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Abstract: Vitamin D is an essential nutrient with important immunomodulatory properties. As a fat-
soluble compound, Vitamin D (and its D3 form) is immiscible with water, which presents challenges
to absorption. In an in vitro setting, the current study characterizes novel micellar formulations
of Vitamin D3 designed to improve absorption. Techniques used to evaluate and compare the
micellar formulations against a non-micellar formula include the following: cryo-SEM to determine
morphology; laser diffraction to determine particle size and distribution; zeta potential to determine
stability of the particles; solubility assays to determine solubility in water and gastrointestinal media;
and Caco-2 cell monolayers to determine intestinal permeability. Results show advantageous features
(particle size range in the low micrometres with an average zeta potential of −51.56 ± 2.76 mV),
as well as significant improvements in intestinal permeability, in one optimized micellar formula
(LipoMicel®). When introduced to Caco-2 cells, LipoMicel’s permeability was significantly better
than the control (p < 0.01; ANOVA). Findings of this study suggest that the novel micellar form of
Vitamin D3 (LipoMicel) has the potential to promote absorption of Vitamin D3. Thus, it can serve as a
promising candidate for follow-up in vivo studies in humans.

Keywords: Vitamin D; cholecalciferol; bioavailability; Caco-2 cell-permeability; delivery systems;
electron microscopy; cryo-SEM; laser diffraction; zeta potential

1. Introduction

The COVID-19 pandemic has brought increased attention to Vitamin D as an essential
nutrient [1–5]. Functioning as a steroidal hormone, it is synthesized by skin cells upon
sunlight irradiation, and it may also be obtained from dietary sources [6–8]. However, Vita-
min D deficiency (VDD) has been a serious health issue even pre-pandemic [9]. Disorders
such as autoimmune diseases (including type I diabetes mellitus and multiple sclerosis),
inflammatory bowel disease, rickets, osteomalacia, and many others could result from
VDD [7,8,10–12]. Unfortunately, VDD can be caused by a variety of factors that are difficult
to control including the seasons, geographic locations with limited access to sunshine, eth-
nic characteristics (such as skin tones), dietary limitations or preferences, indoor lifestyles,
and even excessive clothing [8,10,11,13]. Additionally, if a pregnant woman develops VDD,
her unborn child may also be affected [8,10,11]. The immunomodulatory effects of this
vitamin are unquestionably valuable in the context of epidemiology, with many reports of
positive associations in the fight against COVID-19 [2,4,5].
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Other than Vitamin D fortified foods, dietary sources are limited to fatty fish such
as salmon, mackerel and sardines and mushrooms such as shiitake, maitake and morel.
Older adults, those with dark skin, and people with certain medical conditions such as
Crohn’s disease, celiac disease and liver or kidney disease could be more susceptible to
VDD. As a result, oral Vitamin D supplements have become highly popular and constitute
a promising strategy to fight VDD [14–16] because they are readily available, cost effective
and easy to administer. Most often (and possibly most beneficial), Vitamin D is supplied in
the form of Vitamin D3, otherwise known as cholecalciferol [17]. This form of the vitamin
is used in the present study.

Ideally, orally supplemented Vitamin D3 should be completely absorbed through the
intestinal mucosa [18]. However, immiscibility between this hydrophobic compound and
the aqueous gut environment, as well as the existence of interference from other compounds
such as cholesterol, severely hinder the absorption process [11,12,18]. To overcome these
challenges, creation of more bio-accessible delivery vehicles can enhance absorption and
bring greater benefits of this vitamin [19].

Such vehicles for improving the absorption and efficacy of drugs have existed for
decades but the concepts have only been applied to nutrients more recently [20–22]. Still,
there continues to be efforts aimed at refining this technology with different materials,
varying particle sizes or even imparting the vehicles with “smart” capabilities for targeted
delivery [23,24]. Typically, the delivery vehicles have minute particle sizes and are expected
to result in a finer dispersion of the target compound in solution, thus providing greater sur-
face area to the enterocytes for enhanced absorption. Furthermore, delivery vehicles could
impart beneficial characteristics such as added polarity or surface charges, which should
theoretically assist with aqueous solubility and promote permeability through the gut-
blood barrier. Liposomes are one of the most commonly used delivery systems to achieve
this purpose [24]. While liposomal formulations hold promise for improved solubility and
absorption [19,25], micellar formulations have also been explored, especially since their
hydrophobic centres provide a more optimal condition for hydrophobic compounds such
as Vitamin D3 [26]. Efforts in this regard have generally been directed toward increasing
solubilities by reducing the particle size of the delivery vehicles and creating nanoparticles
and nanostructured lipid carriers [27–29]. However, in addition to particle size, there is
increasing evidence that cell–matrix adhesion and specific receptor carriers may also play
key roles in influencing absorption by using micellar delivery systems [30–32].

Thus, we aim to evaluate three novel vitamin D3 formulations based on the LipoMicel®

technology and hypothesized that at least one would form micellar vehicles that signif-
icantly increase intestinal absorption. LipoMicel is used to improve the solubility and
stability of various compounds by encapsulating the active compound in a lipid-based
matrix and creating a natural emulsion. Although other micellar formulations have been
previously reported, this study focuses on the investigation of formulations using only
“food grade”, safe ingredients without milk allergens or the use of synthetic detergents and
organic solvents [30,33–35]. It is worthwhile to investigate novel food grade formulations
since they use ingredients that are safe for human consumption and are most likely to enter
the market as health supplements. The in vitro analyses of these formulations serve as a
preliminary screen to identify the formula that is best suited for subsequent human trials.
We assessed the solubility and permeability of the novel formulations against a control,
as well as morphological and physicochemical properties of the most promising formula.
Emphasis is placed on data from Caco-2 permeability experiments so that the absorp-
tion contributions of the most promising formula in this biological model can be further
characterized in terms of morphology and stability through cyro-SEM and zeta potential
measurements. To our knowledge, studies about Vitamin D permeability using Caco-2
cells are currently scarce and this work adds to the current data of Vitamin D evidence
available from this human cell line by using a novel food-grade LipoMicel formulation.
Results show that one LipoMicel formulation, despite having a similar particle-size range
and solubilities as the control, showed significantly improved permeability, suggesting



Nutraceuticals 2023, 3 292

that more complex biological mechanisms may be involved. Overall, LipoMicel® has the
potential to be effective at improving the oral absorption of Vitamin D3 and stands to
benefit from further in vivo experiments to determine bioavailability in humans.

2. Materials and Methods
2.1. Vitamin D3 (Cholecalciferol) Formulations

Table 1 provides details on the different vitamin D3 formulations examined. Vitamin
D3 (1,000,000 IU/g in flax oil), medium chain triglycerides (20–50% capric acid), xylitol
(98.5–101%), methylsulfonylmethane (98–102%), glycerin (99–101%), stevia (>90% total
steviol glycosides), lecithin (unbleached, non-GMO), cocoa (Theobroma cacao powder) and
flaxseed oil (50–65% alpha linolenic acid) were provided by InovoBiologic (InovoBiologic
Inc., Calgary, AB, Canada). Saponin (from quillaja bark, ≥10% sapogenin content) was
obtained from Millipore-Sigma (Millipore-Sigma, Toronto, ON, Canada), and ethanol (anhy-
drous) is from Commercial Alcohols (Commercial Alcohols Inc., Toronto, ON, Canada). All
materials were food grade. In general, 20 mL of each formulation was prepared by mixing
the powdered ingredients with lipophilic components (for example, carrier oil) in a 50 mL
centrifuge tube. A VWR Analogue vortex mixer (VWR International, Toronto, ON, Canada)
at max setting (3200 rpm) was used to facilitate the mixing at room temperature for 5 min.
Different structures or complexes such as delivery vehicles could be generated through
interactions between the ingredients.

Consequently, the formula’s solubility, permeability or other properties could be
altered by such structures or complexes. The simplest formula, where only Vitamin D3
and carrier oil (i.e., flaxseed oil) were present, was used as the baseline control (BC).
Three different novel formulations (LM1, LM2 and LM3, where LM was abbreviated from
“LipoMicel”) were compared to BC to evaluate any changes in solubility and permeability.
All formulations were provided by the Factors Group of Nutritional Companies. Common
excipients were shared between LM1, LM2 and LM3 as follows: medium chain triglycerides,
Xylitol, Methylsulfonylmethane. Excipients unique to each formula were the followin:
glycerin, saponin and ethanol were present in LM1; stevia and lecithin were present in
LM2; cocoa was present in LM3. The combinations of these are proprietary.

Table 1. The composition of each of the four formulations used in this study.

Formula LM1 Formula LM2 Formula LM3 Formula BC

Vitamin D3 Vitamin D3 Vitamin D3 Vitamin D3
Medium chain triglycerides Medium chain triglycerides Medium chain triglycerides Flaxseed oil

Xylitol Xylitol Xylitol
Methylsulfonylmethane Methylsulfonylmethane Methylsulfonylmethane

Glycerin Stevia Cocoa
Saponin
Ethanol Lecithin

2.2. Solubility Analysis

Solubilities of the formulations in water, simulated gastric solution and simulated
intestinal solution were analyzed. The gastrointestinal medias were prepared according to
the method published by the USP.

To investigate solubility, a fixed amount of each Vitamin D3 formula (containing
1500 IU or 37.5 µg of Vitamin D3) was added to 1 mL of solution in a 1.5 mL centrifuge tube
and allowed reach saturation. For solubilities in water, samples were vortexed to suspend
visible particles and then sonicated at 37 ◦C for 15 min before they are transferred into
1.5 mL glass vials. For solubilities in simulated gastric and intestinal solutions, samples
were vortexed and sonicated at 37 ◦C for 1 h before transferring to 1.5 mL glass vials. The
samples were injected into an Ultra High Performance Liquid Chromatography (UHPLC)
instrument to quantify dissolved cholecalciferol. Normally, samples for UHPLC analysis
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are filtered before analysis, but this step was skipped to guarantee that micelles larger than
the filter membrane orifices were not excluded from analysis.

2.3. Permeability Analysis

To assess the permeability of the formulations, Caco-2 cells (Cedarlane Laborato-
ries, Toronto, ON, Canada) were cultured in a T-25 flask (Thermo Fisher Scientific Inc.,
Waltham, MA, USA) in a HERACELL VIOS 160i CO2 incubator (Thermo Fisher Scientific
Inc., MA, USA) set to 37 ◦C and 5.0% CO2. The Caco-2 cell line was used as a model for the
intestinal epithelial barrier, which allowed us to understand how the formulations could
behave during absorption [36]. The composition of the cell culture media was as follows:
Dulbecco’s modified Eagle’s medium (DMEM) (Sigma-Aldrich, St. Louis, MO, USA), 10%
heat-inactivated fetal bovine serum (FBS) (Thermo Fisher Scientific Inc., MA, USA), peni-
cillin (100 units/mL), and streptomycin (100 units/mL) (Sigma-Aldrich, MO, USA). Cells
were resuspended with 5% trypsin (Thermo Fisher Scientific Inc., MA, USA) and seeded
on a 24-well format polycarbonate semipermeable membrane insert with a diameter of
6.5 mm and a pore size of 0.4 µm (VWR International, Toronto, ON, Canada). The seeding
density was 1 × 104 cells/cm2. The cells were maintained for a total of 21 days before
being processed for permeability assay. The media was refreshed every 48 h during the
first 14 days, and every 24 h during the final seven days. An EVOM2 instrument (World
Precision Instruments, Sarasota, FL, USA) was used to measure the transepithelial electrical
resistance (TEER) values of the cells. Only Caco-2 monolayers with TEER values between
250–500 Ωcm2 were selected for permeability experiments.

On the day of measurement, Caco-2 cells were washed twice with Hanks’ balanced
salt solution (HBSS) (Sigma-Aldrich, MO, USA) and then allowed to equilibrate for 30 min
in the incubator at 37 ◦C. Thereafter, 100 µL of a Vitamin D3 formula was added as the
donor solution to the apical side of the monolayer, and 500 µL of HBSS was added to the
basal side. Four hours after the treatment, the apical and basal solutions were collected
for analysis using UHPLC. A schematic representation of the permeability measurement
workflow is depicted in Figure 1. All treatments were performed in triplicates.
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Figure 1. Schematic presentation of the permeability measurement workflow. (a) TEER values of 
Caco-2 monolayers were measured using EVOM2 instrument probes. Only monolayers with TEER 
values of 250–500 Ωcm2 were selected for further analysis. (b) Donor solution (one of the four Vita-
min D3 formulations) was added to the apical compartment, and HBSS to the basal side. (c) Cells 

Figure 1. Schematic presentation of the permeability measurement workflow. (a) TEER values of
Caco-2 monolayers were measured using EVOM2 instrument probes. Only monolayers with TEER
values of 250–500 Ωcm2 were selected for further analysis. (b) Donor solution (one of the four Vitamin
D3 formulations) was added to the apical compartment, and HBSS to the basal side. (c) Cells were
incubated at 37 ◦C for 4 h. (d) Apical and basal solutions were collected and analyzed using UHPLC.

The apparent permeability coefficient (Papp, unit in cm/s) could be calculated from the
permeation rate and compound concentration at t = 4 h (see formula below). Compound
concentration was measured using Ultra High Performance Liquid Chromatography (UH-
PLC). In this formula, the amount of product present in the basal compartment as a function
of time (nmol/s) is represented by “dQ/dt”, the transwell area (cm2) is represented by
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“A” and the initial concentration of the product applied in the apical compartment (µM) is
represented by “C0”.

Papp =
dQ
dt

· 1
A · C0

2.4. Ultra High Performance Liquid Chromatography (UHPLC)

An UltiMate 3000RS UHPLC system was used. It included a quaternary pump
(Thermo Fisher Scientific Inc., MA, USA), which delivered a binary gradient of 0.2% HPLC-
grade phosphoric acid (VWR International, ON, Canada) in HPLC-grade water (Thermo
Fisher Scientific Inc., MA, USA) and HPLC-grade methanol (Thermo Fisher Scientific Inc.,
MA, USA), through a Poroshell EC-18 100 × 2.1 mm, 2.7 µm column (Agilent Technologies,
Santa Clara, CA, USA) at a flowrate of 0.500 mL/min. The gradient was maintained at 90%
methanol over a period of 8 min. The column was equilibrated with the starting conditions
for 2 min before the next injection. The column oven temperature was set to 40 ◦C and data
were collected at a wavelength of 265 nm using a diode-array detector.

2.5. Particle-Size Distribution by Laser Diffraction

The formulations were mixed in water and then their particle-size distributions were
determined by laser diffraction using a Mastersizer 3000 particle size analyzer (Malvern
Panalytical, Quebec, QC, Canada). Briefly, samples (approximately 1 mL) were directly
diluted in an Hydro SM (Malvern Panalytical, QC, Canada) wet dispersion accessory filled
with approximately 200 mL of water. Once the dispersed mixture reaches 10% obscuration,
data were collected over a period of 1 min while the samples are circulated through the
optical measurement cell. Hydrodynamic volumes of the micelles were determined through
diffraction data analyzed by the Mastersizer software 3000.

To quantitatively describe particle size distribution, the physicochemical property PDI
(polydispersity index) was used. PDI was calculated using the following formula:

PDI = (σ/µ)2

where “σ” represents the standard deviation and “µ” represents the mean particle diameter [37].
In the context of lipid carrier delivery systems, a PDI less than 0.3 can describe particles
homogeneous in size (monodisperse), whereas higher PDI values would indicate the presence
of a more varied size range (polydisperse) [34,38,39].

2.6. Cryo-SEM (Cryogenic Scanning Electron Microscopy)

To prepare samples for cryo-SEM, approximately 400 mg of each formula was mixed
into deionized water to make 1.5 mL suspensions in 1.5-mL polypropylene microcentrifuge
tubes with snap caps. Following sonication in a warm water bath (30–40 ◦C) for 15 min,
the suspensions were allowed to settle for 5 min. From the light-coloured top portion
of the suspension, a few drops of liquid were transferred to the wells of an aluminum
cryo-SEM holder, where a small amount was allowed to overfill. The cryo-SEM holder
with sample was then submerged in slushy liquid nitrogen for 10–20 s to rapidly freeze.
After freezing, the sample was vacuum transferred into a Quorum PP3010T cryochamber
(Quorum Technologies, East Sussex, UK) to fracture the overfill portion and reveal a
cross section of the frozen sample. The fractured sample was then transferred to a Helios
NanoLab 650 scanning electron microscope (FEI Company, Hillsboro, OR, USA) for imaging.
Cryo-SEM images were collected with a current of 13 pA at 2 kV, with a working distance
of 4 mm, at a scanning resolution of 3072 × 2207 or lower by averaging 128 low dose
scanning frames with drift correction. The sample was kept at −140 ◦C when fracturing
and imaging. The sample was also imaged after sublimation at −80 ◦C for 15 min in the
cryo-SEM chamber to remove residual water. In the cryo-SEM image, the approximate
diameters of particles-of-interest were measured using ImageJ software as described in the
software instructions, similar to length measurements performed by Lam et al. [40,41].
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2.7. Zeta Potential

The most promising formula (LM3) was prepared for zeta potential measurements.
A total of 400 mg of the formula was combined with 10 mL of ultrapure water (DI water,
18.2 MΩ-cm) in a 15 mL centrifuge tube, vortexed and sonicated, and then centrifuged at
3800 rpm. From the resulting supernatant, 200 µL was transferred into a separate 15 mL
centrifuge tube and diluted with ultrapure water to a total volume of 10 mL. The ultrapure
water was obtained using a Barnstead Nanopure water purification system (Thermo Fisher
Scientific Inc., MA, USA), We transferred the diluted solution into a clean Malvern DTS1060
folded capillary cell (Malvern Panalytical Inc., MA, USA) for zeta potential measurement.
A Malvern Zetasizer Nano ZS instrument (Malvern Panalytical Inc., MA, USA) was used
to collect measurements at 25 ◦C within 15 min of sample preparation. The measurements
were performed in triplicate using automatic attenuation selection and automatic voltage
selection. The pH of the diluted solution was also monitored using a IQ240 Portable pH
Meter (IQ Scientific Instruments, Carlsbad, CA, USA).

2.8. Data Analysis

Results were reported as means ± standard errors of the mean (SEM). Statistical com-
parison was performed with two-way ANOVA followed by post hoc Bonferroni correction
for solubility measurements and Kruskal–Wallis test with post hoc Dunn’s correction for
permeability experiments. Differences between sample groups were considered statistically
significant at p < 0.05.

3. Results
3.1. Solubility Measurements

All novel formulations exhibited higher solubilities when compared to baseline con-
trol Vitamin D3 (BC, Table 2, Figure 2). LM1 proved to be more soluble than the other
formulations in all tested media, and showed approx. 5 times better solubility than the
control when tested under intestinal conditions (p < 0.05; Table 2). Figure 2 provides a
graphical comparison of the solubilities where differences in solubility were apparent.

Table 2. Solubilities of Vitamin D3 formulations in different aqueous media measured with UHPLC.

Formula LM1 Formula LM2 Formula LM3 Formula BC

Water (pH 6.3) 7.55 × 10−4 ± 2.81 × 10−4 2.89 × 10−4 ± 1.27 × 10−5 1.97 × 10−4 ± 4.20 × 10−5 1.64 × 10−4 ± 2.57 × 10−5

Gastric juice (pH 1.2) 6.93 × 10−4 ± 1.31 × 10−4 4.22 × 10−4 ± 4.34 × 10−5 3.37 × 10−4 ± 1.76 × 10−4 2.40 × 10−4 ± 4.86 × 10−5

Intestinal juice
(pH 6.8) 1.09 × 10−3 ± 5.09 × 10−4 a 7.19 × 10−4 ± 1.90 × 10−4 ab 2.89 × 10−4 ± 7.92 × 10−4 b 1.91 × 10−4 ± 4.24 × 10−5 b

Values displayed as milligrams of cholecalciferol per millilitre of water (mg/mL); n = 3; p < 0.05 (two-way ANOVA,
post hoc Bonferroni correction between “a” and “b”).

3.2. Permeability Measurements

The Papp values from Caco-2 monolayer tests suggested a significantly higher per-
meability for LM3 (1.6 ± 0.3 × 10−5 cm/s; p < 0.01; Table 3) in comparison with LM1,
LM2 and BC (1.9 ± 0.3 × 10−7 cm/s, 3.6 ± 0.8 × 10−6 cm/s and 1.3 ± 1.1 × 10−9 cm/s,
respectively; Table 3). Figure 3 shows the UHPLC chromatograms for the determination of
Vitamin D3, and Figure 4 shows a graphical representation of the permeabilities of these
formulations. Furthermore, different investigators adopted slightly different criteria for
ranking a compound as having either “high permeability” or “low permeability”. For
example, some viewed a Papp value that is more than 1 × 10−7 cm/s as highly perme-
able [42], while Wahlang and colleagues cited 1.4 × 10−7 cm/s as a highly permeable Papp
value and 5 × 10−6 cm/s as a lowly permeable Papp value [43]. Fossati et al. considered
3 × 10−6 cm/s as the delimiting value, where a Papp value less than 3 × 10−6 cm/s would
belong in the low permeability group and a Papp greater than that value would be ranked as
highly permeable [44]. Despite the somewhat diverse criteria, formula LM3 demonstrated
a high degree of permeability with its Papp value on the order of 10−5 cm/s. However,
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depending on the criteria used, LM2 could be considered fairly or slightly permeable, while
LM1 and BC would be considered as having low permeabilities since their Papp values were
orders of magnitude lower than the 10−6 cm/s range.
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Figure 3. UHPLC chromatograms of the basal solutions collected from permeability experiments.
The primary peak in the chromatogram represents Vitamin D3 and concentrations were calculated
using measured peak areas against an external calibration standard.
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Table 3. Permeabilities of the four Vit D formulations.

Formula LM1 Formula LM2 Formula LM3 Formula BC

1.9 ± 0.3 × 10−7 ab 3.6 ± 0.8 × 10−6 ab 1.6 ± 0.3 × 10−5 cm/s b 1.3 ± 1.1 × 10−9 a

n = 4 per treatment. a,b Means in a row without a common superscript letter differ by p < 0.05, as analyzed by
Kruskal–Wallis test followed by Dunn’s correction for multiple comparisons.
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Figure 4. Logarithmic plot of the permeabilities of the four Vitamin D3 formulations. The X-axis lists
each formula code, while the Y-axis represents Papp values measured in cm/s. n = 4 per formula.
Higher data points along the Y-axis represents increased permeability. LM3 achieved significantly
higher permeability compared to the baseline control; * p < 0.05, ** p < 0.01 (Kruskal–Wallis test with
Dunn’s correction for multiple comparisons).

3.3. Laser Diffraction, Micellar Morphology, Size and Stability

Laser diffraction measurements are taken in triplicates for each formulation, and the
average of the three measurements are presented in Figure 5 and Table 4. Only LM3 has
been further analyzed regarding its morphology and stability features due to the promising
Caco-2-cell permeability results (Table 3).
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Figure 5. Particle size distribution of the formulations as determined by Laser diffraction. Each
formulation was measured in triplicates and the average volume density was graphed against the
average particle size. Volume density is a measure of the proportion of particles present at each size
interval based on their volume, and the size classes represent the particle size in micrometres.
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Table 4. Summary of particle size distribution and PDI of the four formulations. DN% reflects the
percentage of particles (N%) with a diameter (D) less than or equal to the specified value [46].

Formula LM1 Formula LM2 Formula LM3 Formula BC

D10% (µm) 0.864 17.7 6.65 12.7
D50% (µm) 1.89 77.1 23.4 46.4
D90% (µm) 2.62 107 54.2 66

PDI 0.617 1.59 0.315 1.13

As for LM1, the smaller particle size likely corresponds to the higher solubility in the
tested media (Table 2) when compared to the other formulations. For LM3, the particle sizes
ranged from a few micrometres to larger than 50 micrometres, with a PDI slightly larger than
0.3 (Table 4). This agrees with the cryo-SEM evidence, where we observed spherical particles
ranging from approximately 1 or 2 µm to 57 µm in diameter (Figure 6). This size range is
larger than nanoparticular preparations of Vitamin D, which were typically observed in the
nanometre range and indicates that LM3 is a polydisperse formula [25,34,38,39,45].
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Figure 6. Appearances of LM3 particles captured with cryo-SEM. The particles were generally
spherical in shape, with diameters in the micrometre range, as measured with the ImageJ software
using the “50 µm” scale bar for reference. (a) Yellow arrows indicate examples of LM3 particles, which
were approximately 1 to 2 µm in diameter. (b) An example of a larger LM3 particle approximately
57 µm in diameter.

Additionally, the average zeta potential of LM3 was −51.56 ± 2.76 mV at pH 5.83,
which was indicative of colloidal stability under these conditions in aqueous solution
(Figure 7).
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4. Discussion

In this study, we examined the properties of three novel LipoMicel® formulations
(LM1, LM2 and LM3), hypothesizing that at least one formula would demonstrate advan-
tageous properties for intestinal absorption. The best-performing candidate in terms of
intestinal permeability could be selected for subsequent in vivo experiments. We evaluated
their potential effectiveness to deliver Vitamin D3, and observed that LM3 was the most
promising formula. Hereafter, “LipoMicel” (or “LipoMicel Vitamin D3”) will specifically
refer to LM3.

Significantly, Caco-2 permeability experiments showed that LipoMicel® is 12,000 times
more permeable compared to the baseline control (Table 3 and Figure 4). This is several
orders of magnitude higher than the 2.5 times enhanced uptake reported on lysophos-
phatidylcholine micelles [30], the 4-fold increase in bioavailability reported in a casein
micelles [47] and the 5.3-fold increase reported in pea-protein-based nanoemulsions [48].
However, in this study it appears that the increased permeability of micellar Vitamin D3
does not correlate with increased solubility or reduced particle size—since LipoMicel has
similar solubility characteristics (Figure 2) and particle size distribution (Figure 5 and
Table 4) as the baseline control. While other reports on Vitamin D micelles focused on
structural morphology, stability, bioaccessibility and controlled release without reporting
permeability [29,49,50], this study demonstrates that biological experiments provide better
insights on Vitamin D absorption than simple diffusion modelled by physical and chemical
characterization of the formulations [12]. In fact, the results of our study suggest that the
absorption process involves biological mechanisms such as cholesterol transporters and cell-
membrane efflux pumps such as ABCB1, which would support previous findings [32,51].
However, this assumption needs to be further evaluated in future studies.

LipoMicel was further characterized to provide data for reproducing similar biological
effects in future formulations. Cryo-SEM of LipoMicel showed spherical particles in
the low micrometre size range (for example, numerous particles were approximately 1
to 2 µm in diameter), as well as larger ones exceeding 50 µm in diameter. In general,
liposomal drug delivery vehicles can range from 50 to 200 nm in diameter [52,53] and
micellar ones can approach 1 µm [54]. Micrometre-sized carriers have been proven to
be physically advantageous for cellular uptake. For example, using a rat as an animal
model, a study found that spherical particles up to 5 µm in diameter can be absorbed
through the intestines when locally delivered, and those up to 1 µm can be absorbed
when orally administered [55]. Other delivery systems (such as microemulsions or some
microcapsules) can even exist at sizes up to 5000 µm in diameter [35,56]. Such systems
can be referred to as microcapsules, defined by Vieira and Souza as having diameters
between 1–5000 µm [56]. The current iteration of LipoMicel falls under this category.
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The thermodynamic stability of such beyond-nanoscale structures can allow them to be
more easily manufactured than nanopreparations such as liposomes [35,56]. Furthermore,
compared to nanoscale liposomal formulations, microcapsules may be more resistant to
environmental stresses such as changes in temperature and pH [35,56]. Additionally,
microcapsules have been observed to achieve better bioavailability of Vitamin D by way of
improving the vitamin’s controlled and targeted release [56]; this is not in disagreement
with the drastic increase in permeability when LipoMicel was introduced to Caco-2 cells.
As such, the ease of manufacture, thermodynamic stability and potentially improved
bioavailability are definitive advantages of microscale formulations, especially considering
the need to mass-produce health supplements for the consumer market. We aim to conduct
follow-up pharmacokinetic studies to determine how LipoMicel, as a microencapsulated
formulation using natural and safe ingredients, compares to other delivery systems such as
liposomes and nanoemulsions in the context of enhanced uptake in vivo.

With a PDI value slightly larger than 0.3 (Table 4), LipoMicel® appears to be slightly
polydisperse in solution, albeit nearly monodisperse according to the definition mentioned
by Danaei et al. [38]. When viewed in conjunction with the particle size distribution
pattern (Figure 5), we see that although there’s considerable size variation, the majority
of the LipoMicel particles may be approximately 50 µm in diameter. Worth noting is that
the complete size range of LipoMicel is almost identical to that of the baseline control,
but the two formulations demonstrate drastically different permeability results. Smaller
LipoMicel particles do exist, as revealed by cryo-SEM. The aggregation of such particles
could contribute to the natural formation of their larger counterparts. However, the larger
ones may not be the primary carriers of Vitamin D3 for absorption since the bulky topology
would present challenges in crossing the mucus lining, be inefficient at contacting the
intestinal epithelium and be easily subjected to the actions of bile salts and digestive
lipase. Under physiological conditions, the constant peristaltic agitation in combination
with enzymatic efforts could break some larger particles into smaller ones, which would
then become the primary carriers and the agents of enhanced absorption. To confirm
whether the constant digestive actions would increase the number of uniformly small-
sized LipoMicel particles, future experiments are warranted. Furthermore, since different
excipients at varying ratios could alter the PDI of a formulation, future efforts may be
directed at adjusting the composition of LipoMicel so that it could reach lower PDI, become
increasingly monodisperse at a smaller particle size (within the micrometer range) and
achieve homogeneity [46,57]. A monodispersed, smaller-sized version of LipoMicel could
improve bioavailability even further and stands to be explored in subsequent studies.

At an average zeta potential of −51.56 mV, LipoMicel was stable in aqueous solutions,
where values with magnitudes greater than 30 mV are considered stable [58]. Referencing
the criteria of some investigators, LipoMicel could be further categorized as belonging to a
group with “good stability” [59]. The measured zeta potential for LipoMicel is comparable
with some novel liposomal preparations of Vitamin D3 (for example, those with zeta poten-
tials in the −50 mV to −70 mV range), while considerably exceeding other preparations
(for example, at −26.70 mV or −4.0 mV) [60–62]. Moreover, although zeta potential is not a
direct assessment of surface charges, having a negative zeta potential could imply that the
LipoMicel also has a negative surface charge [63]. Certainly, pH and other factors can affect
zeta potential measurements, so the exact surface charge stands to be determined in future
experiments [58]. However, if this is true, then this property could facilitate absorption
since some have suggested that having a negative surface charge prevents the particles
from adhering to intestinal mucus, which is also negatively charged [64]. These particles
could then penetrate the intestinal mucosal layer and reach the absorption surface at a
quicker pace.

Despite the mechanistic complexity of drug absorption in humans, we can gain a
measure of understanding on a formula’s bioavailability potential when its solubility and
permeability in vitro are known [65]. In the case of Vitamin D3, its natural hydrophobicity
renders it insoluble in the aqueous intestinal environment and this can create challenges
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for its permeability across enterocytes. Theoretically, packaging a hydrophobic compound
in amphipathic micellar structures can potentially overcome such challenges. Some have
hypothesized that taking Vitamin D3 with high-fat meals can facilitate the production of
natural micelles through the assistance of bile [66]. However, the types and amounts of
dietary fat vary in their effects on Vitamin D3 absorption [66]. Furthermore, bile production
between individuals could vary. In this regard, it is advantageous to have measured control
over micelle formation to achieve both high solubility and high permeability through
product formulation instead of relying on the behaviour and physiology of end users.

The current LipoMicel formula showed similar but slightly improved solubility char-
acteristics (i.e., in water and gastrointestinal media) compared to the control. Although
LipoMicel was less soluble in comparison with the other formulations (LM1 and LM2),
its Papp value can successfully qualify the current formula for consideration as a highly
permeable drug in vitro, suggesting that once the particles reach enterocytes, they can
readily cross the gut–blood barrier to ferry the cargo (Vitamin D3) for subsequent transport.

Indeed, we know that drugs with low or moderate solubility but high permeability can
achieve complete absorption provided that they overcome the dissolution challenge [67].
As such, to decidedly test how the current LipoMicel® formula would perform in the
human body, subsequent in vivo studies with human subjects are still necessary. In addi-
tion, formula manipulation remains a useful tool for further enhancing its solubility and
permeability [68]. Such efforts could aim at altering the existing excipients, or examining
the possibilities of creating nanoemulsions, self-emulsifying drug delivery systems, solid
dispersion, or other methods of delivery [28].

During our study, we used Caco-2 as an in vitro cell model. While Caco-2 is a common
model used to study the absorption and transport of nutrients in the small intestine,
studies on Vitamin D3 transport across Caco-2 cell monolayers are rather limited. Our work
reaffirms that this robust cell model is an effective tool for studying Vitamin D3 permeability.
Although others have investigated various micellar preparations of Vitamin D using Caco-2
cells, the formulations they used may not be practical in the context of over-the-counter
health supplements [12]. For example, depending on the regulatory jurisdiction and context,
certain ingredients used in those preparations would not be permitted in health supplement
products. Such ingredients include lysophosphatidylcholine, monoolein, taurocholate and
fetal bovine serum [12]. At the time of this writing, they are not allowed in an oral health
supplement marketed in Canada. In contrast, our work examined formulations made from
natural, safe ingredients which could be practically marketed.

Certain limitations do exist when using Caco-2 cells for nutrient absorption studies.
For instance, the cells are not a perfect model of the human small intestine. Caco-2 cells form
a monolayer of a single cell type. While they are adept at expressing a range of membrane
transporters and certain junctions similar to those found in the small intestine, their limited
differentiation would not fully represent all epithelial traits relevant to absorption [69].

The in vitro data obtained from this study characterized a micellar form of Vitamin D3,
as LipoMicel Vitamin D3. This novel formula displays advantageous morphological and
physicochemical traits and provides a significant improvement in intestinal permeability
when measured in vitro. Although these results are promising, we recognize that it is
never a straightforward extrapolation from in vitro characteristics to in vivo bioavailability.
Therefore, more work is needed to determine if the current iteration of LipoMicel can
achieve improved bioavailability in vivo. To this effect, current efforts are underway to
examine the bioavailability of LipoMicel Vitamin D3 in human volunteers.

5. Patents

Pending for LipoMicel® Matrix—Eutectic Matrix for Nutraceutical Compositions lists
inventors as: R.J.G., S.W., Y.C.K. and C.C. No inventor benefits from this and the ownership
belongs to InovoBiologic Inc (Calgary, AB, Canada).
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