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Abstract: Background: Chronic neuroinflammation mediated by persistent microglial activation
is strongly linked to neurodegeneration. Therefore, targeting microglial activation could be bene-
ficial in treating neurodegenerative disorders. Angiotensin receptor blockers (ARBs), commonly
prescribed for high blood pressure, exhibit prominent anti-inflammatory effects in the brain and
are considered potential therapies for neurodegenerative diseases and neurotrauma. Although all
ARBs are angiotensin II receptor type I antagonists, some ARBs act through other signaling pathways,
allowing for multiple mechanisms of action. The anti-inflammatory mechanisms of ARBs are not
well understood. Methods: In this study, we compared eight different FDA-approved ARBs for
their ability to reduce the LPS stimulation of primary microglia or BV2 cells through analyses of
nitric oxide production, reactive oxygen species generation, and the mRNA of proinflammatory
cytokines. Finding specific and unique effects of telmisartan, we interrogated signaling pathways
and other downstream effectors of telmisartan activity on microglia. Results: Our findings indicate
that telmisartan showed the greatest efficacy in reducing the LPS induction of reactive oxygen species
(ROS) and nitric oxide production in microglia. Uniquely amongst ARBs, telmisartan activated AMPK
phosphorylation and inhibited mTOR phosphorylation. Telmisartan’s anti-inflammatory activity was
partially inhibited by the AMPK inhibitor compound C. Furthermore, telmisartan uniquely induced
markers of autophagy in microglia through an AMPK–mTOR–autophagy pathway. Telmisartan also
reduced microglial viability. Telmisartan’s cytotoxicity was partially ameliorated by an autophagy
inhibitor and a pan-caspase inhibitor, indicating a link between microglial autophagy and apoptosis.
Conclusions: We conclude that telmisartan has unique properties relative to other ARBs, includ-
ing potent anti-inflammatory actions and an induction of microglial autophagy, which may enable
specific therapeutic uses.
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1. Introduction

Inflammation within the central nervous system (CNS) is an integral feature of neu-
rodegenerative diseases as well as neurotrauma [1–4]. Although this inflammation may
initially be beneficial, chronic neuroinflammation can escalate or worsen neuropathology
and cause disease progression. Indeed, chronic neuroinflammation has been strongly
correlated with neurodegeneration [1,5–7]. Drugs ameliorating neuroinflammation are a
reasonable therapeutic option for neurodegeneration and neurotrauma [3,6,8].
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Microglia are an important cellular contributor to the development and modulation
of inflammation in the CNS [8–10]. Exposure of microglia to signals from pathogens or
damaged cellular components activates microglia to a proinflammatory phenotype, where
they increase their production of proinflammatory cytokines such as IL-1β and TNFα and
upregulate the production of nitric oxide (NO) and reactive oxygen species (ROS) [11,12].
Although this activated phenotype can be useful for host defense and phagocytosis, the
products from these activated microglia are harmful to neurons, and prolonged activation
can lead to a damaging hyperinflammatory state [13,14]. Microglial activation follow-
ing some CNS insults may persist in these activated proinflammatory states, leading to
neuronal injury and neurodegeneration [7,11,15]. However, anti-inflammatory signals
can alter the microglial phenotype to an alternate state that either enhances phagocytic
activity or promotes tissue repair and remodeling [13]. Although this polar definition of
microglial phenotypes is increasingly disputed as many microglia express markers of both
states [16], the retention of a more proinflammatory phenotype is prevalent in microglia
after a traumatic brain injury (TBI) or in neurodegenerative diseases [17,18]. Reducing this
proinflammatory state, and/or shifting microglial phenotypes to a less inflammatory state,
is an important therapeutic target for preventing and mitigating neurodegeneration.

Angiotensin receptor blockers (ARBs) are FDA-approved drugs used extensively in
the treatment of cardiovascular disorders, including hypertension, heart failure, and di-
abetic nephropathy [19–21]. ARBs act as antagonists at the angiotensin II (Ang II) type I
receptor (AT1R) to block Ang II-mediated increases in blood pressure through vasocon-
striction or an increased release of aldosterone from the zona glomerulosa of the adrenal
gland [19,22]. Besides their antihypertensive effects, ARBs also have anti-inflammatory
effects that contribute to their beneficial effects on the cardiovascular system. Signaling
through the AT1R activates some pro-inflammatory pathways, including the NF–κB path-
way, NADPH oxidase, and ROS production, in addition to upregulating pro-inflammatory
mediators [19,23]. ARB’s anti-inflammatory effects are mediated by AT1R-dependent and
-independent mechanisms [21,24,25].

Although the systemic RAS functions are mainly outside the CNS, more recent re-
search has revealed the presence of all components of RAS within cells comprising the
CNS [26–29]. These findings have opened up new avenues for therapeutic options for
ARBs. A growing number of research studies have demonstrated the neuroprotective
effects of ARBs in preclinical models of Alzheimer’s disease (AD), Parkinson’s disease,
stroke, and TBI [21,30–32]. In addition to their neuroprotective effects, ARBs also have
anxiolytic and anti-depressive properties and enhance cognitive function—effects that are
probably mediated at least in part by the regulation of AT1R signaling in the brain [33,34].
Many of the neuroprotective effects of ARBs have been attributed to their anti-inflammatory
effects in CNS tissues through AT1R-dependent and -independent mechanisms [21,35,36].

There are currently eight FDA approved ARBs [37,38]. Although all these drugs
act as AT1R antagonists, they vary in their ability to modulate non-AT1R signaling path-
ways [39]. Losartan, telmisartan, candesartan, and irbesartan act as partial agonists at the
anti-inflammatory PPARγ receptor [31,40]. Telmisartan activates PPARγ more potently
than all the other ARBs [41]. Until recently, it was assumed that the AT1R-independent
anti-inflammatory effects of ARBs were mediated through the activation of PPARγ [42].
However, telmisartan has been shown to activate AMPK in a variety of cell types, including
microglia [43–45]. The anti-inflammatory actions of telmisartan in microglia were mediated
by AMPK activation [45]. We have shown that both candesartan and telmisartan have
efficacy in improving recovery in a mouse model of TBI, including reducing the amount of
microglial activation after injury [32]. We were therefore curious as to whether candesar-
tan, telmisartan, and other ARBs had similar mechanisms of anti-inflammatory action in
microglia. Using LPS stimulation as a model of microglial activation, we compared the
ability of ARBs to reduce microglial activation through AT1R-dependent and -independent
pathways. We report that telmisartan is unique in its mechanism of anti-inflammatory
action and its effects on microglia. These results provide insights into the action of telmis-
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artan on this important CNS cell type and its therapeutic potential in disorders with an
inflammatory component.

2. Materials and Methods
2.1. Materials

The AMPK inhibitor, compound C, and the PPARγ inhibitor, T0070907, were pur-
chased from Sigma-Aldrich (St Louis, MO, USA). The CYTO-ID autophagy assay kit was
purchased from Enzo Life Sciences (Farmingdale, NY, USA). Primers were synthesized by
Integrated DNA Technologies (Coralville, IA, USA). Dulbecco’s modified Eagle’s medium
(15-013-CV), Hanks’ balanced salt solution (21-022-CV), and an antibiotic–antimycotic solu-
tion (30-004-CL) were purchased from Corning Cellgro (Manassas, VA, USA). Glutamax
was obtained from Gibco Thermo Fisher Scientific (Waltham, MA, USA). Donor equine
serum was purchased from Hyclone Thermo Fisher Scientific (Waltham, MA, USA), and
Benchmark Fetal Bovine serum was purchased from Gemini Bio-Products (Sacramento,
CA, USA). Complete Mini protease inhibitor cocktail tablets (04 693 124 001) were pur-
chased from Roche (Nutley, NJ, USA). The LC3B antibody (NB100-2220) was purchased
from Novus Biologicals (Littleton, CO, USA). Antisera recognizing AMPK (2532S), p-
AMPK (2535S), mTOR (2972S), and p-mTOR (2971S) were purchased from Cell Signaling
Technology (Danvers, MA, USA). Anti-β-Actin (A1978), LPS, telmisartan, candesartan,
losartan, irbesartan, azilsartan, valsartan, eprosartan, z-VAD-FMK, Hoechst dye, stau-
rosporine, 3-methyladenine, and chloroquine were all purchased from Sigma-Aldrich
(St Louis, MO, USA). H2DCFDA (D399) was purchased from Therma Fisher Scientific
(Waltham, MA, USA). PVDF and nitrocellulose membranes were from BioRad, Hercules,
CA, USA). Candesartan (AstraZeneca, CV-11974) was a gift from AstraZeneca (Sweden).
Faststart universal SYBER Green was purchased from Roche (Indianapolis, IN, USA).

2.2. Cell Culture
2.2.1. Primary Microglia

All animal care and procedures were approved by the Institutional Animal Care and
Use Committee of the Uniformed Services University. One-day-old Sasco/Sprague–Dawley
rat pups (male and female) were purchased from Charles River Laboratories (Frederick,
MD, USA). Mixed glial cultures were made as previously described by Mitchell et al. [46].
Briefly, brains were removed from the pups on day 2, the meninges were removed, and the
cortices dissected into a culture medium (Dulbecco’s modified Eagle’s medium, containing
10% fetal bovine serum, 1% glutamax, and 1% antibiotic–antimycotic). Tissue was triturated
twice with a 10 mL pipette, followed by successive triturations with an 18G needle (3X),
a 22G needle (3X), and finally a 25G needle (1x). The resulting suspension was filtered
using a 70 µm nylon mesh before pelleting at 168 g for 10 min at 25 ◦C. The cortical
tissue homogenate was suspended in a culture medium and seeded into T75 flasks at half
cortex/flask density. Cells were incubated in a culture medium under standard conditions
(37 ◦C; 5% CO2), and the medium was replaced every 3 or 4 days. On day 14, the flasks were
placed on an orbital shaker (MaxQ 2000 orbital shaker; Thermo Fisher Scientific, Rockford,
IL, USA) and shaken for 1 h at 200 rpm to detach microglia. The medium containing
microglia was collected and centrifuged at 671× g for 5 min at room temperature followed
by counting and resuspension in a microglial culture medium (Dulbecco’s modified Eagle’s
medium, containing 10% normal horse serum, 1x glutamax, and 1% antibiotic–antimycotic).
Cells were plated in 96-well plates at a density of 5 × 105 cells/well for RNA isolation and
analysis of NO and ROS in the media. A total of 12 h prior to treatment, the media were
replaced with media containing 2.5% normal horse serum.

2.2.2. BV2 Cell Culture

BV2 microglia between passages of 6 and 20 were used. Cells were plated at
1.5 × 105 cells/well in 96-well plates at 200 µL/well and 2.5 × 105 cells/well in 6-well plates
with 2 ml of media/well for 24 h using a BV2 culture medium (DMEM supplemented
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with 10% normal horse serum and 1x glutamax). Cells were serum starved overnight
before treatment.

2.2.3. Reactive Oxygen Species (ROS) Assay

ROS was assessed by an H2DCFDA assay according to the manufacturer’s instructions
(Thermo Fisher Scientific, Waltham, MA, USA). A total of 20 µM of an H2DCFDA solution
was constituted in HBSS. A total of 100 µL of an H2DCFDA solution was added to each
well and incubated for 30 min at 37 ◦C. Fluorescence intensity was determined with the
Synergy H1 plate reader at the excitation wavelength of 470 nm and emission wavelength
of 530 nm.

2.2.4. Griess Assay

Cells were plated in 96-well plates and treated as indicated. A total of 50 µL of the
conditioned medium was removed and combined with 50 µL of the Griess assay reagent in
a new plate (Signa-Aldrich, St. Louis, MO, USA). The reaction was incubated in the dark
for 30 min at room temperature. The amount of NO generated was determined by reading
the absorbance at 540 nm in the Synergy H1 plate reader (BioTek Instruments, Agilent,
CA, USA).

2.2.5. RNA Isolation and Quantitative PCR

RNA was isolated using the Trizol reagent according to the manufacturer’s instructions
(Thermo Fisher Scientific, Carlsbad, CA, USA). Briefly, treated cells were washed once with
1x PBS, followed by the addition of 500 µL of trizol/well. Phase separation was performed
by the addition of chloroform followed by centrifugation at 14,000× g for 15 min. The
aqueous phase was carefully transferred into new 1.5 mL eppendorf tubes and the RNA
precipitated with isopropyl alcohol. The RNA was quantified by UV spectrometry and its
integrity ascertained by gel electrophoresis. cDNA was synthesized from equal amounts
of RNA with Superscript III reverse transcriptase (Thermo Fisher Scientific, Carlsbad, CA,
USA). SYBR Green qPCR was performed in CFX96 (Bio-Rad, Hercules, CA, USA). Target
gene expression was normalized to the housekeeping gene glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) using the delta threshold cycle (∆∆Ct) method [47] and analyzed
with the Bio-Rad CFX Manager 2.0 software.

2.2.6. Western Blots

Cells were washed with ice-cold PBS followed by lysis with a RIPA buffer for 10 min
at 4 ◦C. Lysates were centrifuged to remove the insoluble fraction and the supernatant
collected for protein quantification by BCA assay. A 6x loading buffer was added and the
samples denatured at 100 ◦C for 5 min. A total of 15 µg of protein was separated by SDS
PAGE. Proteins were transferred onto membranes (PVDF-LC3B, nitrocellulose—all others)
by semi-dry transfer (Transblot-turbo, BioRad, Hercules, CA, USA). Membranes were
blocked in 5% milk/TBST for 1 h followed by probing with a primary antibody overnight.
Membranes were rinsed in TBST, incubated with the appropriate secondary antisera linked
to horseradish peroxidase for 1 h, and developed with chemiluminescence (Super Signal
West Pico Chemiluminescent substrate, Thermo Fisher Scientific, Waltham, MA, USA).
Images were acquired and analyzed with the Chemidoc Touch imaging system (BioRad,
Hercules, CA, USA).

2.2.7. Autophagy Assay

BV2 microglia were plated in 96-well plates and treated as required. Cells were
analyzed for autophagy using the CYTO-ID assay (Enzo, New York, NY, USA). The medium
was removed after the required treatment, and cells were washed in 1x PBS. The CYTO-ID
reagent was prepared using a 1:1000 dilution of both the CYTO-ID reagent and the Hoechst
33,342 nuclear stain in a 1x assay buffer. A total of 100 µL of the diluted CYTO-ID reagent
was added to each well and incubated for 30 min at 37 ◦C. The dual detection reagent
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was removed, and the cells were washed once with PBS. Plates were read in the Synergy
H1 fluorescent plate reader with an excitation wavelength of 480 nm and an emission of
530 nm for the CYTO-ID reagent and an excitation of 340 nm and an emission of 480 nm
for the Hoechst dye (DAPI filter). Fluorescence intensity for CYTO-ID was normalized to
that of Hoechst for each well.

2.2.8. LDH Assay

A total of 50 µL of the conditioned medium was removed and combined with an equal
volume of the LDH reagent (Promega, Madison, WI, USA). Reactions were incubated for
30 min in the dark at room temperature before the addition of a stop solution. Absorbance
at 490 nm was determined in the synergy H1 plate reader.

2.2.9. MTS Cell Proliferation Assay

To assess cell viability, 20 µL of the MTS reagent (Promega, Madison, WI, USA) was
added to cells in 100 µL of a culture medium and incubated for 30 min followed by reading
of absorbance in the Synergy H1 plate reader at 490 nM.

2.2.10. Trypan Blue Exclusion

Cells were grown in 6-well plates and treated as required. After treatment, the cells
were washed with 1xPBS, trypsinized, and transferred into 15 mL tubes. The cells were
centrifuged for 2 min to remove trypsin followed by resuspension in PBS. A total of
20 µL of cell suspension was combined with 20 µL of trypan blue (0.4%), and exclusion
was assessed using the Biorad TC20 automated cell counter (BioRad, Hercules, CA, USA).

2.2.11. Mitochondrial Membrane Potential Assay

BV2 cells were plated in 6-well plates or 96-well plates as required. The cells were
then treated with telmisartan for 6 h followed by the addition of TMRE (Thermo Fisher
Scientific, Waltham, MA, USA) to 1 µM of the final concentration and incubated for 20 min.
Cells from the 6-well plates were harvested by trypsinization for flow cytometry in the
Acuri C6 flow cytometer (BD Bioscience, San Jose, CA, USA). Cells treated in the 96-well
plates were read on the Synergy H1 plate reader at 549 nm excitation and 575 nm emission,
and fluorescent images were taken afterwards using the Olympus microscope IX73.

2.2.12. Statistical Analysis

All data are expressed as mean ± SEM. Data were analyzed using the Prism software
v 8.0 (Graphpad, La Jolla, CA, USA). A minimum of four independent wells were assayed in
each treatment group, and the effects were repeated in at least two independent experiments.
A representative experiment is shown in all figures. For the assessment of gene expression
by qPCR experiments, the corrected expression was normalized to untreated samples and
expressed as a fold change in the expression. Significant changes in reduced or induced gene
expression relative to control wells were calculated by one-way ANOVA with Dunnet’s
correction for multiple comparisons.

3. Results
3.1. Telmisartan Counteracts LPS-Mediated Inflammatory Changes More Strongly than Other
Angiotensin II Receptor Blockers

We have previously shown that telmisartan and candesartan have anti-inflammatory
actions in a mouse model of TBI [32]. However, it was not known whether other ARBs
share this property. We therefore compared all 8 FDA-approved ARBs for their ability to
reduce LPS-stimulated NO and ROS production in rat primary microglia or in the mouse
microglial BV2 cell line. A total of 20 µM of telmisartan reduced LPS-induced NO to a
greater extent than 100 µM of the other ARBs in either primary microglia (Figure 1A) or
BV2 cells (Figure 1C).
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Figure 1. Telmisartan is the most potent anti-inflammatory angiotensin receptor blocker. Primary
microglia (A,B) or BV2 cells (C–F) were pretreated for 2 h with the indicated ARB, followed by
treatment with LPS for 12 h (2.5 ng/mL of primary microglia and 100 ng/mL of BV2 cells). Media
were collected for NO analysis by the Griess assay (A–D), and the cells were analyzed for the presence
of reactive oxygen species (ROS) using the fluorescent indicator dye H2DCFDA (E,F). Telmisartan
(T) (20 µM) significantly reduced NO release, whereas the remaining ARBs, (100 µM) Olmesartan
(O), Candesartan (C), Azilsartan (A), Losartan (L), Irbsartan (I), Valsartan (V), and Eprosartan (E),
had minimal effects (A,C). Telmisartan dose-dependently reduced NO in primary microglia (B) or
BV2 cells (D). Telmisartan, losartan, and irbsartan significantly reduced ROS generation in BV2
microglia (E). Telmisartan dose-dependently reduced ROS in BV2 cells (F). (Data are representative of
at least 3 repeated experiments; n = 4, mean ± s.e.m. *** p < 0.001, ** p < 0.01, * p < 0.05, compared
with LPS-treated cells; ### p < 0.001, compared with untreated cells).

Telmisartan dose-dependently reduced LPS-mediated NO release. In primary mi-
croglia, this effect was detectable with 1 µM of telmisartan, increasing up to 50 µM of
telmisartan (Figure 1B). In BV2 cells, 10 µM of telmisartan was sufficient to reduce NO
production by LPS significantly, and 20 µM of telmisartan reduced NO production to
levels of unstimulated cells (Figure 1D). LPS-induced ROS generation in BV2 cells was
similarly inhibited by 20 µM of telmisartan (Figure 1E,F). However, irbesartan and losar-
tan also reduced LPS-stimulated ROS production in BV2 cells (Figure 1E). Telmisartan
dose-dependently reduced LPS-mediated iNOS and IL-1β mRNA induction in primary
microglia and BV2 cells (Figure 2). Thus, telmisartan has a specific anti-inflammatory action
in microglia that is not shared by other ARBs.
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Figure 2. Telmisartan reduces mRNA of pro-inflammatory mediators. Primary microglia (A,B) or BV2
cells (C,D) were pretreated with telmisartan at the indicated dose for 2 h followed by LPS (2.5 ng/mL
of primary microglia and 100 ng/mL of BV2 cells) for 12 h. The cells were then harvested and
RNA-isolated for qPCR analysis. Telmisartan dose-dependently reduced IL1β (A,C) and iNOS (B,D)
mRNA in BV2 and primary microglia. (Data are representative of at least 3 repeated experiments;
n = 4, mean ± s.e.m. *** p < 0.001, ** p < 0.01, * p < 0.05, compared with LPS-treated cells; ### p < 0.001,
## p < 0.01, compared with untreated cells).

3.2. Telmisartan Activates the AMPK/mTOR Pathway

Telmisartan was shown to partially promote the anti-inflammatory polarization of
microglia by activating the AMPK pathway [45]. However, the ability of other ARBs to acti-
vate AMPK is not known [45]. We therefore compared the ability of telmisartan and other
ARBs to induce AMPK phosphorylation in BV2 cells. As was previously reported, 10 µM
of telmisartan induced AMPK phosphorylation in BV2 cells, but candesartan, valsartan,
irbesartan, and olmesartan did not significantly alter AMPK phosphorylation at this dose
(Figure 3A). The activation of AMPK by telmisartan was dose dependent (Figure 3B). As
activated AMPK inhibits mTOR phosphorylation [48], we assessed whether telmisartan
treatment reduced mTOR phosphorylation in BV2 cells. Telmisartan dose-dependently
reduced the amount of phosphorylated mTOR detected (Figure 3C).
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treated with the indicated ARBs (100 µM) for 3 h before the harvesting and isolation of proteins.
Western blots indicate the effect of treatment on the phosphorylation of AMPK (A,B) and mTOR
(C). Graphs show the quantification of Western blots. (A) Telmisartan (T) but not candesartan
(C), olmesartan (O), valsartan (V), or irbesartan (I) significantly induced the phosphorylation of
AMPK. Telmisartan treatment resulted in the dose-dependent phosphorylation of AMPK (B) and
reduction in mTOR phosphorylation (C). (Data are representative of at least 2 repeat experiments.
n = 3, mean ± s.e.m. *** p < 0.001,** p < 0.01, * p < 0.05, relative to untreated cells).

3.3. Telmisartan’s Anti-Inflammatory Activity Is Partially Inhibited by Compound C

Some ARBs, in addition to acting as antagonists at AT1R, also act as partial agonists
at PPARγ [40]. As activation of PPARγ has anti-inflammatory activity in microglia [49], it
was assumed that PPARγ effects may mediate some anti-inflammatory activity. Indeed,
Telmisartan is the strongest partial PPARγ agonist of the FDA-approved ARBs [40,41]. To
determine if PPARγ may mediate the anti-inflammatory effects of telmisartan, we treated
cells with a PPARγ antagonist (T0070907) before stimulating with LPS. However, pretreat-
ment of microglia with two different concentrations of T0070907 did not block telmisartan’s
ability to reduce the LPS-mediated production of ROS or NO (Figure 4A,C), suggesting that
telmisartan’s activation of PPARγ was not responsible for its anti-inflammatory activity.
To determine whether AMPK activity was responsible for telmisartan’s anti-inflammatory
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effects, we pretreated BV2 cells with the AMPK inhibitor compound C (CC) before adding
telmisartan and then LPS. Inhibition of AMPK with compound C partially inhibited telmis-
artan’s ability to reduce LPS-generated ROS production (Figure 4B) but did not prevent
telmisartan’s ability to reduce LPS-mediated NO production (Figure 4D). These data sug-
gest that telmisartan’s anti-inflammatory ability involves the activation of AMPK but
not PPARγ.
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Figure 4. Inhibition of AMPK by compound C reduced reactive oxygen species but not nitric oxide
release from microglia: BV2 microglia were pretreated with (A,C) the PPARγ inhibitor T0070907
(1 µm) or (B,D) the AMPK inhibitor compound C for 1 h followed by telmisartan (20 µM) for 2 h.
Cells were then treated with LPS (100 ng/mL) for 12 h. Cells were analyzed for ROS content using
H2DCFDA (A,B), and media were collected for analysis of NO content by the Griess assay (C,D).
Compound C (B), but not T0070907 (A), prevented the telmisartan-dependent reduction in ROS in
LPS-treated BV2 microglia. However, neither compound C nor T0070907 altered the telmisartan-
mediated reduction in the LPS-induced NO release (C,D). (Data are representative of at least 3 repeat
experiments; n = 4, mean ± s.e.m. *** p < 0.001, ** p < 0.01, * p < 0.05 compared to control cells).

3.4. Telmisartan Increases Mitochondrial Membrane Potential in BV2 Cells

AMPK plays a critical role in mitochondrial biogenesis, fission, and signaling [50].
We therefore assessed whether telmisartan treatment resulted in an alteration of the mi-
tochondrial membrane potential in BV2 cells. The mitochondrial membrane potential
was assessed with the tetramethylrhodamine ethyl ester (TMRE) dye that accumulates in
active mitochondria in direct proportion to their membrane potential (∆Ψm) [51]. Telmis-
artan treatment increased the mitochondrial membrane potential in BV2 cells after 6 h of
treatment (Figure 5). The fluorescent intensity of cells incubated with TMRE increased
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with telmisartan treatment as determined by fluorescent intensity (Figure 5A), fluorescent
microscopy (Figure 5B) and flow cytometry (Figure 5C). These data show that telmisartan
treatment, at least initially, enhances the mitochondrial membrane potential.
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Figure 5. Telmisartan increases mitochondrial membrane potential in BV2 cells. (A) BV2 microglia
were treated with increasing doses of telmisartan for 6 h followed by incubation with TMRE (1 µm)
for 20 min. Telmisartan increased TMRE fluorescence (n = 3, mean ± s.e.m. *** p < 0.001, ** p < 0.01).
(B) Representative fluorescent images of telmisartan-treated BV2 cells after treatment with TMRE
show an increased mitochondrial membrane potential with telmisartan treatment. (C) BV2 cells were
treated with increasing doses of telmisartan for 6 h followed by 20 min of TMRE (1 µM) treatment.
Flow cytometry shows that telmisartan increased the intensity of TMRE-positive cells. (Data are
representative of 3 repeated experiments).

3.5. Telmisartan Induces Autophagy in BV2 Microglia

As AMPK activation with an associated inhibition of mTOR is associated with the
induction of autophagy, we next determined whether telmisartan treatment resulted in
increased autophagy in BV2 cells. Autophagy is a cellular process whereby damaged
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cytoplasmic components are degraded in order to preserve cellular homeostasis [52,53].
We examined the ratio of LC3BII to LC3BI, a marker of initiation of autophagosome and
autolysosome formation [54]. A total of 10 h of telmisartan treatment led to an increase
in the LC3BII/1 ratio (Figure 6A). Co-treatment with chloroquine, a drug that blocks
autophagic flux and therefore allows for the accumulation of autophagosomes, enhanced
this LC3BII/1 ratio (Figure 6A). Dose-dependent telmisartan-induced autophagy was also
detected with the autophagy detection kit, CytoID (Figure 6C).

Neuroglia 2024, 6, FOR PEER REVIEW  11 
 

 

examined the ratio of LC3BII to LC3BI, a marker of initiation of autophagosome and au-
tolysosome formation [54]. A total of 10 h of telmisartan treatment led to an increase in 
the LC3BII/1 ratio (Figure 6A). Co-treatment with chloroquine, a drug that blocks au-
tophagic flux and therefore allows for the accumulation of autophagosomes, enhanced 
this LC3BII/1 ratio (Figure 6A). Dose-dependent telmisartan-induced autophagy was also 
detected with the autophagy detection kit, CytoID (Figure 6C).  

 
Figure 6. Telmisartan induces markers of autophagy in BV2 microglia: BV2 cells were treated for 10 
h with telmisartan (20 µM) with or without chloroquine (50 µM) before harvesting and protein ex-
traction. (A) Representative Western blot of LC3B shows that telmisartan increased the ratio of 
LC3BII to LC3BI. This increase was augmented by chloroquine treatment. (B) Quantification of 
LC3B Western blot showing the ratio of LC3BII to LC3BI. (C) Autophagy was assessed in BV2 cells 
with the CytoID kit. Telmisartan dose-dependently increased the fluorescence of BV2 cells incubated 
with the CytoID dye, indicating increased autophagosome formation. (Data are representative of 3 
repeated experiments; n = 4, mean ± s.e.m, ** p < 0.01, * p < 0.05 relative to untreated cells.) 

3.6. Telmisartan Dose-Dependently Reduce Viability of Microglia 
Telmisartan has previously been shown to induce apoptosis in adult T-cell leukemia 

cells [55] and human endometrial cancer cells [56]. However, the ability of ARBs to alter 
microglial viability is unknown. We therefore determined whether any of the eight ARBs 
altered microglial viability through assaying for lactate dehydrogenase (LDH) release as 
a measure of drug-induced cytotoxicity. Telmisartan was unique in its ability to increase 
LDH release from primary microglial cultures or BV2 microglia (Figure 7A,C). Telmisar-
tan dose-dependently induced LDH release in both cell types, with 10 µM of telmisartan 
producing a significant induction of LDH release (Figure 7B,D). Telmisartan’s reduction 
in BV2 microglial viability was confirmed by both the MTS cell proliferation assay (Figure 
7E) and trypan blue exclusion (Figure 7F).  

Figure 6. Telmisartan induces markers of autophagy in BV2 microglia: BV2 cells were treated for
10 h with telmisartan (20 µM) with or without chloroquine (50 µM) before harvesting and protein
extraction. (A) Representative Western blot of LC3B shows that telmisartan increased the ratio of
LC3BII to LC3BI. This increase was augmented by chloroquine treatment. (B) Quantification of LC3B
Western blot showing the ratio of LC3BII to LC3BI. (C) Autophagy was assessed in BV2 cells with the
CytoID kit. Telmisartan dose-dependently increased the fluorescence of BV2 cells incubated with the
CytoID dye, indicating increased autophagosome formation. (Data are representative of 3 repeated
experiments; n = 4, mean ± s.e.m, ** p < 0.01, * p < 0.05 relative to untreated cells).

3.6. Telmisartan Dose-Dependently Reduce Viability of Microglia

Telmisartan has previously been shown to induce apoptosis in adult T-cell leukemia
cells [55] and human endometrial cancer cells [56]. However, the ability of ARBs to alter
microglial viability is unknown. We therefore determined whether any of the eight ARBs
altered microglial viability through assaying for lactate dehydrogenase (LDH) release as
a measure of drug-induced cytotoxicity. Telmisartan was unique in its ability to increase
LDH release from primary microglial cultures or BV2 microglia (Figure 7A,C). Telmisartan
dose-dependently induced LDH release in both cell types, with 10 µM of telmisartan
producing a significant induction of LDH release (Figure 7B,D). Telmisartan’s reduction in
BV2 microglial viability was confirmed by both the MTS cell proliferation assay (Figure 7E)
and trypan blue exclusion (Figure 7F).
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Figure 7. Telmisartan induces death of BV2 and primary microglia: Primary microglia (A,B) and
BV2 cells (C–F) were treated with different ARBs (100 µM) for 12 h before an assessment of LDH
release and cell viability. Telmisartan was the only ARB to significantly induce LDH release in either
primary microglia (A) or BV2 cells (C). Telmisartan dose-dependently increased LDH release in
primary microglia (B) and BV2 cells (D). Staurosporine (1 µM) was added as a positive control for cell
death (D,E). Telmisartan also dose-dependently reduced cell viability and proliferation, as indicated
by the amount of reduced MTS detected (E) and trypan blue exclusion (F) in BV2 cells. (Data are
representative of at least 3 repeat experiments; n = 4, mean ± s.e.m. *** p < 0.001, ** p < 0.01, * p < 0.05
compared to untreated cells).

3.7. Inhibition of Autophagy and Apoptosis Reduced Telmisartan-Induced Cell Death in BV2 Cells

To determine whether telmisartan is cytotoxic to microglia through the induction of
autophagy or apoptosis, we pretreated primary microglia with increasing doses of the
autophagy inhibitor 3MA or the pan-Caspase inhibitor Z-VAD-FMK prior to telmisartan
treatment. The telmisartan-mediated LDH release was almost completely inhibited by Z-
VAD-FMK (Figure 8B) and partially inhibited with 2.5 µM of 3MA (Figure 8A). These data
suggest that telmisartan is cytotoxic to microglia through the induction of apoptosis. They
also suggest that telmisartan-induced autophagy may contribute to microglial-induced
cell death.
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Figure 8. Inhibition of autophagy or caspases reduced telmisartan-mediated cell death in BV2 cells.
(A). BV2 cells were pretreated with 3-methyladenine (3MA) for 1 h followed by telmisartan (50 µM)
for 12 h before an assessment of LDH release. 2.5 µM of 3MA treatment partially reduced the
telmisartan-mediated LDH release (mean ± s.e.m, n = 3, ### p < 0.001, compared to untreated cells,
** p < 0.01, compared to telmisartan treated cells). (B). BV2 cells were pretreated with Z-VAD-FMK
(20 µM) for 1 h followed by either telmisartan (50 µM) or Staurosporine (0.5 µM) for 12 h. Either
telmisartan or staurosporine treatment increased cell death, as determined by LDH release, compared
to no treatment (### p < 0.001, ## p < 0.01). Z-VAD-FMK significantly reduced either telmisartan-
(*** p < 0.001) or staurosporine (&&& p < 0.001)-mediated LDH release. (Data represent 3 experiments
(mean ± s.e.m, n = 3)).

4. Discussion

Losartan, candesartan, and telmisartan have efficacy in preclinical models of TBI [32,57,58].
Telmisartan and candesartan are able to reduce neuroinflammation, reduce amyloid burden,
and improve cognitive performance in rodent AD models [59–61]. Retrospective studies
have shown that patients taking ARBs for hypertension have a reduced incidence of AD,
and there is a growing consensus that ARBs may have efficacy in preventing or treating
AD [31,35,58,62–64]. Given the interest in these drugs to treat neurodegenerative diseases
and neurotrauma, an understanding on their actions in specific cell types is warranted.
Here, we show that telmisartan has unique mechanisms for reducing pro-inflammatory
mediators in microglia. We also demonstrate that telmisartan is able to induce autophagy
and cell death in microglia in contrast to other ARBs. This effect may, in part, account for
its more potent anti-inflammatory effects.
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Although ARBs were designed as antagonists of AT1Rs, it is likely that their direct
anti-inflammatory effects on microglia are not mediated through this mechanism. It is
uncertain whether microglia express AT1Rs in culture or in vivo [65], and others have
not found AT1R expressed in BV2 microglia [66,67]. Further, we found telmisartan to
have the same anti-inflammatory effects in microglia cultured from AT1R knockout mice.
We did not find angiotensinogen mRNA, encoding the upstream precursor for the AT1R
ligand, Ang II, in our primary microglial cultures. We therefore suggest that the ARB-
mediated anti-inflammatory effects in our microglial cultures are independent of AT1R
antagonism. However, AT1R blockade may play a significant role in vivo in mediating the
anti-inflammatory effects of ARBs due to complex interactions between different cell types
together with potentially different microglial phenotypes in vivo than in culture [68].

ARBs can also modulate AT1R-independent signaling, including through PPARγ [41,69,70],
PPARα [71], PPARδ [44], PTEN [72], and AMPK [45,73]. To date, telmisartan is a stronger
inducer of these alternate pathways than other ARBs: something our data also support
(Figures 1 and 3). Losartan, irbesartan, and candesartan also act as partial PPARγ agonists
in vitro [69], and we have shown that candesartan’s anti-inflammatory actions in a mouse
model of TBI can be reduced with a PPARγ antagonist [25,32]. Although PPARγ agonists
reduce inflammation [74,75], inhibition of the PPARγ pathway with T0070907 did not
interfere with telmisartan’s ability to reduce ROS and NO induction in LPS-treated BV2 cells
(Figure 4). In contrast, PPARγ knockdown with siRNA partially prevented telmisartan’s
ability to reduce IL-1β and TNFα mRNA in LPS-activated microglia [45]. The discrepancy
between our data and those of Xu et al. [45] could be due to the different outcome measures
used or the different methods of interfering with PPARγ signaling. We can conclude that
telmisartan’s ability to activate PPARγ signaling is at most only a partial contributor to its
anti-inflammatory actions.

In this study, we showed that telmisartan, but not candesartan, olmesartan, valsar-
tan, or irbesartan, activates AMPK in microglia (Figure 3). AMPK is involved in cellular
responses to stress, nutrient deprivation, and energy homeostasis [76]. It has also been
associated with anti-inflammatory states in immune cells [45,57,77]. AMPK activation is
associated with macrophage polarization towards an anti-inflammatory phenotype and
can block the LPS-mediated induction of proinflammatory cytokines [78,79]. In our case,
compound C inhibition of AMPK partially ameliorated telmisartan’s ability to reduce ROS
but not NO induction by LPS in microglia, suggesting a linkage between telmisartan’s
activation of AMPK and its anti-inflammatory action. Xu et al. also showed that compound
C inhibited telmisartan’s ability to reduce IL-1β and TNFα mRNA in LPS-activated mi-
croglia [45]. Thus, telmisartan’s activation of the AMPK pathway may partially account for
some of its anti-inflammatory effects in microglia.

Several downstream pathways are regulated by AMPK [76]. However, no down-
stream or cellular effector of AMPK activation has been assessed in telmisartan-treated
microglia. mTOR is an important downstream target negatively regulated by AMPK [48].
We showed that telmisartan reduced mTOR phosphorylation in BV2 microglia (Figure 3C).
The reduced phosphorylation of mTOR reduces its activity [48]. mTOR mediates cell
survival and proliferation with overall anabolic effects [80,81] in contrast to the catabolic
effects of AMPK [82]. The role of mTOR in regulating inflammation is controversial, with
rapamycin-mediated inhibition leading to either the reduction or stimulation of inflam-
matory mediators, dependent on context [83]. In microglia, mTOR inhibition results in
reduced pro-inflammatory cytokine release [84,85], which is consistent with our data. Thus,
increased AMPK phosphorylation and decreased mTOR phosphorylation should reduce
inflammatory signaling in response to telmisartan.

The commonly used anti-diabetic drug metformin activates AMPK by increasing
cytoplasmic AMP through an inhibition of complex I of the mitochondrial electron trans-
port chain [53,86]. Telmisartan has also been shown to regulate mitochondrial function,
suggesting a possible mechanism that may link telmisartan treatment to AMPK activa-
tion. Telmisartan increases mitochondrial activity in vascular smooth muscle cells [87],
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but inhibits the mitochondrial membrane polarization in T-cell leukemic cells [55]. Our
data show that telmisartan increased rather than decreased the mitochondrial membrane
potential (Figure 5), indicating that telmisartan does not induce AMPK phosphoryla-
tion by inhibiting mitochondrial function. Telmisartan has also been shown to induce
AMPK activation through the calcium/calmodulin-dependent protein kinase β (CaMKKβ)
in microglia [45], suggesting an alternate mechanism through which telmisartan can
activate AMPK.

We show telmisartan-induced autophagy in BV2 microglia (Figure 6). Telmisartan
can induce autophagy in vascular smooth muscle endothelial cells [48] and T-cells [55].
As the AMPK–mTOR pathway is linked to the induction of autophagy [88], our data
are consistent with telmisartan activating an AMPK–mTOR–autophagy pathway. AMPK
directly promotes autophagy by phosphorylating autophagy-associated proteins, such as
ULK1 and Beclin1-Vps34, in addition to mTOR [89]. The induction of microglial autophagy
could serve many functions including enhanced phagocytosis, the regulation of apoptosis,
and the regulation of metabolism [90]. Additionally, the induction of autophagy in microglia
is linked to an enhanced anti-inflammatory response, with a microglial-specific inhibition
of autophagy, promoting a proinflammatory phenotype [91–93]. Thus, telmisartan’s anti-
inflammatory actions could be partly mediated through autophagy induction.

It is possible that telmisartan’s induction of autophagy is also linked to its beneficial
action in neurodegenerative diseases [62]. Telmisartan has beneficial effects on rodent
models of AD [60,94]. These most probably result from a combined action of telmisartan on
neurons and glial cells. In these murine models telmisartan does have specific microglial
anti-inflammatory activity [60,94] and can increase the autophagic digestion of Aβ [94], but
it has not previously been shown that telmisartan directly increases microglial autophagy.
Therefore, our data suggest that increased microglial autophagy may be one mechanism
through which telmisartan treatment leads to decreased Aβ accumulation in the brain.
To our knowledge, there are no clinical studies that have examined the role of individual
ARBs in reducing the development of AD. Thus, we do not know whether telmisartan is
better than other ARBs in this respect. Telmisartan and candesartan, classified together as a
“blood–brain barrier-crossing ARBs”, gave better protection against memory loss in older
adults versus “non-blood–brain barrier-crossing ARBs” when used as chronic hypertension
medication [95].

Our data show that increasing telmisartan doses can lead to reduced proliferation
and increased death of both primary microglia and BV2 microglia (Figure 7A,C), which
is surprising in light of telmisartan’s generally protective actions with a favorable safety
profile [96]. Telmisartan’s toxicity was dose-dependent, with doses as low as 10 µM causing
significant toxicity, as assessed by LDH release (Figure 7B,D). More extensive cell death
was observed at doses of 50 µM and 100 µM. It is difficult to translate drug doses used in
cell cultures to those used in vivo, due to the complexity of the many factors in vivo that
can influence drug concentrations and effects. It is therefore possible that these results are
an anomaly of an individual, isolated cell culture, and any cell death telmisartan may cause
in vivo is negligible.

Interestingly, we did not detect toxicity of low doses of telmisartan in the presence
of LPS, suggesting that this is not a mechanism that mediates telmisartan’s protective,
anti-inflammatory actions. None of the other ARBs showed a similar toxicity at 100 µM
(Figure 7A,C), illustrating the unique action of telmisartan on microglia. Telmisartan can
induce apoptosis in a variety of cell types, although these are mainly transformed cells, so
this activity is considered beneficial anti-tumor activity [55,97–99]. Telmisartan’s toxicity
was partially ameliorated by 3-methyladenine, an inhibitor of early autophagy (Figure 8A),
and prevented by pretreatment with the pan-caspase inhibitor Z-VAD-FMK (Figure 8B).
These data suggest that telmisartan activates caspases to cause apoptotic cell death and that
the induction of autophagy partially mediates this. There is known to be a link between
autophagy and apoptosis in microglia. Autophagy promoted hypoxia-induced primary
microglial cell death, and mTOR-regulated autophagy was involved in microglial apoptosis
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after hypoxia/reperfusion [70,100]. Thus, telmisartan’s activation of the AMPK–mTOR–
autophagy pathway may contribute to its toxicity in microglia.

In conclusion, we have shown that telmisartan, unlike other ARBs, is a potent inhibitor
of microglial activation in vitro. We showed that the PPARγ pathway was not involved
in the reduction in ROS and NO in LPS-activated microglia by telmisartan. However, the
decrease in ROS by telmisartan in LPS-activated microglia was partially AMPK dependent.
We also show, for the first time, that telmisartan activates autophagy in microglia and
reduces microglial viability (Figure 9). These data suggest that telmisartan has unique
properties relative to other ARBs, which may enable specific therapeutic uses, but caution
may also be warranted when used clinically.
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