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Abstract: The San Francisco Bay Delta has been an estuary of low productivity, with causes hy-
pothesized to relate to light limitation, grazing by invasive clams, and polluting levels of NH4

+

discharge from a wastewater treatment plant. Suppression of phytoplankton NO3
− uptake by NH4

+

has been well documented, and thus this estuary may have experienced the counterintuitive effect of
depressed productivity due to wastewater NH4

+ enrichment. In 2021, a new wastewater treatment
plant came online, with a ~75% reduction in nitrogen load, and within-plant nitrification, converting
the discharge to NO3

−. The expectation was that this change in nitrogen loading would support
healthier phytoplankton production, particularly of diatoms. Here, responses of the post-upgrade
Bay Delta phytoplankton were compared to five years of data collected pre-upgrade during the
fall season. Indeed, increased chlorophyll a accumulation in the estuary was documented after the
implementation of the upgraded wastewater treatment and photophysiological responses indicated
comparatively less stress. Major differences in river flow were also observed due to drought condi-
tions during the decade covered by this study. While short-term favorable effects were observed,
understanding longer-term ecological feedback interactions that may follow from this major nutrient
change under variable flow conditions will require more years of observations.

Keywords: Bay Delta; ammonium; wastewater; nutrients; diatoms; Fv/Fm; photophysiology;
estuary recovery

1. Introduction

The San Francisco Bay Delta has long been considered an estuary of High Nutrient-
Low Growth (HNLG) [1–3]. The low productivity condition has not always been the
case, as annual summer blooms with chlorophyll a (chl a) > 20 µg L−1 occurred in the
1970s [4] especially during drought periods [5,6]. In recent years, phytoplankton blooms
have been a relative rarity, although occasional blooms have occurred, typically dominated
by the centric diatom, Aulacoseira granulate, e.g., [7–9]. For example, an extensive bloom of
A. granulata was observed in the northern Bay Delta in spring 2016 [10]. Due to compara-
tive infrequency of algal blooms, the Bay Delta has been considered to be immune from
conditions of eutrophication. On the one hand, this is positive, in that conditions of large
blooms and prolonged hypoxia are not problematic. On the other hand, the condition of
low chl a has been considered to be limiting for food availability for major fish species,
leading to a condition referred to as the pelagic organism decline [11,12]. The exception
to the low productivity condition in the Bay Delta is the region of the central Delta and
confluence of the Sacramento and San Joaquin Rivers, where blooms of the cyanobacterium
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Microcystis aeruginosa have been a recurring feature for more than two decades, e.g., [13–15].
Production of cyanobacterial blooms are not supportive of fish production.

A major source of nutrients to the Bay Delta since the early 1980s has been a wastewater
treatment plant (WWTP) located in the upper Sacramento River. This WWTP discharged
nitrogen (N) to the Sacramento River at the rate of 14–15 tons day−1 and at concentrations
at the point of discharge that increased from ~10 mg L−1 when the plant came online in the
early 1980s to >30–40 mg L−1 in the 2000s [5,16,17]. Under average flow conditions, >90%
of the total N in the northern San Francisco Estuary originated from this single source [5].
Importantly, this N was discharged in the form of NH4

+. The Sacramento River served as a
region of nitrification, inferred from both water column changes in concentrations of NH4

+

and NO3
− [18] and the presence of nitrifying bacteria and archaea [19,20]. Agricultural

sources also supply nutrients to the Bay Delta [21–23].
The NH4

+ originating from the WWTP has been hypothesized to be suppressive or
repressive for phytoplankton growth, rather than stimulatory [1,7–9,24,25], although this
has been a topic of considerable debate, e.g., [26–28]. While NH4

+ can be a preferred form
of N for phytoplankton, at high levels it can be toxic for cell growth [29] (and references
therein). The phenomenon of productivity suppression in the presence of elevated NH4

+

has been observed in other rivers, lakes, estuarine and coastal ecosystems impacted by
either WWTP effluent or fertilizer runoff [3,30–33]. The same phenomenon of reduced
growth with elevated NH4

+ has also been observed in higher plants and is known as the
“NH4

+ syndrome” [34,35].
Beginning in 2015, new discharge requirements were imposed on the Sacramento River

WWTP, necessitating the building of a major new treatment plant. Servicing over 1.6 million
people, the new discharge permit required that NH4

+ be removed from discharge, and
that total N discharge be reduced by 75%, with a river discharge of 181 million gallons per
day (=685 million liters per day, average dry weather amount) [36]. No requirements for
a change in PO4

3− discharge were imposed. Thus, with reduced N loads, the dissolved
inorganic N:dissolved inorganic P (DIN:DIP) was reduced accordingly. Biological nutrient
removal was added and advanced filtration removed many smaller particles that were
also discharged in the pre-upgrade effluent. The upgraded WWTP—a nearly USD2 billion
investment—known as the EchoWater Project (https://www.regionalsan.com/echowater-
project, accessed on 1 May 2022) was fully implemented by late spring 2021 and represents
one of the largest plants in the USA.

An alternative hypothesis for persistent low productivity in the Bay Delta is that
the phytoplankton are light limited [37–39]. Due to high suspended particulate matter
caused by river inflow as well as turbulence due to tides and waves [40], light availabil-
ity can be poor. However, suspended particulate matter varies considerably with bay
region and season, being highest during the winter and spring wet period, leading to
lowest light availability during these seasons [41]. Additionally, biomass accumulation
may be controlled by aggressive benthic grazing predominantly by the invasive clam,
Potamocorbula amurensis [6,42,43]; P. amurensis = Corbula amurensis, [44]. Grazing by clams
is highest in late summer/fall.

Over the past decade, California has also experienced periods of major drought, with
a few years during which drought conditions were alleviated. Drought has significant im-
pacts on waters of the Bay Delta by altering residence times, which, in turn, may allow for
more in situ phytoplankton growth, which, unless grazed, would be more likely to accumu-
late. Conversely, for periods of high flow, it has previously been suggested that phytoplank-
ton growth may be limited due to the short transport times in the river/estuary [45,46].
During drought there is also less dilution of effluent nutrients, potentially leading to more
localized impacts. The timing of final implementation of EchoWater occurred during the
most recent—and ongoing—drought.

The overarching hypothesis that will be tested over the coming years is that if the
high loads of NH4

+ were indeed suppressive to phytoplankton growth, then an increase in
phytoplankton growth should be seen when these loads are reduced. Furthermore, shifting

https://www.regionalsan.com/echowater-project
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the form of N to NO3
− should favor the growth of diatoms, as they are considered NO3

−

opportunists [29]. An increase in diatom production would also be expected from the
reduction in DIN:DIP, as diatoms typically have a high P requirement, e.g., [47,48]. While it
may take years for the system to fully adapt to the new nutrient conditions, phytoplankton
physiology responds rapidly, whereas the multiple biogeochemical and ecological feed-
backs of ecosystem recovery will take multiple seasons to become fully established. Here,
initial responses to EchoWater are reported for the fall season, a few months after full im-
plementation, and water quality conditions and phytoplankton physiology are compared
to similar times of year for five previous years that varied in flow conditions. Although
not all years have availability of precisely the same measured parameters, they do allow
us a first look as to how the phytoplankton community responded to changes in nutrients
post-upgrade. This first assessment appears to support the hypothesis that alleviation of
excessive NH4

+ loads allowed increased production and less photosynthetic stress.

2. Materials and Methods
2.1. Site Description

The northern San Francisco Estuary, or Bay Delta, consists of the Central Bay, San
Pablo Bay, Suisun Bay and the Sacramento-San Joaquin Bay Delta, which is a complex web
of rivers, channels, wetlands and floodplains (Figure 1) [49,50]. On a long-term basis, the
Sacramento River contributes >80% of the river inflow to the Bay Delta [5]. The sampling
herein covered the region of the Sacramento River through Suisun Bay. The Sacramento
and San Joaquin Rivers converge at the confluence of the Delta, then flow into Suisun Bay.
The mean depths of these regions of the Bay Delta range from 3.3 to 5.7 m [6].
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Figure 1. Map of the San Francisco Bay Delta showing the sites sampled over the study years. Each
station is identified by a number (in red) and by a regional name. The WWTP that underwent an
upgrade and reduction in nitrogen effluent in 2021 is shown with the WWTP icon near Station 3
(GRC). The WWTP icon is from the University of Maryland Integration and Application Network
image library.
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The dendritic nature of the Sacramento River and the many other tributaries and
subestuaries, as well as the specific point source discharges, lead to several natural change
points in the river hydrology and ecology [9]. Viewing the river from the upper station,
the first change occurs between stations 3 (GRC) and 4 (RM44), where the wastewater is
discharged. The next natural change occurs at Station 8 (657), as there is inflow from the
Sacramento Ship Channel and other tributaries exit into the Sacramento River between
sites 7 (ISL) and Station 8 (657). The next natural change occurs at station 12 (US2), where
the Sacramento River exits into Suisun Bay. The San Joaquin River discharges between
stations 11 and 12.

2.2. River Flow

Daily river discharge data were downloaded from USGS site 11,455,420 (at Rio Vista
(Station 8), www.waterdata.usgs.gov, accessed 15 May 2022). Average values for the
30 days prior to sampling were calculated for each year of sampling.

2.3. Sample Collection

Sampling was undertaken in the months of September or October under the umbrella
of three different projects encompassing different years (2011–2013, 2014–2015, 2021). Each
sampling period covered stations from above the wastewater treatment plant to Suisun Bay.
Although not all stations were sampled on each sampling date, as the different projects had
different goals or equipment available, each sampling effort covered the same transect from
the upper Sacramento River through Suisun Bay. Stations were identified with varying
names, and thus herein, both station number and local name are given for each station
reference. Samples were collected on 1-day trips on the R/V Questuary on 6 September 2011,
14 September 2012, 23 September 2013, and on back-to-back 1-day trips encompassing shorter
segments of the transects on 15-16 October 2014, 28-30 October 2015 during the pre-upgrade
conditions, and five months after full implementation on 22–23 September 2021.

In all years, samples were collected and processed following Wilkerson et al. [25,51].
Samples were collected via a rosette CTD (Seabird Electronics SB-32) equipped with 6, 3-L
Niskin bottles. A Secchi disk was used to estimate water clarity. Samples from different
depths were collected, but consistently near-surface samples were collected and represent
the data herein. All were filtered onboard in duplicate through Whatman GF/F filters
(nominally 0.7 µm) for the collection of chl a and (except for 2011 and 2021) analysis of
phytoplankton diagnostic pigments. Syringe filters (GF/F) were used to collect nutrient
samples. Filtrates were stored on ice, and returned to the laboratory for subsequent analysis
of NH4

+, NO3
−, PO4

3− and Si(OH)4.

2.4. Analytical Protocols

Ambient nutrient concentrations were analyzed using manual colorimetric assays
(NH4

+) and autoanalysis techniques (NO3
− + NO2

− (hereafter NO3
−), PO4

3−, Si(OH)4).
Concentrations of NH4

+ were analyzed according to Solorzano [52], while the other nutri-
ents followed Bran and Lubbe protocols [53–55]. Samples for chl a were analyzed using a
Turner Designs Model 10-AU fluorometer following a 24 h 90% acetone extraction at 4 ◦C [56].
The fluorometer was calibrated with commercially available chl a (Turner Designs).

From 2012 to 2015, phytoplankton pigments were also analyzed using high perfor-
mance liquid chromatography (HPLC) using methods described by Van Heukelem and
Thomas [57]. In 2012 and 2013, samples were processed at the Horn Point Laboratory,
University of Maryland Center for Environmental Science (UMCES), and in 2014 and
2015 samples were analyzed at Oregon State University, Corvallis. Although the analysis
protocol includes a full suite of pigments, of relevance here are fucoxanthin, chlorophyll b
(chl b), and zeaxanthin, which, when normalized to chl a, are a measure of diatoms, green
algae, and cyanobacteria, respectively [58,59].

www.waterdata.usgs.gov
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2.5. Photophysiological State and Irradiance Relationships

From 2012 to 2015, a Turner Designs PhytoFlash variable fluorometer was used to
assess phytoplankton physiological state. Samples were collected and dark adapted for at
least 20 min and measurements of variable fluorescence were taken. Variable fluorescence
is the ratio of (Fv) to maximum fluorescence (Fm), Fv/Fm, and is taken as a measure of
photosynthetic efficiency, the maximum quantum yield of photosystem II. Reductions in
Fv/Fm are taken as a measure of stress in photosystem II. The PhytoFlash provides a single
value for the community sample.

In 2021, photophysiological state was measured differently. Samples were collected
at each station, kept at ambient temperature under 50–60% irradiance until return to the
dock. Samples were then dark acclimated for ~20 min and fluorescence parameters were
measured using a Walz PhytoPAM II (Heinz Walz GmbH, Effeltrich, Germany). In con-
trast to the PhytoFlash instrument, the PhytoPAM II’s multiwavelengh capability allows
deconvolution of signals from different functional groups but does not provide an inte-
grated value for the entire phytoplankton community; it determines the photophysiological
condition of each algal group individually. The PhytoPAM II deconvolutes signals asso-
ciated with brown algae (diatoms and dinoflagellates), green algae, blue-green algae and
phycoerythrin-containing algae (e.g., picoplankton such as Synechococcus). The instrument
was calibrated with diatom, green and phycoerythrin-containing (cyanobacteria) reference
spectra. While the brown algal signal includes both diatoms and dinoflagellates, micro-
scopic analyses confirmed that the dominant organism present in this category was diatoms.
The major signals that were resolved herein were brown algae (diatoms) and green algae.
PE-containing signals were detected at some stations, but values were consistently very
low. A non-PE cyanobacterial signal was not resolvable in these samples.

Using the PhytoPAM II, Fv/Fm was first measured for the different algal groups after
dark acclimation of ~20 min. Then, the photosynthesis-irradiance response of each sample
was measured using the rapid light curve (RLC) function of the PhytoPAM II. RLCs use
electron transport rate (ETR) for the currency of photosynthesis and values are expressed
as µmol electrons m−2 s−1. Samples were exposed to 12 step changes in irradiance at 10 s
per step, covering the irradiance range of 5 to 580 µM photons m−2 s−1. The ETR of PSII
and parameters of the RLCs were calculated using the equation of Platt et al. [60] using the
WinControl software package of the PhytoPAM II instrument. For selected stations in 2021,
RLCs were conducted with samples that were enriched with variable amounts of NH4

+

for several hours prior to measurement. The purpose of these experiments was to assess
how phytoplankton might have responded in pre-upgrade years if exposed to elevated
effluent NH4

+.

2.6. Statistical Analyses

Environmental data and photosynthetic parameters were processed in Microsoft
Excel or Walz WinControl software. Comparisons were made with ANOVA and Pearson
correlations were calculated to examine relationships between parameters.

3. Results
3.1. Flow Conditions

River flow changed substantially over the time period of study. The earlier samplings
occurred during non-drought to moderate drought conditions (Figure 2). Over the period
of the six studied years, river flow decreased about 3.5-fold when the average discharge
of the 30 days prior to sampling was considered. During 2011, when no drought was
evident, average flow during the month before sampling was 306 m3 s−1, but by 2021,
when drought was considered severe, discharge was only 88 m3 s−1 (Figure 2).

3.2. Ambient Water Column Conditions

Average water temperatures ranged from a low of 18.5 ◦C in 2015, the year when
sampling was several weeks later than the other years, to 20.8 ◦C in 2021, when flow was
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extremely low. With the exception of 2015, within-transect temperature variability did
not generally exceed 2 ◦C (Figure 3a). Given the several-weeks variability in timing of
sampling from year to year, temperature was not related to flow conditions (Figure 3b).
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years of sampling undertaken in the Bay Delta during September/October. Sampling in 2021 was
5 months after full implementation of the upgraded WWTP. Vertical dashed lines separate the major
segments of the river/estuary. The WWTP icon shows location of discharge. Relationships between
temperature and flow at Station 5, salinity with flow at Station 11 and Secchi depth with flow at
Station 5 are shown in (panels b,d,f), respectively. Note the stations for which relationships with
discharge are shown are highlighted by black arrows in (panels a,c,e), and 2021 data in (panels b,d,f)
are highlighted by triangles.
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Salinity differed significantly between years of sampling (Figure 3c). In 2011, the
highest flow year, salinity remained < 6 for the entire transect. In the drier years, salt
intrusion was apparent by Station 11 (649), with salinities as high as 5.4 (e.g., 2014). At
Station 11, where salt intrusion could be resolved, salinity for all years was significantly
related to flow conditions (R2 = 0.88, p < 0.01, Figure 3d).

Light availability differed between years and from upriver to down-estuary (Figure 3e).
For the first two years of study, 2011 and 2012, the Secchi depth barely exceeded 1 m at
any point along the transects. Secchi depth increased with the next two years of study,
exceeding 3 m in the upper reach of the river, but dropped to about 1 m in the lower stretch
of the transect. Highest Secchi depth was observed in 2021, post upgrade, but this region
of relative water clarity was limited to the upper segment of the river. For the four latter
years of study, Secchi depth increased from Station 1 (I80) to 3 (GRC), and further increased
to Station 7 (ISL) before dropping to values comparable to the other years in the lower
section of the transect. At Station 5 (HOD), the Secchi depth for all years of sampling was
significantly negatively correlated with monthly discharge (R2 = 0.93, p < 0.01, Figure 3f),
suggesting that high turbidity was associated with upriver sources (i.e., above Station 1
(I80), and that with reduced flow, particles were more likely to settle from the water column
or were diluted with water from effluent discharge. Station 5 is located a few km south of
the WWTP diffusers and represents the first station at which the WWTP effluent is well
mixed with the river water.

The nutrients differed significantly between pre- and post-upgrade conditions, and
significant differences were also observed with flow conditions. Concentrations of NH4

+

during the first two years of study, when drought was modest or absent, were <30 µM
near the outfall site (Figure 4a). In 2013, as drier conditions developed, concentrations of
NH4

+ exceeded 50 µM near the outfall, and during the drought years prior to upgrade
(2014, 2015), concentrations of NH4

+ near the outfall site were 80–90 µM. In the post-
upgrade sampling–and consistent with the permit requirements–concentrations of NH4

+

were <5 µM throughout the transect. For all years, concentrations of NH4
+ fell rapidly

over the transect and were consistently very low by Station 9 (655) or before. At Station 5
(HOD), concentrations of NH4

+ for the years prior to upgrade were significantly negatively
correlated with flow conditions (R2 = 0.98, p < 0.01, Figure 4b), consistent with the notion
that the WWTP was the major source of NH4

+ and concentrations at the point source were
diluted with higher flow.

Concentrations of NO3
− consistently increased down-estuary, but to varying extents

from year to year (Figure 4c). Two patterns with distance downstream were apparent.
During the higher flow years (2011, 2012, 2013), near-linear increases in NO3

− concentra-
tions were seen, suggesting a downstream source of this N form or increasing nitrification.
For the drier years pre-upgrade (2014, 2015), a sharp transition to elevated NO3

− con-
centrations > 30 µM was seen by Station 9 (655), reflecting localized nitrification, with
no further increases downriver. Input of NO3

− from the San Joaquin River is another
possible source in this stretch of the estuary. For the EchoWater sample (2021), the peak in
concentration at Station 5 (HOD) to ~15 µM can be directly attributed to the wastewater
discharge. From Station 6 (KEN) through 10 (653), concentrations declined, potentially
due to NO3

− uptake by phytoplankton, then gradually increased through the remainder
of the transect stations, reaching concentrations no greater than ~13 µM. At Station 11
(649), where elevated concentrations of NO3

− for the years prior to upgrade were apparent,
concentrations were significantly negatively correlated with flow conditions (R2 = 0.85
p < 0.05, Figure 4d), which would suggest that with reduced flow conditions, more nitrifica-
tion could be realized.

For PO4
3− during the pre-upgrade years, distinct peaks were recorded at Station 5

(HOD), associated with WWTP discharge (Figure 5a). During the driest year pre-upgrade,
2015, the concentration at this point source was nearly 6 µM. Concentrations declined
over the next few stations (likely due to phytoplankton uptake), then resumed an upward
trajectory for the remained of the river transect, likely reflecting a downstream source.
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Although the upgrade did not have a requirement to reduce PO4
3− in the discharge, it

appears that such reductions have occurred, with post-upgrade PO4
3− concentrations at

the discharge site of 1.3 µM. At Station 5 (HOD), concentrations of PO4
3− were significantly

negatively correlated with flow conditions for the pre-upgrade years (R2 = 0.80, p < 0.05,
Figure 5b), indicating that the source of PO4

3− was indeed the WWTP.

Nitrogen 2022, 3, FOR PEER REVIEW 8 
 

 

(HOD), concentrations of NH4+ for the years prior to upgrade were significantly nega-

tively correlated with flow conditions (R2 = 0.98, p < 0.01, Figure 4b), consistent with the 

notion that the WWTP was the major source of NH4+ and concentrations at the point 

source were diluted with higher flow. 

Concentrations of NO3− consistently increased down-estuary, but to varying extents 

from year to year (Figure 4c). Two patterns with distance downstream were apparent. 

During the higher flow years (2011, 2012, 2013), near-linear increases in NO3− concentra-

tions were seen, suggesting a downstream source of this N form or increasing nitrification. 

For the drier years pre-upgrade (2014, 2015), a sharp transition to elevated NO3− concen-

trations > 30 μM was seen by Station 9 (655), reflecting localized nitrification, with no fur-

ther increases downriver. Input of NO3− from the San Joaquin River is another possible 

source in this stretch of the estuary. For the EchoWater sample (2021), the peak in concen-

tration at Station 5 (HOD) to ~15 μM can be directly attributed to the wastewater dis-

charge. From Station 6 (KEN) through 10 (653), concentrations declined, potentially due 

to NO3− uptake by phytoplankton, then gradually increased through the remainder of the 

transect stations, reaching concentrations no greater than ~13 μM. At Station 11 (649), 

where elevated concentrations of NO3− for the years prior to upgrade were apparent, con-

centrations were significantly negatively correlated with flow conditions (R2 = 0.85 p < 

0.05, Figure 4d), which would suggest that with reduced flow conditions, more nitrifica-

tion could be realized. 

 

Figure 4. Transects of NH4+ (panel a), and NO3− (panel c) for the six years of sampling undertaken in 

the Bay Delta during September/October. Sampling in 2021 was 5 months after full implementation 

of the upgraded WWTP. Vertical dashed lines separate the major segments of the river/estuary. The 

WWTP icon shows location of discharge. Correlations of average monthly discharge and NH4+ con-

centrations at station 5 (HOD), and NO3− concentrations at station 11 (649), are shown in (panels 

b,d), respectively. Note the stations for which relationships with discharge are shown are high-

lighted by black arrows in (panels a,c). The 2021 data (highlighted as triangles) are not included in 

the regressions. 

For PO43- during the pre-upgrade years, distinct peaks were recorded at Station 5 

(HOD), associated with WWTP discharge (Figure 5a). During the driest year pre-upgrade, 

Figure 4. Transects of NH4
+ (panel a), and NO3

− (panel c) for the six years of sampling undertaken in
the Bay Delta during September/October. Sampling in 2021 was 5 months after full implementation
of the upgraded WWTP. Vertical dashed lines separate the major segments of the river/estuary.
The WWTP icon shows location of discharge. Correlations of average monthly discharge and
NH4

+ concentrations at station 5 (HOD), and NO3
− concentrations at station 11 (649), are shown in

(panels b,d), respectively. Note the stations for which relationships with discharge are shown are
highlighted by black arrows in (panels a,c). The 2021 data (highlighted as triangles) are not included
in the regressions.

For all years, all stations, concentrations of Si(OH)4 remained in the range of
100–300 µM, thus at no time was considered limiting or controlling for phytoplankton
growth (Figure 5c). During the three latter years when flow was reduced, concentrations of
Si(OH)4 declined more rapidly than during the high flow years, suggestive of increased time
for uptake by diatoms (see also below). By Station 11 (649), the concentration of Si(OH)4
was significantly related to monthly flow over all years (R2 = 0.70, p < 0.05, Figure 5d).

3.3. Chlorophyll a and Phytoplankton Composition

Concentrations of chl a varied considerably between years and sites (Figure 6a). In
virtually all years, regardless of flow conditions, concentrations decreased in the first stretch
of the river, up to Station 7 (KEN). This would suggest that the river above Station 1 (I80)
was a source of chl a, and became diluted with wastewater effluent. Thus, at Station 5
(HOD), chl a concentrations for all years were significantly and positively related to flow
(R2 = 0.75, p < 0.05, Figure 6b). Concentrations of chl a diverged with distance along the
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transect depending on flow and other conditions. For the two higher flow years (2011, 2012),
concentrations of chl a did not significantly increase in the lower stretch of the transect. In
the lowest flow year prior to upgrade (2015), concentrations increased rapidly at Station 8
(657), but then rapidly declined by Station 10 (653). For the post-upgrade sampling, chl a
increased from Station 7 to 8, and remained high throughout the rest of the river transect,
even increasing again in a short-lived peak at Station 16. For 2021, the average chl a in
the lower river stretch (Stations 2–7) averaged twice (4.30 µg L−1) that observed in any
of the other years of sampling (mean of 2.14 µg L−1). Thus, when chl a was correlated
with flow conditions for Station 11 (649) and Station 14 (US4), no significant relationships
were observed (Figure 6c,d). This underscores that algal biomass was not regulated solely
by flow.
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Figure 5. Transects of PO4
3− (panel a) and Si(OH)4 (panel c) for the six years of sampling undertaken

in the Bay Delta during September/October. Sampling in 2021 was 5 months after full implementation
of the upgraded WWTP. Vertical dashed lines separate the major segments of the river/estuary. The
WWTP icon shows location of discharge. Correlations of average monthly discharge and PO4

3−

concentrations at station 5 (HOD), and Si(OH)4 concentrations at station 11 (649) are shown in
(panels b,d), respectively. Note the stations for which relationships with discharge are shown are
highlighted by black arrows in (panels a,c). The 2021 data (highlighted as triangles) were not included
in the PO4

3− regression.

When chl a for all years, all stations, are compared with concentrations of NH4
+, a

clear decline can be observed with increasing NH4
+ up to 90 µM (Figure 7a). Accumula-

tions of chl a above 3 µg L−1 were witnessed only when ambient concentration of NH4
+

was <5 µM. Indeed, for 2021, when concentrations of NH4
+ remained <5 µM, a significant

positive relationship with chl a was observed with NH4
+ availability (Figure 7b). Highest

concentrations of chl a were also observed when DIN:DIP was in the range of ~5 on a molar
basis (Figure 7c).
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Figure 6. Transects of chlorophyll a (panel a) for the six years of sampling undertaken in the
Bay Delta during September/October. Sampling in 2021 was 5 months after full implementation
of the upgraded WWTP. Vertical dashed lines separate the major segments of the river/estuary.
The WWTP icon shows location of discharge. Note the sustained increase in chl a after station
7 in 2021, a trend not seen in the other years. The correlations of average monthly discharge and
chlorophyll a concentrations at station 5 (HOD), at station 11 (649), and at Station 14 (US4) are shown in
(panels b–d), respectively. Note the stations for which relationships with discharge are shown are
highlighted by black arrows in (panel a).
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Table 1. Correlations between chlorophyll a and Secchi depth. Relationships for 2012, 2014 and 2021
were significant at p < 0.05 (as indicated by bold font).

Year Correlation R2

2011 Y = −0.18x + 2.44 0.11
2012 Y = −0.54x + 2.49 0.36
2013 Y = −0.28x + 2.66 0.08
2014 Y = −0.88x + 3.45 0.71
2015 Y = −0.23x + 2.80 0.05
2021 Y = −0.90x + 4.99 0.77
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Figure 7. Chlorophyll a concentrations for all stations all years as a function of ambient NH4
+

(panel a; expanded scale for 2021, panel b), as a function of the ambient dissolved inorganic nitro-
gen:phosphorus ratio (panel c, with the line for 2021 data only), and as a function of secchi depth
(panel d). Note the inverse relationships between NH4

+ concentration (panel a) and light availability
(panel d) and chlorophyll a. Table 1 summarizes the statistics for (panel d).

When chl a for all years, all stations, are compared with light availability (as Secchi
depth), an inverse relationship is apparent (Figure 7d, Table 1). This relationship was
significant for 2012 (p < 0.05), 2014 (p < 0.01) and 2021 (p < 0.001). Higher light availability
in the upper river reaches were related to comparatively lower chl a values, and as light
decreased with distance along the transect, chl a increased. This trend was most apparent
for 2021.

Using pigment ratios, the change in phytoplankton composition can be seen to vary
between years prior to the WWTP upgrade (Figure 8). For the years prior to WWTP
upgrade, the general trend in fucoxanthin/chl a was a decline from about Station 5 (HOD)
to about Station 10 (653), then an increase for the remainder of the transect (Figure 8a).
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For chl b/chl a, much more variability was observed (Figure 8b). In 2013, there were only
moderate fluctuations until Station 12 (US2) when an increase was apparent. In 2014, an
increase in the proportion of chl b/chl a was observed down-estuary from Station 10 (653).
In 2015, the driest year prior to WWTP upgrade, a peak was observed at Station 7 (ISL),
and a secondary increase was observed at Station 17 (US7).
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Figure 8. Transects of fucoxanthin/chlorophyll a (indicative of diatoms, panel a), chlorophyll
b/chlorophyll a (indication of green algae, panel b) and zeaxanthin/chlorophyll a (indicative of
cyanobacteria, panel c) for the years of sampling undertaken in the Bay Delta during Septem-
ber/October prior to WWTP upgrade. Vertical dashed lines separate the major segments of the
river/estuary. The WWTP icon shows location of discharge.

For the cyanobacterial fraction, reflected in the proportions of zeaxanthin/chl a, mid-
transect peaks were seen in all years for which data are available (Figure 8c). The peaks
were observed to begin in the range of Station 8 (657), and that of 2013 was particularly
pronounced. Both 2012 and 2013 were wetter years.
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No HPLC data are available for 2021, but an estimate of the relative diatom proportion
was made using the rate of depletion of Si(OH)4 along the lower half of the transects [61].
To do so, the rate of depletion in Si(OH)4 was calculated for each year using data for the
last segment of the estuary, from Stations 11 to 17 (649 to US7) (Table 2). Then, the slopes
of those correlations were related to the fucoxanthin/chl a data for those years for which
HPLC data were available. Using that relationship, the fucoxanthin/chl a ratio for 2021 at
station 12 was estimated to be 0.16, or 80% higher than the value measured for 2015, the
other very dry year.

Table 2. Correlations between Si(OH)4 and station position, from Stations 11–17. See Figure 5c.

Year Correlation R2

2011 Y = −8.82x + 364 0.98
2012 Y = −16.95x + 453 0.84
2013 Y = −9.99x + 426 0.39
2014 Y = −10.76x +308 0.84
2015 Y = −10.27x +301 0.79
2021 Y = −16.26x + 367 0.93

3.4. Photophysiology

For the years prior to upgrade, values of FV/Fm—although displaying station-to-
station variability—generally decreased down-estuary (Figure 9a). A greater decrease,
indicative of greater stress, was observed in 2015 relative to 2013. Values for 2014 were
much more variable, and actually increased from Stations 10 to 11.
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Figure 9. Transects of Fv/Fm for the years of sampling undertaken in the Bay Delta during Septem-
ber/October prior to WWTP upgrade (panel a) and for the brown and green algal groups for 2021
post WWTP upgrade (panel b). Vertical dashed lines separate the major segments of the river/estuary.
The WWTP icon shows location of discharge. Note the consistent downward trend for all years
pre-upgrade and the upward trend for brown algae for 2021 post-upgrade.
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For 2021, the Fv/Fm signal was deconvoluted for the brown (diatom) and green algae
(note that the phycoerythrin signal was only discernable in the lower river sites, so a
transect for this group of algae is not reported; Figure 9b). Fv/Fm was consistently and
significantly higher for the brown compared to the green algae (ANOVA, p < 0.01), and
neither showed a decline with river position; in fact, there was an increase in the brown
Fv/Fm along the transect, from 0.29 at the point source of discharge (Station 3 (GRC) to
0.52 at Station 16 (US6). Comparing the two driest years, 2015 and 2021, at the entrance to
Suisun Bay (Station 12, US2), the Fv/Fm for the brown and green algae were 0.41 and 0.30,
respectively in 2021, while in 2015, the community Fv/Fm was 0.27.

Rapid light curves conducted in 2021 revealed several patterns and provided several
insights into photophysiology. First, for all stations, values of ETRmax for the brown algal
fraction consistently exceeded those of the green algal fraction (Figure 10, Table 3). Second,
for those stations for which experimental manipulations of NH4

+ were conducted prior
to assessment of RLCs, there was a general trend of decreasing ETRmax and a decrease
in the value of α for the brown algal fraction. For the green algal fraction, changes with
enrichment with NH4

+ were not as consistent, and even increased with NH4
+ enrichment

for some stations. Third, only at the lower estuary sites (Station 17 (US7)) was there a signal
that could resolve the phycoerythrin response. An increase in PE-containing cells in this
region of the estuary would be consistent with the increase in zeaxanthin/chl a observed in
2012 and 2013.
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Figure 10. Rapid Light Curves for stations Station 5 (HOD; panel a) and Station 17 (US7; panel b)
and the effects of pre-treatment (6 h) with 30 mM NH4

+ (panels c,d). Curves were generated using
Walz WinControl software according to Platt et al. [60]. The algal groups are differentiated as brown
(B, diatoms), green (G, chlorophytes) and as phycoerythrin-containing cells (PE). Parameters are
summarized in Table 3.
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Table 3. Parameters from Rapid Light Curves measured at stations and under conditions indicated.
Ambient samples were dark adapted for 20 min. NH4

+ enriched samples were measured approxi-
mately 6 h after enrichment and a 20 min dark acclimation. Algal groups were differentiated by the
PhytoPAM II. Ambient concentrations of NH4

+ are listed for reference.

Station Treatment α

Brown Algae

ETRmax
Brown Algae

(µM e− m−2 s−1)

α

Green Algae

ETRmax
Green Algae

(µM e− m−2 s−1)

Ambient
NH4

+ (µM)

1 (I80) ambient 0.160 26.4 1.761 18.3 0.59
3 (GRC) ambient 0.158 17.5 0.141 13.4 1.06
4 (RM44) ambient 0.222 25.0 0.124 18.4 1.14

+15 µM NH4
+ 0.198 23.9 0.175 19.7

+30 µM NH4
+ 0.197 22.1 0.270 18.1

+60 µM NH4
+ 0.185 21.5 0.155 17.4

5 (HOD) ambient 0.129 23.0 0.084 9.7 1.15
+30 µM NH4

+ 0.111 19.4 0.160 8.0
6 (KEN) ambient 0.192 21.4 0.107 13.5 1.27
7 (ISL) ambient 0.115 15.5 0.138 11.5 1.16
8 (657) ambient 0.199 29.7 0.177 20.0 0.91

+30 µM NH4
+ 0.184 30.4 0.163 18.4

9 (655) ambient 0.183 27.8 0.136 17.2 1.48
10 (653) ambient 0.175 22.6 0.123 14.3 1.62
11 (649) ambient 0.142 18.4 0.107 11.2 3.52

12 (US 2) ambient 0.142 17.7 0.105 13.3 1.65
+30 µM NH4

+ 0.085 13.5 0.148 10.5
13 (US 3) ambient 0.114 15.4 0.146 14.4 1.20
14 (US 4) ambient 0.111 15.6 0.166 13.6 1.03
15 (US 5) ambient 0.116 14.8 0.175 10.8 1.24
16 (US 6) ambient 0.145 20.8 0.099 10.9 2.23
17 (US 7) ambient 0.134 28.1 0.112 11.1 4.17

+30 µM NH4
+ 0.142 20.9 0.090 12.0

4. Discussion
4.1. Major Trends and Interannual Responses

The role of sewage effluent in the ecology of the Bay Delta has long been a topic of
considerable discussion and controversy, e.g., [1,17,18,26–28,38]. The complexity of the
Bay Delta system—hydrologically and ecologically—cannot be underestimated. From
phytoplankton to fish, the food web of this system has changed significantly over the
past several decades [5,6,17,37,62]. Unlike conventional nutrient-impacted systems, the
Bay Delta has experienced a decline in productivity as nutrient enrichment has increased
over the past several decades. Declines in productivity have been ascribed to multiple
causes, ranging from light limitation [37–39], to grazing by invasive clams [6,42,43] and
suppressive effects of elevated NH4

+ on phytoplankton production [1,7,17,18,51]. The Bay
Delta ecosystem has also been significantly modified by other invasive species, not only
by clams, but also by bay grasses, various species of copepods, and fish over the past
several decades [63–65]. The roles of these various stressors need not be mutually exclusive.
The WWTP—that had been responsible for the high loads of NH4

+ to the upper Bay
Delta—and its recent upgrade provides an ecosystem test of the hypothesis that NH4

+ may
have negatively impacted productivity over the decades over which it was in operation.
The results presented here reflect a “first look” at the system change in the fall season, less
than half a year after full implementation of EchoWater. These results reflect short-term
phytoplankton responses and do not encompass all the biogeochemical and ecological
feedbacks that will become apparent over years. It must be emphasized that the upgrade
also occurred during one of the driest years of the past decade and ecosystem responses
may also change if and when drought is alleviated.

The major findings emerging from the post-upgrade data are that more chl a accumu-
lated in the estuary post-upgrade and, based on photophysiology, phytoplankton appeared
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to be less photosynthetically stressed with station position in the lower estuary compared
with prior years. Prior to upgrade, concentrations of chl a above ~2 µg L−1 were not
observed for any sample collected at any point along the transects in any year if NH4

+

concentrations were elevated above 5 µM regardless of flow conditions, but over that range,
chl a increased as NH4

+ increased (Figure 7a,b). In the post-upgrade sampling, when N
loadings decreased, concentrations of chl a doubled. The more than halving of N loadings
also resulted in a comparable reduction in DIN:DIP. Faster phytoplankton growth rates are
associated with higher relative proportions of P and more chl a was thus associated with a
decline in DIN:DIP (Figure 7c), e.g., [48].

Concentrations of chl a were also negatively related to Secchi depth, and significantly
so for 2012, 2014 and 2021 (Figure 7d). This would suggest, especially for the low flow
year of 2021, a down-regulation of chl a content as a function of increased light. This
finding seemingly contrasts with the notion that low primary production in the Bay Delta
is largely controlled by light limitation, e.g., [37–39]. Secchi depths and chl a at station 5
(HOD) were significantly negatively correlated with monthly discharge (Figure 3f), further
implicating acclimation to ambient conditions as the reason for lower chl a values upriver
in 2021 compared to other years. From station 10 to 17, the Secchi values for all years
were <1 m, and while modestly higher for 2021, they were not more than a 0.2 m higher
than values recorded in 2013, 2014, or 2015. Light availability alone cannot explain the ap-
proximately 2-fold higher chl a accumulation down-estuary in 2021 compared with all prior
studied years.

This study compared data collected in fall when blooms not only have been historically
low, but seasonally have been shown to be comparatively rare [66]. The doubling of chl a
observed here does not represent a bloom, but it was a significant change compared to five
prior fall samplings encompassing a range of flow conditions. Fall is also a period when
grazing pressure by Potamocorbula is likely highest, e.g., [6] but no direct grazing data are
available for the post-upgrade period. Observations will be required in additional seasons
to fully understand the magnitude of ecosystem effects from nutrient reduction.

The data herein suggest that the elevated NH4
+ in effluent prior to the WWTP

upgrade—reaching concentrations of many tens of µM—impacted phytoplankton in mul-
tiple ways. In addition to suppressed chl a accumulation, the general trend in Fv/Fm for
the samples collected during pre-upgrade years trended downward with distance along
the river, indicating stress, while post-upgrade values trended upwards for the brown
(diatom) phytoplankton component post-upgrade, indicating increased photosynthetic
efficiency (Figure 9). Additionally, the experimental manipulations of samples with NH4

+

prior to measuring the photosynthetic response indicated a decrease in ETRmax and in α

in the brown (diatom) fraction of the treated samples compared to the untreated samples
(Figure 10, Table 3). The decrease in α values also provides potential insight into light
limitation in NH4

+-laden waters. Lower α would imply that the cells could not photoac-
climate to low light conditions as well. Accordingly, light stress would be more apparent.
Diatoms have highly effective non-photochemical quenching (NPQ, xanthophyll cycling) to
protect photosynthetic pigments from sudden exposure to high light. Xanthophyll cycling
activity in diatoms is much higher than that of higher plants and has been referred to as
“super-NPQ” [67]. Previous studies have shown that additions of very high concentra-
tions of NH4

+ can abolish the formation of NPQ [67]. Future studies will explore NPQ
changes in Bay Delta phytoplankton in more detail, and on longer time scales than the RLC
experiments conducted here.

Years of different flow, combined with changing nutrient regime, led to differences
in the phytoplankton community. In the pre-upgrade years for which pigment data are
available, the diatom fraction declined down-estuary, while that of the green algal fraction
or the cyanobacterial fraction increased (Figure 8). Many algae and higher plants have
lower rates of growth on NH4

+ than on NO3
− [34,68] (and references therein). The effect

of NH4
+ on NO3

− metabolism is complex. It can cause repression of uptake of NO3
−,

it can lead to degradation of nitrate reductase (NR), the enzyme necessary for NO3
−
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assimilation, and it can suppress synthesis of new NR in the cell [29,69,70]. Repression
of key NO3

− enzymes requires time for the cell to recover, and thus along a transect
down-estuary—especially when flow is high—cells may not have sufficient time to do so
and grow. Cells generally do not de-repress (express an ability to transport and metabolize
NO3

−) unless their internal N status is sufficiently low [71,72]. With exposure to NH4
+ at

the level of 10 s to nearly 100 µM, the internal NH4
+ concentrations can remain high for an

extended time.
Diatoms also have a dependence on the reduction of NO3

− to NO2
− in cellular energy

balance. They can reduce NO3
− via NR in a non-assimilatory mode [73–76] and this

process serves as a sink for excess reductant that derives from the splitting of water when
photochemistry exceeds the assimilatory capacity of the cell. Clearly an important criterion
for this pathway to function is the availability of NO3

− and its key enzymes in the cell.
Without this pathway, cells become stressed. This effect likely contributed to the stress
seen in the photosynthetic efficiency (Fv/Fm) in the pre-upgrade years. After upgrade,
the diatoms were no longer stressed by lack of the NO3

− reduction pathway to protect
the chloroplast from over-reduction. After upgrade, the depletion of Si(OH)4 increased
down-estuary, further suggesting growth by diatoms (Figure 5c).

Green algae and cyanobacteria do not depend on NO3
− reduction for energy balance

in the same way as diatoms. Chlorophytes have well developed Mehler activity for energy
balance, and they, as well as cyanobacteria are generally considered to show less stress in
the presence of elevated concentrations of NH4

+, e.g., [29,77]. Both of these algal groups
trended upwards with distance down-estuary (Figure 8b,c).

Building on these physiological pillars, a conceptual model comparing the responses
of 2015 and 2021, the driest of the studied years, can be developed (Figure 11). In comparing
these years, flow effects can be considered minor. In 2015, the effluent pulse of NH4

+ was
90 µM (Figure 4a), and in 2021, at the site of effluent discharge it was 1.1 µM. In 2015,
although nitrification led to accumulation of NO3

− of ~40 µM through most of the river
transect (after Station 7 (ISL)), cellular accumulation of NH4

+ did not allow diatoms to
access this nutrient substrate. Chlorophytes (based on chl b/chl a ratios) and a short-lived
peak of cyanobacteria (based on zeaxanthin/chl a) developed in the region of Station 8 (657),
but they rapidly declined. Down-estuary in 2015, both diatoms and chlorophytes remained,
but in a comparatively more stressed condition, as evidenced by declining photosynthetic
efficiency (Figure 9a).

In contrast, in 2021, chl a rose after Station 8 (657) and did not decline substantially
down-estuary (Figure 6a). Values were approximately twice those observed in previous
years. Diatom abundance in Suisun Bay were estimated to be up to 80% higher than in
2015. The diatom photosynthetic efficiency (Fv/Fm) increased. The green algal fraction also
showed an increase in Fv/Fm at Station 8 but did not otherwise vary substantially along
the transect (Figure 9b).

While the biogeochemical response of the Bay Delta to this ecosystem-scale change
in nutrient loads and concentrations will likely play out over longer time scales, the
photophysiological response documented here appears to provide a sensitive indicator of
changes at the base of the foodweb.

4.2. Importance of Physiological and Ecosystem Scale Experiments

Lessons can be learned from both short-term experimental studies and ecosystem-
scale level changes in this and other systems. For example, Berg et al. [26] conducted a
laboratory study with species isolated from the Bay Delta, grown on NO3

−, then exposed
to NH4

+ at varying concentrations in order to mimic the exposures such species would
encounter under effluent exposure. However, cultures were not given time to deplete
internal pools before physiological measurements were undertaken. Berg et al. [26] did
observe variable taxon and concentration effects. Recently, Strong et al. [27] conducted
a single 48 h amendment experiment with water from upstream and downstream of the
Sacramento wastewater plant prior to upgrade and exposed samples to two light intensities,
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50% and 5% of natural irradiance, the latter being light-limiting for growth. They used
those data to conclusively state that “NH4

+ from wastewater are not likely to be the cause
of POD in the Delta... [and that] high anthropogenic NH4

+ loading from wastewater
effluent is not driving the lower productivity and decline of pelagic organisms in the
Delta [27] (p. 14). Interestingly, Glibert et al. [24] conducted similar incubation experiments
with multiple substrates and light intensities (50% and 15% of natural irradiance) over
multiple seasons and years and found that different microbial communities developed
when enriched with oxidized vs. chemically reduced forms of N, and that proportionately
more chl a and fucoxanthin was produced per unit N taken up when enriched with
NO3

− compared to NH4
+ at reduced light levels. Such a finding may have relevance to

the additional chl a in the down-estuary sites in 2021 compared with prior years. The
comparison of results from these experimental studies [24,26,27] highlights that there is
still much to be learned regarding physiological responses and how they can change with
experimental treatment and other factors. A key difference in the studies by Strong [27] and
Glibert et al. [24] was the use of 5% vs. 15% of surface irradiance as a low light treatment.

The potential for variable responses to NH4
+ enrichment over time and by different

community assemblages was highlighted in a long-term study by Swarbrick et al. [33] in the
Qu’Appelle Lakes of the Northern Great Plains of Canada. By using 72 h nutrient bioassays
with NH4

+, these authors assessed the effects of NH4
+ over the growing season of two

lakes over 16 years (1996–2011), a period during which use of N fertilizer in the watersheds
increased. They found that with NH4

+ enrichment, the phytoplankton responses (as Chl a)
ranged from a 2691% increase (mean stimulation = 188.1 ± 365.8%) to a 160% suppression
(mean suppression = 54.5 ± 25.7%). With time, the frequency of spring suppression and of
summer stimulation increased markedly over the studied period. Growth enhancement
by NH4

+ was greatest when phytoplankton communities exhibited a high abundance of
chlorophytes, consistent with earlier studies which demonstrate chlorophytes prefer NH4

+

over other forms of N [24,29,77–79] (and that they can outcompete other taxa for chemically
reduced N species when light is sufficient) [80]. In contrast, NH4

+ pollution was likely to
suppress lake production during spring, when low-light adapted phytoplankton (diatoms,
cryptophytes, possibly pico-cyanobacteria) predominated.

Other large-scale or mesocosm-level nutrient manipulation experiments further sup-
port the notion that dichotomous communities develop in response to comparable NH4

+

and NO3
− enrichment. For example, in mesocosm studies Glibert and Berg [81] showed

that NO3
− uptake was directly related to the fraction of the community as diatoms, while

the proportion of NH4
+ uptake was directly proportional to the fraction of the community

as cyanobacteria. Domingues et al. [82] also showed that enrichment by NH4
+ in a freshwa-

ter tidal estuary favored chlorophytes and cyanobacteria, whereas diatoms were favored
under NO3

− enrichment. Shangguan et al. [83] showed a shift in phytoplankton taxa to
smaller sized cells and a loss of diatoms as NO3

− availability declined with managed flow
changes in lakes near northern Florida Bay. They also showed [84] in mesocosm studies
based in Florida Bay that P enrichment along with N in the form of NO3

− stimulated
diatoms while N in the form of NH4

+ led to picocyanobacteria-dominated communites.
Fawcett and Ward [85] showed an acceleration of uptake of NO3

− by diatoms in mesocosm
studies in Monterey Bay, CA, suggesting this to be a mechanism by which diatoms exploit
upwelling conditions. In all, various results from short-term nutrient enrichment studies,
e.g., [24,84,85], month-long mesocosm experiments [78,86], long-term monitoring [87,88],
and mass-balance studies [89,90] from many regions show that effects of N form vary with
taxa and environmental conditions at the time of exposure. Cloern [28] has urged caution
in interpreting correlations in interpreting causes and effects. We agree and similarly advise
caution in disregarding understanding of relationships derived from comparative systems.
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Figure 11. Comparison of the two low-flow years, 2015 (panels a,b) and 2021 (panels c,d), pre- and
post-WWTP upgrade. In 2015, there was very high NH4

+ in the effluent (blue end of arrow in panel a)
and nitrification (transition to red in arrow in panel a) occurred by station 8. A peak in chlorophyll a
developed and was dominated by chlorophytes which were readily able to access the NH4

+ (panel b)
but which could not sustain growth. In 2021, the effluent was in the form of NO3

−, which remained
available through the transect (red arrow in panel c) and was accessible to diatoms (panel d) which
were then able to sustain growth through the remainder of the transect. See text for details.

5. Summary

There is no doubt that the Bay Delta will continue to experience multiple stresses in the
future and the conversation regarding causes and impacts of various drivers will continue
for years to come. The results of this natural ecosystem-scale experiment should be of
interest not only to the Bay Delta management community, but to all systems undergoing
natural or anthropogenic changes in nutrient loadings, forms and proportions.

In sum, this study has shown that following wastewater improvement and the removal
of high NH4

+ loading from the Sacramento River, there was a significant ecological change
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in the river-estuary in contrast to water quality parameters at the same time of year for
several years prior to upgrade. It appears that EchoWater had an immediate effect on chl a
accumulation, and the extent to which this effect continues in the future deserves continual
assessment. An increase in chl a in the post-upgrade relative to pre-upgrade conditions was
associated with cells, especially diatoms, that showed less photosynthetic stress relative to
the phytoplankton assemblages in pre-upgrade years. Time will tell whether the Bay Delta
estuary recovers to a healthy state, including a healthy food web. These early glimpses into
the trajectory of recovery of the important primary producers are promising.
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