
Academic Editor: Luis Alonso

Received: 1 May 2025

Revised: 5 June 2025

Accepted: 6 June 2025

Published: 10 June 2025

Citation: Ojetunde, B.; Kurihara, T.;

Yano, K.; Sakano, T.; Yokoyama, H. A

Practical Implementation of Post-

Quantum Cryptography for Secure

Wireless Communication. Network

2025, 5, 20. https://doi.org/10.3390/

network5020020

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

A Practical Implementation of Post-Quantum Cryptography for
Secure Wireless Communication †

Babatunde Ojetunde 1,*,‡ , Takuya Kurihara 1,‡ , Kazuto Yano 1,‡ , Toshikazu Sakano 1 and Hiroyuki Yokoyama 2

1 Wave Engineering Laboratories, Advanced Telecommunications Research Institute International,
2-2-2 Hikaridai, Seika, Soraku, Kyoto 619-0288, Japan; tkurihara@atr.jp (T.K.); kzyano@atr.jp (K.Y.);
t.sakano@atr.jp (T.S.)

2 Adaptive Communications Research Laboratories, Advanced Telecommunications Research
Institute International, 2-2-2 Hikaridai, Seika, Soraku, Kyoto 619-0288, Japan; hr-yokoyama@atr.jp

* Correspondence: ojetunde@atr.jp; Tel.: +81-774-95-1595
† This material was presented in part at the IEEE CCNC 2025 conference.
‡ These authors contributed equally to this work.

Abstract: Recent advances in quantum computing have prompted urgent consideration of
the migration of classical cryptographic systems to post-quantum alternatives. However,
it is impossible to fully understand the impact that migrating to current Post-Quantum
Cryptography (PQC) algorithms will have on various applications without the actual im-
plementation of quantum-resistant cryptography. On the other hand, PQC algorithms come
with complexity and long processing times, which may impact the quality of service (QoS)
of many applications. Therefore, PQC-based protocols with practical implementations
across various applications are essential. This paper introduces a new framework for PQC
standalone and PQC–AES (Advanced Encryption Standard) hybrid public-key encryption
(PKE) protocols. Building on prior results, we focus on securing applications such as
file transfer, video streaming, and chat-based communication using enhanced PQC-based
protocols. The extended PQC-based protocols use a sequence number-based mechanism to
effectively counter replay and man-in-the-middle attacks and mitigate standard cyberse-
curity attack vectors. Experimental evaluations examined encryption/decryption speeds,
throughput, and processing overhead for the standalone PQC and the PQC–AES hybrid
schemes, benchmarking them against traditional AES-256 in an existing client–server envi-
ronment. The results demonstrate that the new approaches achieve a significant balance
between security and system performance compared to conventional deployments. Further-
more, a comprehensive security analysis confirms the robustness and effectiveness of the
proposed PQC-based protocols across diverse attack scenarios. Notably, the PQC–AES hy-
brid protocol demonstrates greater efficiency for applications handling larger data volumes
(e.g., 10–100 KB) with reduced latency, underscoring the practical necessity of carefully
balancing security and operational efficiency in the post-quantum migration process.

Keywords: post-quantum cryptography; post-quantum key exchange; public-key
encryption; IoT/5G/6G security; application; secure communication; digital signature

1. Introduction
The development of quantum computing is advancing rapidly, transforming theoreti-

cal concepts into reality and raising concerns about the security of classical cryptographic
systems. Among recent breakthroughs, Equal1 has launched Bell-1: The First Quantum
System Purpose-Built for the HPC Era [1], complementing advancements by companies

Network 2025, 5, 20 https://doi.org/10.3390/network5020020

https://doi.org/10.3390/network5020020
https://doi.org/10.3390/network5020020
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/network
https://www.mdpi.com
https://orcid.org/0000-0001-9897-0774
https://orcid.org/0000-0003-2752-7534
https://orcid.org/0000-0002-1026-3790
https://doi.org/10.3390/network5020020
https://www.mdpi.com/article/10.3390/network5020020?type=check_update&version=2


Network 2025, 5, 20 2 of 34

such as IBM and Microsoft. Recent studies, such as Esmailiyan et al.’s work on CMOS
position-based charge qubits [2] and Staszewski et al.’s development of cryogenic con-
trollers for quantum dots [3], provide critical insights into the foundational technologies
driving this revolution. It is anticipated that fully developed quantum computers will
render classical cryptography insecure, potentially compromising all data encrypted using
classical methods, including currently encrypted data. Therefore, addressing the imminent
risks posed by traditional cryptographic algorithms has become increasingly urgent.

To address this issue and provide quantum-resistant cryptographic algorithms, the Na-
tional Institute of Standards and Technology (NIST) introduced PQC algorithms [4–6], which
will ensure that applications and network communications are secure against quantum
attacks. However, it is not clear what impact or overhead will be introduced by migrating
applications to be PQC-compliant, as PQC algorithms come with large ciphertext and
key sizes. It is important to evaluate the practical implementation of PQC algorithms in
real-world applications. Therefore, there is a need to investigate the performance trade-offs
associated with the practical use of PQC algorithms and to address the unique requirements
of emerging technologies such as 5G/6G and IoT. Furthermore, it remains uncertain how
to ensure and meet their stringent quality-of-service (QoS) requirements.

NIST has selected four PQC algorithms [7] and released the standards for the selected
PQC algorithms, which include one key encapsulation mechanism (KEM), CRYSTALS-
Kyber (renamed to Module-Lattice-Based Key-Encapsulation Mechanism (ML-KEM) in
the standards) [8], and three digital signature algorithms: CRYSTALS-Dilithium (Module-
Lattice-Based Digital Signature Algorithm (ML-DSA)) [9]; FALCON (Fast-Fourier Trans-
form over NTRU-Lattice-Based Digital Signature Algorithm (FN-DSA)), whose draft will
be released in FIP206; and SPHINCS+ (Stateless Hash-Based Digital Signature Algorithm
(SLH-DSA)) [10]. In addition, as a backup to the ML-KEM algorithm, NIST has selected
HQC [11] for the next PQC KEM algorithm to be standardized among the four PQC algo-
rithms in Round 4: BIKE, Classic McEliece, HQC, and SIKE. The draft standard for HQC is
expected to be released later.

Additionally, while the NIST standard [8] provides detailed specifications for im-
plementing the ML-KEM algorithm, including key generation, key encapsulation, and
decapsulation, it does not finalize specific methods for securing application data. Instead,
it recommends the application of established symmetric-key cryptographic techniques, as
outlined in other NIST standards, for encrypting and decrypting data to protect against
unauthorized access. Therefore, to fully understand the implications of integrating PQC
algorithms into various applications, particularly those in IoT, 5G, and 6G systems with
stringent QoS requirements, a dedicated PQC-based protocol for securing data transmission
is essential.

This paper introduces new and improved PQC-based protocols that extend the PQC
standalone and PQC–AES hybrid PKE protocols to secure the communication of appli-
cation data transmitted between two parties and mitigate common cybersecurity attack
vectors. Specifically, we introduce a sequence-number-based mechanism to the PQC-based
protocols to prevent replay attacks and man-in-the-middle (MITM) attacks, providing a
practical application of PQC algorithms in real-world scenarios. This offers a tangible
example of how these quantum-resistant cryptographic methods can be applied to secure
communication and their impact on applications.

In the PQC standalone mode, a secure communication channel is established between
the sender and receiver through a PQC key encapsulation algorithm. The exchanged public
key is used for encryption, while each party uses its secret key for decryption (asymmetric-
key cryptography). On the other hand, in the hybrid mode, a two-way shared secret
key between the client and server is used to generate a symmetric key (symmetric-key
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cryptography) as the encryption and decryption keys using a key derivation function (KDF).
The encryption and decryption keys are then used by the client and server to encrypt and
decrypt their files.

As stated in our prior work [12], the client generates a pair of PQC public and private
keys, and the server generates its own keys in a similar manner. Using the PQC KEM,
the public key is exchanged, establishing secure communication. Subsequently, the client
encrypts its file using the encryption key, based on the protocol being used (PQC stan-
dalone or PQC–AES hybrid). Upon receiving the encrypted file, the server decrypts it
using the decryption key to access the content. This process ensures end-to-end secure
communication between the two parties (i.e., the client and the server). Furthermore, we
devise various use-case scenarios for implementing the proposed PQC-based protocols in
real-world applications. To integrate these protocols with pre-existing applications, they
are designed to mitigate replay and MITM attacks, enhancing connection security. This
ensures secure and seamless end-to-end communication between the two parties using the
process defined by the proposed protocols. This improvement demonstrates the feasibility
of these protocols for real-world secure communications over wireless networks while
minimizing their impact on application use cases and network performance.

The goal of our proposed protocols is to enable the practical adoption of the PQC
algorithm in real-world applications, balancing its impact on use cases and network perfor-
mance. Our approach could also benefit 5G and 6G development by guiding the transition
to PQC, particularly as there is growing consideration for shifting 5G security to a PKI-
based trust model. The proposed protocols adopt the standardized algorithms by NIST,
as in [8–10], and are designed to facilitate a smooth transition of applications from clas-
sical cryptography to quantum resistance utilizing both standalone PQC and PQC–AES
hybrid protocols, thereby aligning with NIST’s PQC migration guidelines as stated in SP
800-208 [13].

This paper significantly extends our prior work [12], in which we proposed the first
PQC-based and PQC–AES hybrid PKE protocols for wireless file transfer and conducted
initial performance benchmarking. In this paper, we expand on that work by introducing
a new framework that includes a sequence-number-based mechanism to defend against
replay and MITM attacks, along with an expanded security evaluation against common
cybersecurity threats. Moreover, we extend the protocols to support a wider range of
applications, including chat-based communication, video streaming, and live streaming. We
also evaluate system performance under more diverse and realistic conditions and analyze
the impact of these protocols on QoS and operational efficiency. This detailed analysis,
along with the additional protocol advancements, provides critical insights beyond what
was reported in [12] and offers practical guidance for deploying PQC in next-generation
communication systems.

The rest of this paper is organized as follows. Section 2 reviews related works on
PKE and PQC. Section 3 describes the proposed PQC-based protocols, while Section 4
details the use cases and the implementation of the protocol in applications. In Section 5,
we discuss the security analysis of the proposed PQC standalone and PQC–AES hybrid
PKE protocols. Section 6 presents a performance evaluation of the proposed method, and
Section 7 concludes this paper.

2. Related Works
There has been extensive work, as well as several ongoing works, on the implementa-

tion of the PQC algorithm and its variants. In this section, we review some of the existing
works and explain the major difference between our paper and such research.
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Numerous studies have explored the operation [14,15] and implementation of the
PQC KEM algorithm across different hardware platforms. Additionally, most current
implementations of the PQC algorithm focus on its integration with Secure Sockets Layer
(SSL), Transport Layer Security (TLS) [16–18], and Secure Shell (SSH). Furthermore, several
works on PKE have been conducted, and there is ongoing work on the implementation of
PQC algorithms and their variants.

In [19], Singh et al. proposed a new multivariate public-key cryptosystem based
on permutation p-polynomials over finite fields, focusing on the need for secure and
efficient public-key systems that can withstand increasing computing power and quantum
computing. Marco et al. [20] proposed a generic transformation that achieves post-quantum
security for classical signature schemes by hiding the public key with a one-time use of the
key pair. Meanwhile, da Silva Lima et al. [21] evaluated the efficiency of the Kyber KEM
algorithm in a mobile application, specifically analyzing its performance on the x86 and
ARM architectures.

In addition, surveys and reviews highlighting the issues and constraints of migrat-
ing applications to be PQC-compliant have been carried out. Giron [22] discussed the
challenges and research efforts required for migrating applications to PQC due to the
vulnerability of current public-key cryptography schemes to quantum computers. Liu
et al. [23] surveyed the performance and optimization of PQC algorithms for Internet of
Things (IoT) systems. They highlighted the computational cost challenges of PQC algo-
rithms for resource-constrained IoT devices and reviewed recent proposals for optimization.
Similarly, Asif [24] presented a comprehensive review of PQC for the IoT, covering both
theoretical and practical aspects. Li et al. [25] reviewed PQC algorithms, focusing on
the Kyber algorithm, and discussed the challenges and opportunities of post-quantum
security. Balamurugan et al. [26] discussed the need for PQC in light of the threat quantum
computing poses to classical encryption schemes.

Fakhruldeen et al. [27] provided a comprehensive introduction to the emerging field
of quantum-resistant cryptography, emphasizing its critical importance in safeguarding
wireless networks against quantum computing threats. In their paper, they highlighted
the vulnerabilities of current cryptographic standards to quantum attacks and explored
solutions such as PQC and Quantum Key Distribution (QKD), alongside practical migration
strategies like hybrid approaches. They further underscored the role of global standardiza-
tion efforts, particularly by NIST, in advancing PQC algorithms while addressing challenges
in integrating these techniques into existing infrastructures.

Despite these varied approaches, the practical application of the PQC algorithm
remains confined to the aforementioned protocols and has not expanded to other commonly
used applications. Moreover, directly applying PQC algorithms to various applications and
systems may lead to performance issues, as many of these have stringent QoS requirements.
Therefore, to fully assess the impact of direct PQC algorithm usage on application scenarios
within a wireless network, a protocol that allows a PQC algorithm or hybrid mode to be
used for securing application data is essential.

In addition, unlike in most implementations of PQC algorithms, the design and im-
plementation of our proposed protocols extend beyond the integration of PQC into the
traditional TLS/SSH to direct application-layer security and real-world scenarios. The use
of a sequence-number-based mechanism to counter replay and MITM attacks provides an
additional layer of security in addition to providing robust PQC algorithm protection. Un-
like previous studies that focus mainly on algorithmic benchmarks or protocol integration
at the transport layer, our proposed protocols demonstrate how existing applications can
be practically migrated to achieve quantum resistance at the application layer.
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3. PQC-Based PKE Protocols for Using the PQC Algorithm
in Applications

According to the protocols described in [12], NIST recommends using the strongest
algorithm parameters to ensure the effective use of PQC algorithms. The main reason for
this is to avoid the cost and resources required to upgrade cryptographic implementations
to a higher security level, as it is possible that upgrading may require modifications to the
application/software where it will be needed. However, using stronger security parameters
may have an adverse effect on application performance. Therefore, it is important to
understand the impact of using PQC algorithms in various applications before carefully
designing an optimization method or selecting a PQC algorithm for data encryption and
decryption in various applications. To determine the impact of using PQC algorithms on
applications and various networks, a protocol to encrypt and decrypt data transferred over
the network is necessary. Therefore, we propose PQC standalone and PQC–AES hybrid
PKE protocols that assume safe key exchange between the client and the server using the
PQC KEM algorithm.

3.1. PQC Standalone PKE Protocol

The KEM is often used in conjunction with a PKE scheme to securely exchange en-
cryption keys, which can then be used to encrypt data using the PKE scheme [6]. Therefore,
in this paper, we select PKE as the cryptographic scheme for using PQC algorithms in
various applications.

In the improved PQC standalone PKE protocol shown in Algorithm 1, both the
client (C) and the server (S) generate two pairs of keys using post-quantum cryptographic
algorithms. These include a public/private (secret) key pair for the KEM (pkkc and skkc for
the client, and pkks and skks for the server), and a public/private (secret) key pair for the
signature (pksc and sksc for the client, and pkss and skss for the server). The client begins
by signing its public KEM key (pkkc) with its private signature key (sksc) to create a digital
certificate (cert[pkkc]). This certificate, along with the client’s public signature key (pksc), is
sent to the server to establish authenticity (Algorithm 1, lines 3–7).

Upon receiving the certificate and public signature key from the client, the server
verifies the authenticity of the certificate using the client’s public signature key (pksc). If
the verification is successful, it confirms that the client’s public KEM key (pkkc) has not
been tampered with. The server then performs encapsulation on the client’s public KEM
key (pkkc) to generate a shared secret (ssc) and a ciphertext (ctc). The server also signs its
public KEM key (pkks) with its private signature key (skss) to create its digital certificate
(cert[pkks]). The server sends this certificate, along with its public signature key (pkss) and
the ciphertext (ctc), back to the client (Algorithm 1, lines 8–18).

The client receives the server’s certificate, public signature key, and ciphertext. It
verifies the authenticity of the server’s certificate using the server’s public signature key
(pkss). If this verification succeeds, it confirms that the server’s public KEM key (pkks) is
legitimate. The client then decapsulates the received ciphertext (ctc) using its private KEM
key (skkc) to derive a shared secret (ss′c). Next, the client performs encapsulation on the
server’s public KEM key (pkks) to generate another shared secret (sss) and a ciphertext (cts),
which it sends back to the server (Algorithm 1, lines 19–30).
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Algorithm 1 PQC standalone PKE protocol

1: Input: Data to be transmitted (datac from Client, datas from Server)
2: Output: Securely exchanged data
3: Client (C):
4: Generate PQC KEM key pair: (pkkc, skkc)
5: Generate PQC Signature key pair: (pksc, sksc)
6: cert[pkkc]← Sign(sksc, pkkc)
7: Send (cert[pkkc], pksc, pkkc) to Server (S)
8: Server (S):
9: Generate PQC KEM key pair: (pkks, skks)

10: Generate PQC Signature key pair: (pkss, skss)
11: validc ← Verify(pksc, cert[pkkc], pkkc)
12: if validc = TRUE then
13: (ctc, ssc)← Encapsulate(pkkc)
14: cert[pkks]← Sign(skss, pkks)
15: Send (cert[pkks], pkss, pkks, ctc) to Client (C)
16: else
17: Abort
18: end if
19: Client (C):
20: valids ← Verify(pkss, cert[pkks], pkks)
21: if valids = TRUE then
22: ss′c ← Decapsulate(skkc, ctc)
23: (cts, sss)← Encapsulate(pkks)
24: Send cts to Server (S)
25: seqc ← GenerateSequenceNumber()
26: macc ← HMAC-SHA256(ss′c||sss, “confirmation”||seqc)
27: Send macc to Server (S)
28: else
29: Abort
30: end if
31: Server (S):
32: ss′s ← Decapsulate(skks, cts)
33: seqs ← GenerateSequenceNumber()
34: macs ← HMAC-SHA256(ssc||ss′s, “confirmation”||seqs)
35: if macc = HMAC-SHA256(ssc||ss′s, “confirmation”||seqc) then
36: Send macs to Client(C)
37: else
38: Abort
39: end if
40: Client(C):
41: if macs = HMAC-SHA256(ss′c||sss, “confirmation”||seqs) then
42: Secure communication is established.
43: else
44: Abort
45: end if
46: Client-to-Server Data Transfer:
47: ctdatac ← PQC-Encrypt(pkks, datac||seqc)
48: Send ctdatac to Server (S)
49: Server (S):
50: data′c||seq′c ← PQC-Decrypt(skks, ctdatac)
51: if seq′c is valid (not replayed) then
52: Process data′c
53: else
54: Reject // Replay detected
55: end if



Network 2025, 5, 20 7 of 34

Algorithm 1 Cont.

56: Server-to-Client Data Transfer:
57: ctdatas ← PQC-Encrypt(pkkc, datas||seqs)
58: Send ctdatas to Client (C)
59: Client (C):
60: data′s||seq′s ← PQC-Decrypt(skkc, ctdatas)
61: if seq′s is valid then
62: Process data′s
63: else
64: Reject
65: end if

To ensure that both parties have derived identical shared secrets and to prevent
MITM attacks, a robust key confirmation process is employed. After deriving their re-
spective shared secrets, both parties compute message authentication codes (MACs) using
“hash-based message authentication code using the secure hash algorithm 256-bit (HMAC-
SHA256)” over a combination of their shared secrets, a predefined “confirmation” string,
and unique sequence numbers generated independently by each party. The MACs are
exchanged between the client and server. After receiving a MAC, each party verifies that it
matches its locally computed MAC. If both MACs match, it confirms that no MITM attack
has occurred and that both parties share identical secrets (i.e., as shown for the client and
the server in Algorithm 1, lines 31–45).

Once mutual confirmation is achieved, secure communication is established. The
proposed protocols utilize core PQC primitives (KEMs and digital signatures) for key
establishment and authentication, which is similar to the PQC-TLS/PQC-SSH handshake
without the additional message negotiation steps (i.e., ClientHELLO/ServerHELLO) re-
quired in PQC-TLS. For data transfer from the client to the server, the client encrypts the
data (datac) along with its sequence number (seqc) using the server’s public KEM key (pkks).
The resulting ciphertext (ctdatac ) is sent to the server (Algorithm 1, lines 46–48). The server
receives and decrypts the ciphertext using its private KEM key (skks), retrieves both the
data and sequence number, and checks whether the sequence number is valid (i.e., not
replayed or out of order). If valid, it processes the data; otherwise, it rejects the data to
prevent replay attacks (Algorithm 1, lines 49–55).

A similar process is followed for data transfer from the server back to the client. The
server encrypts its data (datas) along with its sequence number (seqs) using the client’s
public KEM key (pkkc) to produce a ciphertext ctdatas , which is sent to the client. Upon
receiving this ciphertext, the client decrypts it using its private KEM key (skkc), retrieves
both the data and the sequence number (seq′s), and checks whether the sequence number is
valid. If the sequence number is valid, the client processes the data; otherwise, it rejects the
data to prevent replay attacks (Algorithm 1, lines 56–65).

The proposed protocol introduces various enhancements compared to traditional
PQC-based PKE protocols. First, we incorporate explicit certificate validation during the
initial handshake steps to ensure that the exchanged KEM public keys are authentic and
untampered. Second, we strengthen the replay protection by including unique sequence
numbers in data encryption. Finally, by integrating robust HMAC-based key confirmation
mechanisms, our proposed protocol significantly reduces vulnerabilities to MITM attacks
while ensuring that shared secrets are securely established between legitimate parties.
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3.2. PQC–AES Hybrid PKE Protocol

To enhance security and performance, especially against evolving threats, we introduce
a PQC–AES hybrid PKE protocol. This approach combines the quantum resistance of PQC
with the efficiency and established security of AES.

In this PQC–AES hybrid PKE protocol, as shown in Algorithm 2, we build upon the
key exchange process already outlined for the PQC standalone PKE protocol. Following
a successful and authenticated key exchange between the client and the server using
the steps defined in Algorithm 1 (lines 1–24), both parties transition to utilizing AES
encryption for subsequent data transfer. This approach leverages the best attributes of
both cryptographic approaches: the quantum-resistant security offered by PQC algorithms
during the initial key establishment and the speed and efficiency of AES for the bulk
encryption of application data.

After the successful establishment and confirmation of shared secrets ssc and sss, both
the client and the server independently derive AES encryption and MAC keys. A KDF is
applied to the concatenation of these shared secrets, along with a unique salt and informa-
tion string, using the HMAC-based extract-and-expand hash-based message authentication
code key derivation function (HKDF) with SHA-256. This process yields two essential
keys: K1, designated for AES encryption, and K2, designated for HMAC-based message
authentication (Algorithm 2, lines 5–6).

For data transfer from the client to the server, the client begins by generating a unique
initialization vector, ivc, and a sequence number, seqc, to provide replay protection. Subse-
quently, the data, datac, is encrypted using AES with the derived key, K1, and the initializa-
tion vector, ivc, and incorporating the sequence number, seqc, to form the ciphertext, ctdatac .
Following this, the client computes a MAC over the ciphertext, ctdatac , and the sequence
number, seqc, using HMAC-SHA-256 with the authentication key, K2, resulting in macdatac .
The client then sends the initialization vector, ivc; the ciphertext, ctdatac ; and the MAC,
macdatac to the server (Algorithm 2, lines 7–12).

Upon receiving this data, the server begins by verifying the integrity and authenticity
of the data. It computes its own MAC over the received ciphertext, ctdatac , and the sequence
number, seqc, using the same HMAC-SHA-256 algorithm and the authentication key K2,
generating a server-side MAC. The server then compares the received client-side MAC,
macdatac , with its locally computed MAC. If these MACs match, the server proceeds with
decryption, ensuring that the received data has not been tampered with during transmission
and that it originates from the authenticated client. The server decrypts the ciphertext,
ctdatac , using AES with the key, K1, and the initialization vector, ivc, and after decryption, it
also verifies the sequence number against previously received sequence numbers to detect
any replay attacks. If the sequence number is valid and the decryption is successful, the
server processes the received data, data′c; otherwise, the server rejects the data to prevent
potential security breaches (Algorithm 2, lines 13–23).

Similarly, the procedure is used for secure data transfer from the server to the client.
The server also generates a unique ivS and uses K1 to encrypt the data while applying
HMAC to ensure authentication of the server by the client. The client also performs
decryption in a similar way to ensure that the data is from the intended server (Algorithm 2,
lines 24–40).

By combining the strengths of both PQC and AES, the protocol provides resilience
against both classical and quantum attacks. Even if the PQC algorithm used for key
exchange were compromised, AES encryption would still provide a layer of security.
Furthermore, the hybrid approach can improve overall performance since AES encryption
and decryption operations are generally faster and more efficient than PQC standalone
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encryption. Moreover, since AES-256 is a widely adopted and well-analyzed symmetric
encryption algorithm, it has been demonstrated to be secure.

In the implementation of the proposed hybrid protocol and conventional AES-256
used in the evaluation, we adopt AES-GCM as the symmetric encryption scheme due to its
strong security properties as an authenticated encryption algorithm [28] and its efficient
performance. In comparison, AES-CBC requires separate MAC handling, making it more
prone to implementation issues. Therefore, AES-GCM is prioritized over other types of
symmetric encryption schemes.

Algorithm 2 PQC–AES hybrid PKE protocol

1: Input: Data to be transmitted (datac from Client, datas from Server)
2: Output: Securely exchanged data
3: Client (C) and Server (S):
4: Perform steps 1–24 of Algorithm 1 to establish shared secrets ssc and sss (and confirm

them).
5: Key Derivation (Both C and S):
6: (K1, K2)← HKDF(ssc||sss, salt, “AES keys”)
7: Client-to-Server Data Transfer:
8: ivc ← GenerateInitializationVector()
9: seqc ← GenerateSequenceNumber()

10: ctdatac ← AES-Encrypt(K1, ivc, datac, mode, seqc)
11: macdatac ← HMAC-SHA256(K2, ctdatac ||seqc)
12: Send (ivc, ctdatac , macdatac) to Server (S)
13: Server (S):
14: if macdatac = HMAC-SHA256(K2, ctdatac ||seqc) then
15: data′c ← AES-Decrypt(K1, ivc, ctdatac , mode, seqc)
16: if seqc is valid (not a replay) AND Decryption successful then
17: Process data′c
18: else
19: Reject
20: end if
21: else
22: Abort
23: end if
24: Server-to-Client Data Transfer:
25: ivs ← GenerateInitializationVector()
26: seqs ← GenerateSequenceNumber()
27: ctdatas ← AES-Encrypt(K1, ivs, datas, mode, seqs)
28: macdatas ← HMAC-SHA256(K2, ctdatas ||seqs)
29: Send (ivs, ctdatas , macdatas) to Client (C)
30: Client (C):
31: if macdatas = HMAC-SHA256(K2, ctdatas ||seqs) then
32: data′s ← AES-Decrypt(K1, ivs, ctdatas , mode, seqs)
33: if seqs is valid AND Decryption Successful then
34: Process data′s
35: else
36: Reject
37: end if
38: else
39: Abort
40: end if

4. Practical Implementation of PQC-Based PKE Protocols
Since there is no function for data encryption and decryption in current PQC algorithm

implementations, we enhance the PQC algorithm implementation by adding encryption
and decryption functions. This enables data encryption and decryption in both PQC stan-
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dalone and PQC–AES hybrid protocols. Both protocols utilize the PQC key encapsulation
mechanism (KEM) for secure key exchange between the client and server.

4.1. Post-Quantum Cryptography (PQC) Uses in Applications

To demonstrate the impact of the characteristics of PQC algorithms, PQC-based proto-
cols need to be utilized in real-world applications. However, current implementations of
PQC algorithms using PKE are limited to encrypting messages of a fixed size. For instance,
CRYSTALS-Kyber, which is based on an IND-CPA-secure PKE scheme, and BIKE, which
utilizes PKE from Quasi-Cyclic Moderate Density Parity-Check (QC-MDPC) codes, can
only encrypt messages of a fixed length of 32 bytes. HQC, also based on IND-CPA-secure
properties, can accept messages of a fixed length of 16 bytes before encoding.

Conversely, when a hybrid approach is employed, the KDF generates symmetric
keys of a consistent length for all PQC algorithms. While AES cipher modes typically use
key sizes of 128, 192, or 256 bits (16, 24, or 32 bytes), it does not support key sizes larger
than 256 bits. Therefore, to use the PQC standalone PKE directly for the encryption and
decryption of data that exceeds these fixed sizes without the hybrid implementation, it is
necessary to segment the message and reassemble the decrypted segments to reconstruct
the original data. The process for this splitting is shown in Figure 1. In this instance, first,
the input data is split into blocks of an acceptable size, as shown in Figure 1a. Each block is
then encrypted sequentially using the receiver’s public key. The encrypted blocks are sent
to the intended party. As shown in Figure 1b, on the receiver side, after the data is received,
the encrypted data is processed as a stream. Each block is decrypted using the receiver’s
private key and then aggregated to reconstruct the original data.

(a) (b)

Figure 1. Encryption and decryption processes of PQC protocols. (a) Encryption process.
(b) Decryption process.

In our proposed PQC standalone protocol, after establishing a secure communication
(i.e., session key) using the standardized PQC KEMs and digital signatures (e.g., CRYSTALS-
Kyber, BIKE, and HQC), each segmented message is encrypted within that session using
the established encryption and decryption keys. This approach aligns with standard
cryptographic practice, where a session key securely negotiated using an IND-CCA2 secure
KEM is reused for multiple encryptions within the same session. The security of each
encrypted segment is ensured by the PQC algorithm and the sequence number mechanism
introduced to counter replay attacks. Moreover, the proposed PQC standalone protocol
leverages periodic re-keying when a session is too long. For this, a new set of PQC KEM and
signature algorithm keys is generated. The re-keying process is currently not implemented
in our evaluation and will be considered as part of future work.
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4.1.1. Real-World Scenarios for Proposed PQC-Based Protocols

Consider a real-world scenario, shown in Figure 2, involving two devices representing
the client and server, each equipped with the necessary software, including PQC and AES
libraries. For this application scenario, we consider four use cases: (i) file transfer, (ii) chat,
(iii) video streaming, and (iv) live streaming. Assuming that the client is Alice while the
server is Bob, for Alice to send confidential data to Bob using any of these use cases within
a PQC-based system to ensure the data remains secure against potential future quantum
computer attacks, the following process is used:

1. Bob generates a pair of keys using a PQC algorithm: a public key (pkkb) and a private
key (skkb).

2. Bob shares his public key (pkkb) with Alice while keeping the private key (skkb) secret.
3. Alice prepares the data for transmission and splits it into multiple blocks if it exceeds

the maximum byte size allowed by the PQC algorithm, as shown in Figure 1a.
4. Alice encrypts each block sequentially using Bob’s public key (pkkb). The encrypted

blocks are combined into a single encrypted file.
5. Alice sends the encrypted file through a secure network.
6. The access point routes the encrypted file to Bob without decrypting it.
7. Bob receives the encrypted file and uses his private key (skkb) to decrypt each block.
8. He reassembles the decrypted blocks to reconstruct the original document, as shown

in Figure 1b.

(a) (b)

(c) (d)

Figure 2. Use cases for PQC algorithm: (a) File transfer, (b) chat, (c) video streaming, (d) live
streaming.

Using PQC-based protocols, Alice and Bob can ensure that their communication re-
mains secure against threats posed by quantum computing. The workflow of the proposed
PQC-based protocols described above can be applied to various real-world scenarios. For
file transfers, the protocol ensures the secure transmission and reconstruction of files di-
vided into encrypted blocks. In chat applications, messages can be encrypted as individual
small blocks to ensure confidentiality in real-time conversations. For video streaming,
secure pre-encryption of video segments guarantees that the data remains protected dur-
ing transmission. Lastly, live streaming benefits from the protocol by encrypting and
transmitting content in near-real time, with a focus on maintaining low latency to preserve
streaming quality. These use cases demonstrate the versatility of the PQC-based protocols in
addressing diverse application requirements while securing data against quantum threats.
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5. Security Analysis of the Proposed Protocols
This section presents a detailed security analysis of the proposed PQC standalone

and PQC–AES hybrid PKE protocols. We evaluate the resilience of these protocols against
various attack vectors, considering both classical and post-quantum threats.

5.1. Security Analysis of the PQC Standalone PKE Protocol

The PQC standalone PKE protocol relies entirely on the security of the chosen PQC
algorithms for both key exchange (KEM) and data encryption. We analyze its strengths
and weaknesses, detailing the assumptions underlying its security.

5.1.1. Key Exchange (PQC KEM)

The key exchange phase uses a post-quantum secure KEM, such as CRYSTALS-Kyber,
standardized by NIST.

Security Assumption

The security of the key exchange depends on the computational infeasibility of solving
the underlying hard mathematical problem (e.g., Module-LWE problem) for quantum
adversaries. This is based on cryptanalysis conducted during the NIST PQC standardiza-
tion process.

Formal Statement

The confidentiality of the shared secret rests on the IND-CCA2 security of the chosen
KEM in the quantum random-oracle model. If an adversary solves the Module-LWE
problem or breaks the IND-CCA2 security of the KEM, the confidentiality of the shared
secret is compromised.

5.1.2. Key Confirmation

Key confirmation prevents MITM attacks, ensuring both parties derive the same
shared secret.

Mechanism

After decapsulation, parties derive a shared secret using a KDF. To confirm the shared
secret, each party computes and exchanges HMACs (using HMAC-SHA-256) over a pre-
defined data structure including nonces or session identifiers. The MACs are verified to
ensure that no MITM attacker has replaced either party’s public key.

Security Assumption

The security relies on the following:

1. The collision resistance of SHA-256.
2. The pseudorandomness and unforgeability properties of HMAC.

Formal Statement

If SHA-256 is collision-resistant and HMAC is unforgeable under chosen-message
attacks, an adversary cannot impersonate either party or inject their own public key into
the key exchange process.

5.1.3. Data Encryption and Decryption (PQC)

The PQC standalone PKE protocol directly encrypts data using a public-key encryption
scheme derived from the chosen KEM.
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Security Assumption

The confidentiality of encrypted data depends on the post-quantum security of the
public-key encryption scheme derived from the KEM, including resistance to chosen-
ciphertext attacks (IND-CCA2 security).

Formal Statement

The confidentiality of transmitted data is guaranteed if the following conditions hold:

1. The underlying KEM is IND-CCA2 secure.
2. The public-key encryption scheme derived from it inherits this IND-CCA2

security property.

If an adversary breaks these assumptions, they can recover plaintext data from ciphertexts.

5.1.4. Replay Protection

Replay attacks involve an attacker capturing and retransmitting a valid encrypted
message to disrupt communication or impersonate a legitimate sender.

Mechanism

To mitigate replay attacks, the protocol implements the following mechanisms:

1. Sequence numbers are incorporated into each encrypted message.
2. The receiver tracks these sequence numbers to ensure they are unique and monotoni-

cally increasing.
3. Messages with duplicate or out-of-order sequence numbers are rejected.

Security Assumption

This approach assumes that sequence numbers are generated uniquely and managed
correctly by both parties during communication.

Formal Statement

If sequence numbers are generated uniquely and monotonically increasing, replayed
messages will be detected and rejected, preventing replay attacks.

5.1.5. Overall Security

The overall security of this protocol is determined by its reliance on post-quantum
cryptographic primitives for both key exchange and data encryption.

Advantages

1. Post-Quantum Security: Provides resistance against quantum adversaries due to
reliance on PQC algorithms.

2. Simplified Design: Avoids additional complexity introduced by hybrid schemes.

Limitations

1. Single Point of Failure: The protocol’s security entirely depends on the strength of the
PQC algorithms used (both KEM and public-key encryption). If these algorithms are
compromised, both key exchange and data confidentiality are at risk.

2. Performance Overhead: PQC standalone encryption/decryption operations are com-
putationally intensive compared to symmetric cryptography like AES-256.

Formal Statement

The overall security of this protocol is bounded by the security assumptions of its un-
derlying PQC algorithms. If an adversary breaks the post-quantum hardness assumptions
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(e.g., Module-LWE problem), they can compromise both key exchange and data confiden-
tiality. Unlike hybrid approaches, breaking one component compromises overall security.

5.2. Security Analysis of the PQC–AES Hybrid PKE Protocol

The hybrid protocol leverages the strengths of both post-quantum key exchange (using
a KEM like CRYSTALS-Kyber) and a well-established symmetric cipher (AES-256). This
defense-in-depth approach enhances overall security.

5.2.1. Security of the Key Exchange (PQC KEM)

The key exchange phase is identical to that described for the PQC standalone PKE
protocol (Section 5.1.1). The same security assumptions and formal statements apply.

5.2.2. Key Confirmation

Key confirmation is performed as described for the PQC standalone PKE protocol
(Section 5.1.2) to prevent MITM attacks.

5.2.3. Security of Data Encryption (AES-256)

Data encryption uses AES-256, which is well-established and understood.

Security Assumption

AES-256 is considered secure against classical attacks. The hybrid approach aims for
defense-in-depth; even if the PQC KEM is broken, the attacker still faces the challenge of
breaking AES-256.

Formal Statement

The data encryption phase utilizes AES-256 with a key size of 256 bits. AES-256 is widely
considered secure against classical computational attacks, providing 256 bits of security. We
assume that the AES-256 implementation is free from side-channel vulnerabilities.

5.2.4. Overall Security Argument

The hybrid protocol combines the strengths of both PQC and AES-256.

Formal Statement

The overall security of the hybrid protocol is bounded by the security of its weakest
component. By combining a post-quantum KEM with AES-256, the protocol achieves
a defense-in-depth strategy. An attacker would need to break both the PQC KEM and
AES-256 to compromise the confidentiality of the data. This provides a higher level
of security against both classical and potential future quantum attacks. Since PQC en-
cryption/decryption algorithms are often significantly slower than AES-256, the hybrid
approach leverages the best aspects of both: post-quantum key exchange and fast symmet-
ric encryption.

5.3. Robustness Against Common Attack Vectors

To demonstrate the robustness of our proposed protocols, we consider their resilience
against several standard cybersecurity attack vectors.

5.3.1. Eavesdropping

Eavesdropping is the primary threat addressed by encryption. Both protocols provide
protection against eavesdropping, although with different security assumptions.
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PQC Standalone PKE

The PQC standalone PKE protocol protects against eavesdropping by encrypting data
using the receiver’s public key, which only the receiver, possessing the corresponding
private key, can decrypt. The security relies on the post-quantum security of the underlying
PQC algorithm.

PQC–AES Hybrid PKE

The hybrid protocol provides two layers of protection against eavesdropping. First,
the AES-256 key is exchanged securely using the PQC KEM. Second, the data itself is
encrypted with AES-256. An eavesdropper would need to break both the PQC KEM and
AES-256 to recover the plaintext.

5.3.2. Man-in-the-Middle (MITM) Attacks

Both protocols include a key confirmation step using HMAC-SHA-256 to prevent
MITM attacks, ensuring that both parties have derived the same shared secret and that an
attacker has not successfully impersonated either party during the key exchange.

5.3.3. Replay Attacks

Replay attacks are mitigated differently depending on the AES mode used.

PQC–AES Hybrid PKE (with AES-GCM)

When using AES-GCM, the GCM mode inherently provides protection against replay
attacks. The authentication tag incorporates the initialization vector (IV) and ciphertext, so
replaying a message with a different IV (which should be unique for each message) will
result in authentication failure.

PQC–AES Hybrid PKE (with AES-CBC or Other Modes)

To mitigate replay attacks when not using GCM, we incorporate sequence numbers or
timestamps within the HMAC calculation. The receiver tracks these sequence numbers
or /timestamps and rejects any messages that are out of order or outside an acceptable
time window.

5.3.4. Chosen-Ciphertext Attacks (CCAs)

This is relevant to the PQC KEM used in both protocols. NIST’s selections are gen-
erally CCA-secure. The chosen PQC KEM (e.g., CRYSTALS-Kyber) is designed to be
IND-CCA2 secure, meaning it is resistant to chosen-ciphertext attacks. This ensures that an
attacker cannot gain information about the plaintext even if they can choose ciphertexts to
be decrypted.

5.3.5. Side-Channel Attacks

Side-channel attacks exploit physical information leaked during computation (power
consumption, timing, etc.). While our current evaluation does not directly address side-
channel attacks, we acknowledge their importance, particularly for implementations on
embedded devices. Mitigation strategies against side-channel attacks such as constant-time
implementations and masking techniques are crucial for real-world deployments and are a
subject of ongoing research in the PQC community. We recommend using side-channel-
resistant implementations of the chosen PQC algorithms.

5.3.6. Known-Plaintext Attacks

If an attacker somehow knows some of the plaintext and tries to use this to break the
encryption, the AES-256 and PQC KEMs are designed to be resistant to known-plaintext attacks.
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6. Evaluation
In this section, we conduct a performance evaluation of the proposed protocols through

experiments with PQC algorithms. First, we enhance the PQC algorithm implementation
by adding encryption and decryption functions, enabling data encryption and decryption
using both PQC standalone algorithms and the PQC–AES hybrid protocols. Second, we
implement our proposed protocols (i.e., PQC standalone and PQC–AES hybrid PKE proto-
cols). Furthermore, we measure the time required to generate PQC KEM keys and PQC
signature keys, as well as the time required to perform encapsulation, decapsulation, and
file encryption and decryption, among other operations. We use our extended version
(which can now handle data encryption and decryption) of the PQC algorithm API imple-
mentation provided by Open Quantum Safe (Liboqs) [29], which is a collection of all the
PQC algorithms selected by NIST as one standard library.

6.1. Experimental Settings

In our implementation, we used the four use cases described in Section 4.1.1 (i.e., file
transfer, chat, video streaming, and live streaming) and evaluated our protocols based on
these cases. The experiment was conducted on two separate machines: one with an Intel®

Core™ i7-10510U CPU, Mouse laptop (sourced: Osaka, Japan) running at a base frequency
of 1.80 GHz × 8 and 15.5 GiB of memory, running Ubuntu 20.04 LTS desktop, which served
as the server; and another with an Intel® Core™ i7-10510U CPU, Mouse laptop (sourced:
Osaka, Japan) running at a base frequency of 1.80 GHz × 8 and 15.5 GiB of memory, running
Ubuntu 20.04 LTS desktop, which was used as the client system. Table 1 presents the PC
settings and the configurations of the systems used.

Table 1. Configuration of client–server system.

Parameter Value
Server Client

PC Mouse Laptop Mouse Laptop

OS Ubuntu 20.04 desktop Ubuntu 20.04 desktop

Network/Protocol IEEE 802.11n IEEE 802.11n

Frequency band 2.4 GHz 2.4 GHz

Maximum data rate 144 Mbps 144 Mbps

Sniffer Wireshark Wireshark

Furthermore, the standardized algorithms selected by NIST were considered. These
include the CRYSTALS-Kyber KEM algorithms—ML-KEM-512, ML-KEM-768, and ML-
KEM-1024 (referred to as K512, K768, and K1024 hereafter)—as well as alternative KEM
algorithms: BIKE (Round 4)—BIKE-L1, BIKE-L3, and BIKE-L5—and HQC–HQC-128,
HQC-192, and HQC-256. For the signature algorithms, FALCON (Round 3)variants—FN-
DSA-512 and FN-DSA-1024 (referred to as F512 and F1024 hereafter)—were also evaluated.
To evaluate the proposed protocols and the impact of PQC algorithms on applications, we
used client–server file transfer communication between two different systems using Python
3.8.10 socket programming with Transmission Control Protocol/User Datagram Protocol
(TCP/UDP). The client encrypts a file and sends it to the server. TCP traffic generated from
the socket programming was sent from the PC2 machine, acting as the client, and received
by the PC1 machine, acting as the server. The traffic data was transmitted using IEEE
802.11n wireless LAN in the 2.4 GHz band. The traffic between the client and server was
captured using Wireshark [30] from the server system. The experimental setup is shown in
Figure 3.
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Additionally, we implemented conventional cryptography (i.e., AES-256) to compare
and highlight the impact of the PQC algorithm on file transfer. The goal of our evaluation
was to facilitate the practical use of the PQC algorithm in real applications and to determine
the impact of using the PQC algorithm on the application use case and network. We
considered two main evaluation scenarios: (i) the performance of the PQC algorithm to
determine how fast it takes to generate PQC algorithm keys, complete the KEM process
(encapsulation and decapsulation) (i.e., non-pre-distributed key agreement process), apply
digital signatures (signing and verification), and perform encryption and decryption; and
(ii) the impact of the PQC algorithm on file transfer applications to determine which PQC
algorithm is more suitable for real-time applications without extensive overhead. For this,
we measured the processing time for encrypted data transfer, throughput, and round-trip
time (RTT).

AP

PC1 (UbuntuPc)

(Server)

192.168.0.105

192.168.0.100

PC2 (UbuntuPc)

(Client)

TCP packet

(socket programming)

(On desk)

Figure 3. Experimental settings.

6.2. Results and Discussion
6.2.1. Performance Results of PQC Algorithm Key Generation

In order to evaluate the performance implications of integrating PQC algorithms, we
measured the average key generation time (Avg. Key Gen.), key encapsulation time (Avg.
Encap.), and key decapsulation time (Avg. Decap.) for the PQC KEM algorithms, as well as
the signature key generation time (Sig. Gen. Time), signing time, and verification time for
the PQC signature algorithms across the client and server systems. Tables 2 and 3 show the
average time it took to generate the PQC algorithm keys (PQC KEM and signature keys),
encapsulate and decapsulate the KEM keys, and sign and verify PQC signatures on the
client and server systems.

For the KEM algorithms, Table 2 shows that for BIKE KEM at all security levels, BIKE-
L1 achieved the fastest average key generation time on the client system of 0.43 ms, while
BIKE-L5 required 1.95 ms, reflecting a progressive increase in computational demand with
higher security levels. Conversely, the server-side key generation times for BIKE-L1, BIKE-
L3, and BIKE-L5 were 1.23 ms, 2.63 ms, and 5.05 ms, respectively, demonstrating a more
pronounced rise compared to the client-side metrics. The encapsulation and decapsulation
times also increased with security levels, particularly for the BIKE and HQC algorithms.

Furthermore, as shown in the table, BIKE-L5 decapsulation required 14.42 ms on the
client system and 15.94 ms on the server system, while HQC-256 decapsulation required
49.77 ms (client) and 53.40 ms (server). However, the CRYSTALS-Kyber algorithms di-
verged from this trend: K768 achieved the fastest client-side key generation time of 0.19 ms,
surpassing both K512 (0.92 ms) and K1024 (1.00 ms). On the server side, the CRYSTALS-
Kyber results showed that K1024 was the most efficient for key generation (0.49 ms), encap-
sulation (0.09 ms), and decapsulation (0.11 ms), with K512 and K768 achieving marginally
higher times.
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Table 2. Average times to generate PQC algorithm KEM keys.

PQC KEM Algorithm

Client Server
Avg.

Key Gen.
(ms)

Avg.
Encap.
(ms)

Avg.
Decap.
(ms)

Avg.
Key Gen.

(ms)

Avg.
Encap.
(ms)

Avg.
Decap.
(ms)

BIKE-L1 0.43 0.12 1.64 1.23 0.12 1.52
BIKE-L3 0.80 0.21 5.68 2.63 0.19 5.79
BIKE-L5 1.95 0.36 14.42 5.05 0.33 15.94
HQC-128 3.45 5.76 10.23 5.60 4.03 8.44
HQC-192 4.88 12.83 28.11 9.70 11.99 32.20
HQC-256 8.73 17.96 49.77 14.32 1.81 53.40

K512 0.92 0.10 0.17 1.83 0.10 0.11
K768 0.19 0.09 0.16 0.37 0.10 0.10

K1024 1.00 0.14 0.18 0.49 0.09 0.11

Table 3. Average times to generate PQC algorithm signature keys.

PQC Signature

Client Server
Avg.

Sig. Key
Gen. (ms)

Avg.
Signing

(ms)

Avg.
Ver.
(ms)

Avg.
Sig. Key

Gen. (ms)

Avg.
Signing

(ms)

Avg.
Ver.
(ms)

F512 7.01 0.33 0.28 9.68 0.37 0.82
F1024 19.00 1.43 0.31 24.51 0.67 0.79

Furthermore, Table 3 shows the performance of the PQC signature algorithms. Accord-
ing to the results, F512 required 7.01 ms for key generation on the client system, significantly
faster than F1024’s 19.00 ms. A similar trend was observed on the server system, with
F512 and F1024 requiring 9.68 ms and 24.51 ms, respectively. The signing times for F512
were 0.33 ms (client) and 0.37 ms (server), whereas F1024 took 1.43 ms (client) and 0.67 ms
(server), illustrating a reversal in efficiency, favoring the server for higher security levels.
The verification times remained consistent for F512 across the systems (0.28 ms client vs.
0.82 ms server) but diverged slightly for F1024 (0.31 ms client vs. 0.79 ms server). These
results underscore the trade-offs between security levels and computational overhead,
particularly for server-side operations.

6.2.2. Performance Results of PQC Algorithm Encryption and Decryption

In the hybrid protocol, AES-256 is used for data encryption/decryption. It was
expected that the times for these operations should remain consistently low, meaning they
should not vary significantly with the chosen PQC KEM, as the underlying symmetric
cipher remains the same. To focus on the computational differences introduced by the PQC
algorithms themselves, the subsequent figures present the encryption and decryption times
specifically for the PQC-only protocol. Therefore, we evaluated the data encryption and
decryption times for the PQC KEM algorithms. The encryption process was executed on
the client system, while decryption was performed on the server system.

Figure 4 shows the average encryption times for the BIKE, HQC, and CRYSTALS-
Kyber algorithms when processing files of sizes 1 KB, 10 KB, and 100 KB. For BIKE-L1, as
shown in Figure 4a, the encryption times remained stable across file sizes, with 0.20 ms
for 1 KB, 0.199 ms for 10 KB, and 0.148 ms for 100 KB. However, BIKE-L3 exhibited higher
encryption times for larger files, increasing from 0.47 ms (1 KB) to 0.63 ms (10 KB) before
declining to 0.46 ms (100 KB), while BIKE-L5 ranged from 0.58 ms (1 KB) to 0.93 ms (10 KB)
and 0.82 ms (100 KB).
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Conversely, the HQC encryption times scaled significantly with both security levels
and file sizes, as shown in Figure 4b. HQC-128 averaged 6.13 ms (1 KB), 5.96 ms (10 KB),
and 5.63 ms (100 KB), whereas HQC-256 averaged 32.82 ms (1 KB), 37.04 ms (10 KB), and
37.54 ms (100 KB). The CRYSTALS-Kyber algorithms, as shown in Figure 4c, demonstrated
modest variations, with K768 achieving the fastest 1 KB encryption time of 0.10 ms, out-
performing K512 (0.15 ms) and K1024 (0.13 ms). For 100 KB files, the CRYSTALS-Kyber
encryption times remained low compared to those of the other algorithms, ranging from
0.10 ms (K768) to 0.17 ms (K1024).

(a) (b)

(c)

Figure 4. Average encryption times: (a) BIKE. (b) HQC. (c) CRYSTALS-Kyber.

Figure 5 shows the average decryption times on the server system. The BIKE de-
cryption times increased sharply as the security level increased, ranging from an average
decryption time of 2.17 ms (1 KB) to 23.85 ms (100 KB). BIKE-L1 achieved the lowest decryp-
tion time across all file sizes, with 2.17 ms (1 KB), 2.94 ms (10 KB), and 2.32 ms for 100 KB.
BIKE-L5 showed a slight increase in decryption time as the file size increased, with average
decryption times of 23.17 ms (1 KB), 27.70 ms (10 KB), and 27.85 ms (100 KB), as shown in
Figure 5a. Figure 5b shows that HQC followed a similar pattern to BIKE, ranging from an
average decryption time of 2.82 ms to 26.18 ms for 100 KB. HQC-128 required an average
decryption time of 2.82 ms for 100 KB files, whereas HQC-192 required 9.38 ms, which
increased sharply to 26.18 ms for HQC-256 when decrypting the same file size.

In contrast, Figure 5c shows that the CRYSTALS-Kyber algorithms maintained con-
sistently low decryption times for the same file size (i.e., 100 KB), with K512 requiring an
average decryption time of 0.12 ms and K1024 requiring 0.16 ms. Notably, K768’s decryp-
tion time decreased slightly to 0.11 ms compared to K512 and K1024, deviating from the
upward trend observed in BIKE and HQC. Smaller file sizes (1 KB) yielded minimal average
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decryption times for all algorithms, with K512 and K768 requiring 0.09 ms. These results
reaffirm the computational efficiency of lattice-based algorithms like CRYSTALS-Kyber for
both encryption and decryption, particularly when handling larger file sizes, compared to
code-based (BIKE) and hash-based (HQC) alternatives.

(a) (b)

(c)

Figure 5. Average decryption times: (a) BIKE, (b) HQC, (c) CRYSTALS-Kyber.

6.2.3. Impact of PQC Algorithms on Performance in the File Transfer Use Case

To demonstrate the impact of PQC algorithms on various applications, we evaluated
the proposed protocols using a file transfer application. We measured the overall processing
time, throughput, and RTT as metrics. Since PQC algorithms can be more computationally
intensive than traditional algorithms, the requirements to secure the data may adversely affect
the performance of the applications and the network’s data-handling capabilities. Therefore,
file transfer was selected as the use case to test the application of the proposed protocols.

In our evaluation, we paired F512 and F1024 with each PQC KEM algorithm (the KEM
algorithm paired with the F512 and F1024 signature algorithms is denoted as BIKE-L1-F512,
BIKE-L3-F512, BIKE-L5-F512, BIKE-L1-F1024, BIKE-L3-F1024, BIKE-L5-F1024, HQC-128-
F512, HQC-192-F512, HQC-256-F512, HQC-128-F1024, HQC-192-F1024, HQC-256-F1024,
K512-F512, K768-F512, K1024-F512, K512-F1024, K768-F1024, and K1024-F1024) to perform
the key exchange process for each algorithm in our proposed protocols. We measured the
processing time, throughput, and RTT efficiency of the proposed protocols using various
paired KEM and signature PQC algorithms during data transfer across a wireless LAN
environment and compared the metrics achieved by different PQC algorithms for data
sizes of 1 KB, 10 KB, and 100 KB. The results of the data transfer between the client system
and the server, including a key agreement (i.e., the PQC public keys of both parties are
exchanged securely) and the actual file transfer, are shown in Figures 6–8.
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(a) (b)

(c) (d)

(e) (f)

Figure 6. File transfer total processing times: (a) PQC–AES-256 for 1 KB. (b) PQC standalone for 1 KB.
(c) PQC–AES-256 for 10 KB. (d) PQC standalone for 10 KB. (e) PQC–AES-256 for 100 KB. (f) PQC
standalone for 100 KB.
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(a) (b)

(c)

Figure 7. Throughputs of the encrypted files: (a) 1 KB file. (b) 10 KB file. (c) 100 KB file.

Processing Time
The overall processing times on the server system, segmented into 1 KB, 10 KB, and

100 KB file sizes, highlight the performance disparities between PQC–AES hybrid im-
plementations, PQC standalone methods, and conventional AES-256. For 1 KB files, as
shown in Figure 6a, the hybrid BIKE-L1-F512 protocol recorded an average processing time
of 1.56 s, marginally faster than its PQC standalone counterpart (1.64 s), while AES-256
achieved 2.06 s, demonstrating comparable efficiency to hybrid approaches. Conversely,
according to the results in Figure 6b, HQC-256-F512 in PQC standalone mode required
2.79 s, exceeding AES-256 by 35%, whereas its hybrid variant reduced this to 1.56 s. For
CRYSTALS-Kyber, K512-F512 exhibited inverse behavior, with hybrid processing at 1.73 s
outperformed by its PQC standalone counterpart (1.48 s), suggesting algorithm-specific
optimization variances.

Figure 6c shows the processing times for 10 KB files. Hybrid methods generally
retained advantages: BIKE-L5-F512 hybrid processing required 1.48 s, significantly lower
than the time of its PQC standalone counterpart of 6.08 s, while AES-256 required 1.82 s.
HQC-256-F512’s PQC standalone time, as shown in Figure 6d, surged to 16.78 s, 9.2 times
slower than that of AES-256, whereas its hybrid implementation reduced this to 2.11 s.
In comparison, K1024-F512 hybrid processing (2.73 s) was slightly higher than the PQC
standalone variant (1.55 s), although both remained within 1.5–2.7 s, aligning closer with
the efficiency of AES-256.

Similarly, the 100 KB file processing times showed the scalability challenges of PQC
standalone methods. As shown in Figure 6f, BIKE-L5-F512 PQC standalone processing
reached 32.02 s, 13.5 times slower than AES-256’s 2.37 s, while its hybrid variant, as shown
in Figure 6e, achieved 1.62 s, outperforming AES-256 by 34%. HQC-256-F512’s PQC
standalone time escalated to 119.18 s, 50.3 times higher than AES-256, whereas hybrid
modes like HQC-128-F512 (1.77 s) and K768-F512 (2.20 s) demonstrated competitive or
superior performance relative to AES-256. These results emphasize hybrid protocols’
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potential to mitigate PQC overheads, particularly for larger data volumes, while reaffirming
AES-256’s fixed efficiency for mid-sized operations.

(a) (b)

(c)

Figure 8. Round-trip times of the encrypted files: (a) RTT for 1 KB file. (b) RTT for 10 KB file. (c) RTT
for 100 KB file.

Throughput
Furthermore, the server-side throughput results shown in Figure 7, categorized by

1 KB, 10 KB, and 100 KB file sizes, illustrate the interplay between ciphertext dimensions
and quantum-resistant algorithm performance relative to AES-256. Figure 7a shows results
for the 1 KB data, confirming that AES-256 achieved a throughput of 0.170 Mbps, while
the PQC standalone methods with larger ciphertexts, such as HQC-128-F1024, reached
7.841 Mbps, a 46.1-fold increase. This variation arose not from superior efficiency but
from expanded ciphertext sizes increasing the throughput metrics. It was observed in the
hybrid implementations that the CRYSTALS-Kyber algorithm paired with the FALCON
digital signature achieved throughput results comparable to AES-256. The results show
total throughput values of K512-F512 (0.476 Mbps), K768-F512 (0.517 Mbps), K512-F1024
(0.554 Mbps), and K768-F1024 (0.647 Mbps).

Additionally, Figure 7b shows that at 10 KB, AES-256 throughput dropped to
0.0035 Mbps, whereas PQC standalone total throughput increased. K1024-F512 achieved
a total throughput of 19.516 Mbps, reflecting the compounding effect of ciphertext expan-
sion on throughput. BIKE-L1-F512 followed this trend at 10.578 Mbps, although its larger
ciphertexts inherently amplified throughput values despite slower absolute processing
speeds. For the hybrid modes, HQC-256-F512 showed a total throughput of 2.005 Mbps,
565 times higher than that of AES-256. This confirms the higher computational latency
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of the PQC standalone algorithm compared to the conventional cryptographic algorithm,
underscoring the metric’s limitations in isolation.

For 100 KB files, as shown in Figure 7c, the AES-256 total throughput further increased
to 9.725 Mbps, while PQC standalone K768-F1024 also increased to 33.320 Mbps, 3.4 times
higher than AES-256. This disparity arose from the file size and ciphertext increase, as PQC
algorithms produce larger ciphertexts than AES-256. BIKE-L1-F1024 achieved 11.968 Mbps
in PQC standalone mode, while its hybrid variant (7.459 Mbps) lagged, emphasizing
the trade-offs between post-quantum security and protocol complexity. Notably, BIKE-
L5-F512’s PQC standalone mode achieved a throughput (4.476 Mbps) lower than AES-
256 by a factor of 1.9, despite its larger ciphertexts, highlighting vulnerabilities in the
scalability of code-based algorithms. These results underscore that while PQC algorithms
may exhibit higher throughput due to ciphertext expansion, this metric alone does not
capture their operational efficiency or suitability for latency-sensitive applications. The
results demonstrate that although larger ciphertext sizes in PQC algorithms result in higher
throughput compared to AES-256, this does not directly imply greater efficiency.

Round-Trip Time
The RTT measurements for 1 KB, 10 KB, and 100 KB file sizes shown in Figure 8 reflect

the operational latency introduced by ciphertext expansion and protocol overhead in
PQC algorithms, despite their higher throughput metrics. Figure 8a shows the results for
1 KB files. AES-256 recorded an RTT of 0.0115 s, while multiple PQC standalone protocol
algorithms achieved slightly lower latencies in comparison. HQC-128-F1024 achieved
0.0022 s, 5.2 times faster than AES-256, and K512-F512 achieved 0.0024 s. In the hybrid
implementations, however, the algorithm pairs incurred slightly lower latencies than AES-
256, while K1024-F512 (0.0115 s) achieved similar latency, underscoring the handshake
overhead inherent to hybrid protocols.

At 10 KB, as shown in Figure 8b, AES-256’s RTT decreased to 0.0063 s, while the PQC
standalone protocol algorithms maintained similar trends as with the 1 KB file size, except
for a few algorithm pairs that showed slightly higher latencies. The PQC standalone
protocols achieved higher RTTs for BIKE-L5-F512 (0.017 s), BIKE-L3-F1024 (0.014 s), BIKE-
L5-F1024, HQC-256-F512 (0.016 s), HQC-192-F1024 (0.013 s), and HQC-256-F1024 (0.012 s)
compared to the same algorithm pairs in hybrid mode and AES-256. Conversely, it was
observed that the remaining algorithm pairs in hybrid mode showed the opposite trend,
with slightly higher RTTs (HQC-128-F512 (0.007 s), HQC-192-F512 (0.008 s), HQC-128-F1024
(0.007 s), and K512-F1024 (0.011 s)) than those of PQC standalone mode. This showcases the
suitability of migrating applications to PQC algorithms while highlighting the processing
bottlenecks associated with certain PQC algorithms.

Lastly, Figure 8c shows that for 100 KB files, AES-256 achieved 0.0048 s, outperforming
many PQC standalone methods. BIKE-L5-F512 required 0.0117 s, 2.4 times slower, and
HQC-256-F512 reached 0.015 s, 3.1 times slower. Exceptions included HQC-128-F512
(0.0028 s) and K768-F1024 (0.0039 s), which were 1.7 times and 1.2 times faster than AES-256,
respectively. Notably, in hybrid mode, K768-F1024 incurred a latency of 0.0275 s for 100 KB
files, 5.7 times slower than AES-256, highlighting the compounded overhead of hybrid key
exchanges and ciphertext processing. These results emphasize that while PQC algorithms
may exhibit competitive throughput due to larger ciphertexts, their RTT performance is
more directly tied to computational complexity and protocol design, exposing trade-offs
between post-quantum security and real-time application suitability.

6.2.4. Impact of PQC Algorithms on Performance in the Chat-Based Use Case

To further evaluate the performance of our proposed protocols, we implemented the
chat-based use case and measured the total processing time that users spent engaged in
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an active chat session. The total processing time includes the KEM process, the time taken
to input the chat message, and the encryption and decryption of the messages in a chat
session. The text input time varied slightly for each algorithm, as it would in a real chat, and
may account for slight variations in the total processing time (expected to be insignificant).
In addition, we measured the RTT, which is the time taken from when a user sends a
message to when a response is received (i.e., request and response pairs). The RTT is one
of the most crucial metrics for measuring the responsiveness between chat partners. For
this evaluation, we created custom messages, which were used across all PQC algorithms
within our protocols. We used UTF-8 encoding, in which each ASCII character (including
spaces and punctuation) is 1 byte. Table 4 shows the text and size of each message used for
client–server communication in the chat use case.

Table 4. Examples of text messages.

User 1 User 2
Text Message Size (Bytes) Text Message Size (Bytes)

Hello 5 Hi, how are you? 16
I’m good, thanks. And you? 26 You are welcome. I‘m fine too. 30
Are you ready for the demo? 27 Yes, all set. Let’s get started! 32

Great! Here’s the first part of the code.
What do you think? 60 Looks interesting. I have a few questions

about the results. 60

Sure, I can explain anything about it. 38 Thanks! I want to know how you handled
the data preprocessing step. 67

I used the standard normalization method
and added custom 57 That makes sense. Let’s move on to the

next section. 52

Processing Time
It was observed that the proposed protocols with various PQC algorithms are more

suitable for the chat-based use case in comparison to the AES-256 conventional method.
Figure 9 shows the performance of the protocols in maintaining end-to-end encryption
similar to those in modern chat applications. Figure 9a shows the results when PQC KEM
algorithms were paired with the F512 signature algorithm in hybrid mode. A lower process-
ing time between 61 s and 73 s was achieved by all algorithm pairs than the conventional
AES-256 algorithm, which recorded a total processing time of 80 s. For the BIKE algo-
rithms, BIKE-L5-F512 achieved the lowest time of approximately 61 s, while for the HQC
algorithms, HQC-256-F512 achieved the lowest time (63 s), and for the CRYSTALS-Kyber
algorithms, K1024-F512 achieved the lowest time (64 s).

As shown in Figure 9b, when the signature algorithm F1024 was paired with each KEM
algorithm, the total processing time ranged from 64 s to 69 s, with most of the algorithms
achieving processing times similar to when the KEM algorithm was paired with F512. BIKE-
L3-F1024 (64 s) and K1024-F1024 (64 s) achieved the lowest processing times compared to
the other algorithms. However, slightly higher processing times were observed for the
PQC standalone protocol. According to the results in Figure 9c, the CRYSTALS-Kyber
algorithms achieved higher processing times for K512-F512 (77 s), K768-F512 (96 s), and
K768-F512 (74 s).

A similar trend was observed when F1024 was used, as shown in Figure 9d, with
a lower processing time for K768-F1024 (73 s), while the time increased for K512-F1024
(85 s). The HQC algorithms maintained almost consistent processing times compared to
the hybrid protocol, with slight variations of less than 5 s. Conversely, BIKE experienced
higher processing times in the PQC standalone protocol than in the hybrid protocol but
lower processing times than the conventional AES-256 algorithm, as shown in Figure 9a,c.
With the exception of K768-F512 and K512-F1024, which achieved higher processing times
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than AES-256 in the PQC standalone protocol, all algorithms in this mode experienced
lower overheads and are expected to function effectively without adversely impacting the
QoS of a chat-based application.

(a) (b)

(c) (d)

Figure 9. Chat total processing times: (a) PQC–AES-256 (with F512). (b) PQC–AES-256 (with F1024).
(c) PQC standalone (with F512). (d) PQC standalone (with F1024).

Round-Trip Time
The end-to-end delay likely to be introduced by the proposed protocols was measured

using the average RTT. It was expected that a delay for small, bursty messages, including
delays due to encryption, network transit, and decryption, might occur. Therefore, the
RTT, which is important in interactive chat, was considered. Figure 10 shows the average
RTTs of the end-to-end delay of the proposed protocols. It was observed that the proposed
protocols achieved better performance than conventional AES-256, which had an average
RTT of 2.44 ms. According to the results shown in Figure 10a,b for the hybrid protocol,
an average RTT of less than 1.5 ms was observed for all algorithms, except for K512-F512
(1.66 ms), K768-F512 (1.51 ms), and K512-F1024 (1.52 ms).

In the PQC standalone protocol, a lower delay was observed for most of the PQC
algorithms, with the exception of CRYSTALS-Kyber, compared to the hybrid protocol.
Figure 10c confirms that the average RTT decreased with the increase in the KEM security
level for most of the PQC algorithms, ranging from 0.4 ms to 1.7 ms, except for K768-F512,
which had a higher average RTT of 2.10 ms, slightly closer to that of AES-256 (2.44 ms).
As shown in Figure 10d, a similarly lower average RTT trend, decreasing as the security
level increased, was observed. However, there was a slight variation in the pattern for the
BIKE algorithms compared to the hybrid protocol. It was confirmed that BIKE-L5-F1024
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increased slightly to 0.99 ms. It was further confirmed that HQC-256-F1024 achieved the
lowest average RTT of 0.28 ms.

(a) (b)

(c) (d)

Figure 10. Chat average round-trip times: (a) PQC–AES-256 (with F512). (b) PQC–AES-256 (with
F1024). (c) PQC standalone (with F512). (d) PQC standalone (with F1024).

6.2.5. Impact of the PQC Algorithm on Performance in the Video-Streaming Use Case

To demonstrate the impact of PQC algorithms on real-time applications such as video
streaming, we evaluated the proposed protocols using a video-streaming application, as
described in Section 4.1.1. We measured the overall throughput and retransmission rate
as metrics. However, PQC algorithms are not suitable for applications such as video
and live streaming in their current form without substantial optimization due to the
large ciphertext size, which results in continuous freezes of video frames caused by the
frequent retransmission of frames. Therefore, to evaluate the performance of our proposed
protocol, we utilized the hybrid protocol and compared its performance with that of
conventional AES-256.

In our evaluation, we streamed a short pre-recorded “MP4” video with the following
properties: a total size of 17 MiB, a resolution of 1920 × 1080, 30 frames per second, a
bitrate of 2.863 Mbps, and a duration of 47 s 249 ms. The server acquired each frame from
the video file and encoded it before encrypting it. The encrypted frames were transmitted
sequentially as rapidly as possible without limiting the rate. On the other hand, the client
(stream viewer) decrypted and decoded each received encrypted frame. These frames were
rendered using an OpenCV window for viewing the stream. The display loop included
a standard 1 ms delay (i.e., cv2.waitkey(1)), which is necessary for OpenCV to process
GUI events and refresh the displayed frame. This delay also allows for user interaction
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(e.g., capturing user input, such as ‘q’ for quitting the stream). The delay is an attribute
of the OpenCV GUI mechanism used for the experiment and is not part of the processing
overhead of the proposed protocols.

Throughput
We measured the total throughput, which reflects how many encrypted video frames

can be successfully transmitted. Since the user experience in video streaming is important,
we measured the metrics from the client side. Figure 11 shows the total throughput
achieved for streaming an encrypted video over the network. An almost constant total
throughput was observed across all PQC algorithms. The results shown in Figure 11a
show an approximate total throughput of 22 Mbps for K512-F512 and K768-F512 compared
to the other algorithms and conventional AES-256. The other algorithms used in the
hybrid protocol achieved a slightly lower approximate total throughput (20.1 Mbps) than
conventional AES-256 (20.8 Mbps).

(a) (b)

Figure 11. Video streaming total throughputs: (a) PQC–AES-256 (with F512). (b) PQC–AES-256
(with F1024).

Furthermore, as shown in Figure 11b, a similar trend was observed for the KEM
algorithms paired with F1024, with almost all the algorithms achieving a slightly lower
total throughput compared to the performance of AES-256, except for K1024-F1024, which
achieved the highest total throughput of 21.6 Mbps, an 0.8 Mbps increase compared to
conventional AES-256. The pairs BIKE-L3-F1024, BIKE-L5-F1024, HQC-128-F1024, and
K768-F1024 achieved the lowest total throughput of approximately (19 Mbps) compared to
all the other algorithms.

Retransmission Rate
Additionally, we measured the TCP retransmission rate. A higher retransmission rate

indicates an increase in packet loss, often due to network congestion, which can result in
freezes or buffering in the video stream. The results shown in Figure 12a confirm lower
retransmission rates ranging from 0.05% to 0.20% for most algorithms in the hybrid protocol,
except for BIKE-L1-F512, HQC-192-F512, K768-F512, and K1024-F512, which showed
retransmission rates above 0.20%. BIKE-L5-F512 achieved the lowest retransmission rate,
with 0.05% of the total encrypted frames streamed. Similarly, the pairs BIKE-L3-F512
(0.16%), HQC-128-F512 (0.16%), HQC-256-F512 (0.20%), and K512-F512 (0.15%) achieved
lower retransmission rates than AES-256. Conversely, BIKE-L1-F512 (0.22%), HQC-192-
F512 (0.25%), K768-F512 (0.27%), and K1024-F512 (0.26%) achieved higher retransmission
rates than AES-256.
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(a) (b)

Figure 12. Video streaming frame retransmission times: (a) PQC–AES-256 (with F512). (b) PQC–AES-
256 (with F1024).

As shown in Figure 12b, in comparison to the algorithms paired with F512, the KEM
algorithms paired with F1024 exhibited an opposite trend, with the exception of HQC-192.
According to the results, HQC-192-F1024 achieved a retransmission rate of 0.28%, which
was 0.03% higher than that of HQC-192-F512. Similarly, a downward trend was recorded
for CRYSTALS-Kyber as the security level increased, which differs from the retransmission
rates observed when the KEM algorithm was paired with F512. K512-F1024 achieved
the highest retransmission rates of 0.32%, which was higher than that of K512-F512 by
0.17% while K768-F1024 and K1024-F1024 achieved lower retransmission rates of 0.09% and
0.12% than K768-F512 and K1024-F512, respectively. It was further confirmed that BIKE-
L5-F1024 (0.22%), HQC-128-F1024 (0.25%), and K512-F1024 (0.32%) all achieved higher
retransmission rates than conventional AES-256. This suggests that further optimization
may be necessary in order to use these algorithms effectively in real-time applications.

6.2.6. Impact of the PQC Algorithm on Performance in the Live-Streaming Use Case

Similar to video streaming, we evaluated the impact of the proposed protocols using
a live-streaming session. We measured the total throughput and retransmission rate,
which are essential metrics in real-time applications. The live-streaming use case involved
capturing frames from a webcam in real time. For this, a live video was captured from
the system’s default webcam using OpenCV’s video interface. A constant live-streaming
duration of 30 s was used across all PQC algorithms. This was done to keep the size of the
captured file smaller, as it increases exponentially with the number of frames and stream
duration. After capturing each frame, the same process used for encoding and encryption,
as described in the video-streaming use case, was utilized in the live-streaming use case.

Throughput
Figure 13 shows the total throughputs observed from the live-streaming session. As

shown in Figure 13a, an almost constant total throughput was achieved with most of the
PQC algorithms across all security levels compared to AES-256 (9.7 Mbps). BIKE-L3-F512
achieved the lowest throughput of 8.6 Mbps, while K512-F512 achieved a total throughput
of 9.2 Mbps, slightly less than AES-256. The other algorithms recorded slightly higher
total throughputs. Similarly, as shown in Figure 13b, total throughputs comparable to that
of AES-256 were observed across all PQC algorithms, with BIKE-L1-F1024 (10.1 Mbps),
HQC-128-F1024 (10.0 Mbps), and HQC-192-F1024 (10.3 Mbps) achieving total throughputs
slightly higher than AES-256.
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(a) (b)

Figure 13. Live streaming total throughputs: (a) PQC–AES-256 (with F512). (b) PQC–AES-256
(with F1024).

Retransmission Rate
Finally, we measured the retransmission rates of the live stream. According to the

results shown in Figure 14a, most of the PQC algorithms in the hybrid protocols are
suitable for the live-streaming use case and comparable to AES-256 performance. A lower
retransmission rate of less than 0.1% was observed in most algorithms, except for HQC-
256-F512 (0.16%) and K512-F512 (0.67%), compared to AES-256 (0.72%), while higher
retransmission rates were observed for BIKE-L3-F512 (2.28%) and HQC-128-F512 (1.46%).

(a) (b)

Figure 14. Live streaming frame retransmission rates: (a) PQC–AES-256 (with F512). (b) PQC–AES-
256 (with F1024).

Additionally, for KEM algorithms paired with F1024, Figure 14b shows the retrans-
mission rates. BIKE-L1-F1024 (3.57%), BIKE-L3-F1024 (2.42%), and HQC-192-F1024 (3.06%)
had higher retransmission rates compared to the other algorithms and AES-256. The lowest
retransmission rate was observed for HQC-256-F1024 (0.1%). This suggests that BIKE-L1-
F1024, BIKE-L3-F1024, and HQC-192-F1024 may not be suitable for real-time live streaming
without freezing and buffering compared to the other algorithms.

6.3. Limitations and Future Directions

In the current implementation of our proposed protocols, use cases in the area of
distributed systems and network scenarios with congestion or high mobility are not cur-
rently considered. While the proposed protocols are designed for adoption in various use
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cases, extensive adaptation to mitigate challenges common in these areas requires further
study to ensure correct implementation and migration of applications associated with such
scenarios to the quantum-secure protocol. To further improve our proposed protocols, as
part of our future efforts, we will consider expansion to various systems such as distributed
architectures, network scenarios with high overhead impacts, and mobility.

Furthermore, while our current implementation ensures MAC synchronization and
consistency between the client and the server, formal modeling remains an open issue. In
future work, we will consider the use of formal verification tools to analyze the robustness
of MAC synchronization in scenarios where delays, packet loss, or concurrent events may
occur. Additionally, we will expand the proposed protocols to include additional network
environments and platforms, including energy consumption analysis on ARM and other
IoT-specific hardware. Moreover, the current implementation of the proposed protocols
focuses on the application layer and does not directly address side-channel attacks at
the lower levels. A detailed side-channel analysis using tools such as ChipWhisper and
constant-time execution testing in embedded scenarios is necessary and will be considered
as part of the expansion of the proposed protocols’ implementation.

7. Conclusions
As part of the advancement toward the post-quantum era, this paper proposed PQC

standalone and PQC–AES hybrid protocols to evaluate their practical implementation
within real-world secure communication systems. Specifically, the secure exchange of keys
is achieved using PQC algorithms (KEM) in either PQC standalone or hybrid protocol
modes. In PQC standalone mode, the KEM (public) keys exchanged between the client
and server are used for encryption, while each party uses their secret keys for decryption,
following the principles of asymmetric-key cryptography. Conversely, PQC–AES hybrid
mode uses two-way shared secret keys derived from PQC KEM algorithms to generate
encryption and decryption keys using a key derivation function (KDF), thereby reducing
the computational overhead for larger data sizes. The proposed PQC-based protocols
mitigate replay, MITM attacks, and other conventional cybersecurity attack vectors.

A performance evaluation of the proposed protocols was conducted through experi-
ments using various real-world use cases (file transfer, chat-based communication, video
streaming, and live streaming) in a client–server setup. For file transfer, the results con-
firmed that the hybrid protocols, which leverage the strengths of PQC algorithms, achieved
performance relatively closer to that of AES-256 for larger payloads. For 10 KB files, the
K512-F1024 hybrid mode achieved 0.8 Mbps compared to AES-256’s 0.0035 Mbps, without
the significant latency bottlenecks observed in PQC standalone mode, such as 19.5 Mbps
for K1024-F512 and K1024-F1024. Additionally, it was confirmed that the hybrid protocol
achieved better performance in terms of processing time compared to the PQC standalone
protocol and AES-256. The processing times for the hybrid protocol were consistently
lower across all algorithms, except for HQC192-F512 and K1024-F512, which recorded 2.6 s
and 5.4 s for 1 KB files, compared to AES-256’s 2.06 s. For 100 KB files, HQC-192-F1024
and HQC-256-F1024 experienced higher processing times of 2.4 s and 3.1 s compared to
AES-256’s 2.37 s.

Our findings confirm that PQC standalone algorithms remain effective for lightweight
applications with smaller data sizes (e.g., file transfer with smaller size data and chat-
based communication), while PQC–AES hybrid protocols provide a scalable and efficient
solution for larger payloads (i.e., all use cases), ensuring quantum-resistant security with
manageable latency and computational complexity. Using PQC algorithms directly in most
applications will adversely impact performance, while the hybrid approach is more suitable
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for most applications. This reaffirms the necessity of designing and migrating applications
to quantum-safe cryptographic protocols tailored to specific application requirements.

In the advancement toward quantum-resistant security, a critical focus should be on
addressing stringent QoS requirements in emerging technologies like 5G/6G and IoT. These
sectors necessitate a balance between robust security and real-time performance, requiring
a hybrid approach that leverages the strengths of both PQC and traditional cryptographic
algorithms. Our evaluation results provide valuable insights into the practicality and
performance of standalone PQC protocols and can be extended to facilitate secure data
transmission in 5G and IoT environments, ensuring a balance between quantum-resistant
security and operational efficiency that upholds the stringent QoS requirements inherent in
modern wireless networks.

In future work, we will evaluate the complexity and overhead of the proposed proto-
cols. We will extend the implementation of the PQC standalone PKE to include other PQC
algorithms such as McEliece, Dilithium, and SPHINCS+, among others. In addition, we
will explore methods for utilizing the PQC standalone PKE in various applications like
video streaming and messaging. Furthermore, we will perform an extensive evaluation
using various network environments, including 5G/6G.
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