations [68,69],
distributed Internet of Things data analytics [70,71], distributed video analytics [72–74],
and general distributed artificial intelligence and data analytics [75,76]. Moreover, popular
user-oriented applications, such as augmented and virtual reality [77–82] and online gam-
ing [83], are important application domains to examine in the context of cooperative task
offloading to sliced networked computing resources. Such testbed evaluations could exam-
ine the typical values of the model parameters, e.g., for the task complexity ck, as well the
impacts of real-world wireless bandwidth fluctuations and network congestion. Another
important direction for future work is to investigate incentive mechanisms that promote
fair cooperation between users.
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