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Abstract: During the harvesting of the broccoli plant, the leaves are discarded, being considered a
by-product that may be up to 47% of total broccoli biomass, representing a large amount of wasted
material. The use of broccoli leaves is of great interest in the sense that this wasted material is rich
in health promoter compounds, such as isothiocyanates. In this study, C57BL/6J mice ingested
790 mg/kg broccoli leaf flour, and the presence of glucosinolates and isothiocyanates in the plasma,
liver, kidney, adipose tissue, faeces and urine was analysed at 1, 2, 4, 8, 12 and 24 h post-ingestion. In
plasma, only glucoerucin (GE), glucobrassicin (GB), sulforaphane (SFN) and indol-3-carbinol (I3C)
were detected, and all four compounds peaked between 4 and 8 h after ingestion. The compounds
SFN, SFN-glutathione (SFN-GSH), SFN–cysteine (SFN-CYS) and SFN-N-acetyl-cysteine (SFN-NAC)
were excreted in faeces at high levels, while glucoraphanin (GR), the precursor of SFN, was not
detected in any biological samples other than urine. In the liver, the compounds GE, SFN-CYS,
SFN-NAC and I3C were detected, while in the kidney, only GE, GB and SFN-GSH were present.
None of the glucosinolates and isothiocyanates analysed were detected in fat tissue. These results
demonstrate that glucosinolates and their derivatives were absorbed into the bloodstream and were
bioavailable after ingestion of powdered broccoli leaves.

Keywords: broccoli by-products; bioavailability; health; C57BL/6J mice

1. Introduction

In recent years, the scientific community has focused on valuing the by-products
resulting from the agro-industrial sector [1]. Broccoli (Brassica oleracea L. var. italica) is one
of the most cultivated crops worldwide [2], thus having a great economic and environ-
mental impact in terms of the generation of by-products [3–5]. Broccoli leaves are usually
discarded and, depending on the cultivar and growth conditions, they may be up to 47% of
the biomass (fresh weight) of a broccoli plant, representing a large amount of wasted mate-
rial [6]. Nevertheless, their high content of bioactive molecules such as glucosinolates [7,8]
make them interesting and suitable for use in functional foods such as cakes, breads, snacks
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or beverages [8–12]. Glucosinolates are present in Brassica plants and are converted to their
respective isothiocyanates by the enzyme myrosinase, which is released after plant tissue
damage or by microbial metabolism in the gut [13–15]. In broccoli plants, glucoiberin (GI),
glucobrassicin (GB), glucoraphanin (GR) and its reduced form glucoerucin (GE) are some
of the glucosinolates present [16]. Isothiocyanates are health promoters as evidenced by
several studies, showing potential therapeutic actions in many types of cancer, skin disor-
ders, respiratory conditions, behavioural disorders, cardiovascular disease, diabetes and
obesity [8,17–28]. Sulforaphane (SFN) is an isothiocyanate that results from the hydrolysis
of GR. SFN is conjugated with glutathione (GSH) to form SFN-GSH, which is subsequently
metabolised to SFN-cysteine (SFN-CYS) via the mercapturic acid pathway, culminating in
the formation of the final metabolite SFN-N-acetyl-cysteine (SFN-NAC) [29,30]. The isothio-
cyanate erucin (the sulphide analogue of SFN) can be formed either through GE hydrolysis
or through the reduction of the sulfoxide group in SFN [29,31], while iberin is formed
after hydrolysis of GI [16]. Both erucin and iberin are also metabolised via the mercapturic
acid pathway [31–33]. GB is the precursor of the isothiocyanate indol-3-carbinol (I3C),
which under acidic conditions is converted mainly to 3,3′-diindolylmethane (DIM), which
does not undergo metabolisation [34,35]. Considering the health benefits reported in the
literature for these metabolites, it is important to study their formation and bioavailability.

The inflorescence and broccoli sprouts are generally used in bioavailability studies
addressing the compounds present in the broccoli plant. The inflorescence is the part of the
plant normally consumed and the broccoli sprouts are quite rich in glucosinolates [36,37].
However, the assessment of the bioavailability of these compounds after ingestion of by-
products, such as leaves or stems, also needs to be evaluated. This is especially important
in a circular economy context, in which the use of agricultural residues potentially rich in
compounds beneficial to health becomes more prominent. Data related with the bioavail-
ability of broccoli leaf main compounds are scarce. Therefore, in the present study, we
proceed to quantify the aforementioned glucosinolates and isothiocyanates in plasma, liver,
kidney, adipose tissue, faeces and urine from C57BL/6J mice following ingestion of a high
dose (790 mg/kg) of broccoli leaf flour (BLF).

2. Materials and Methods
2.1. Broccoli Leaf Processing

Broccoli leaves used in the study were obtained from broccoli (Brassica oleracea L. var.
italica cv. Naxus) plants harvested in July 2019. Plants were acquired from the producer
Quinta do Celão, Unipessoal Lda, from a crop field located in Quinta do Celão, Adémia de
Baixo, Coimbra, Portugal. After harvesting the plants, the leaves were cut and frozen at
−80 ◦C until processing. Intact plant material was then freeze-dried and ground into flour
in a regular food processor.

2.2. Establishment of the Dose of Interest

A person (60 kg) who consumes 75 g of fresh broccoli per meal was considered for the
calculations [38]. According to our data, broccoli relative water content was 87.3%; thus,
9.5 g of 75 g corresponds to dry weight (dw). The consumption of 9.5 g dw per person
(60 kg) corresponds to a dose of 158.3 mg/kg, rounded to 158 mg/kg. Considering a mouse
with a body weight of 25 g, the dose will correspond to 3.95 mg dw/mouse. However, a
5-fold higher dose was used (19.75 mg per 25 g mouse), which corresponds to 790 mg/kg
BLF, to ensure the detection of the compounds in a pilot study.

2.3. Animals

Six-week-old male C57BL/6J mice (n = 21; Charles River Laboratories, Saint Germain
Nuelles, France) were housed in open cages (n = 3 per cage) with corn cob bedding and
environmental enrichment (cardboard rolls). All animals had ad libitum access to a standard
diet and tap water. Animals were housed under controlled temperature (21± 2 ◦C), relative
humidity (50 ± 10%) and 12 h light/12 h dark cycle. Mice were equally divided into seven
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different time points (n = 3). The voluntary oral delivery of the BLF by mice was achieved
by the incorporation of BLF into gelatine pellets of unflavoured gelatine with 10% sucrose
as a vehicle. All animal experiments were approved by the Animal Welfare and Ethical
Review Body of University of Trás-os-Montes and Alto Douro (UTAD) and by the national
competent authority Direção-Geral de Alimentação e Veterinária (DGAV, Lisbon, Portugal;
license nº 8776).

2.4. Gelatine Ingestion Training

Voluntary drug ingestion is an alternative to more stressful administration methods in
animals, such as intragastric gavage, and can be performed using gelatine pellets. However,
the animals need a period of training to become used to ingesting the gelatine pellet [39–42].
Thus, after two weeks of acclimatation, the animals were trained to consume gelatine pellets
for 5 days. Unflavoured gelatine with 10% sucrose and with 10% corn starch was used for
training. The animals were fasted for 16 h before the first contact with the gelatine pellets
to encourage them to overcome neophobia [43]. The animals were placed individually in
cages and a gelatine pellet (vehicle) was put in each cage. The procedure was repeated on
the following days, but without fasting. The animals consumed the gelatine pellets within
10 min, returning immediately to the group’s cage after ingestion.

2.5. Administration of Broccoli Leaf Flour

The unflavoured gelatine solution with 10% sucrose served as a vehicle for the inges-
tion of BLF, based on a previous study by our group [44]. Gelatine solution was prepared
at once with the required amount of BLF for all animals, taking into account the average
body weight [44]. For the preparation, the required amount of BLF for all animals was
divided in two halves, and each half was mixed with 5 mL of the gelatine solution in
round-bottomed cups and stored at −20 ◦C to solidify. Later, each half was divided into
16 portions, corresponding to one dose per animal. The animals were fasted for 16 h
before the gelatine administration with the BLF. The animals were placed individually in
cages and a gelatine pellet was put in each cage. One hour after ingesting the gelatine
pellet, animals were returned to their home cages where they were maintained in the same
conditions including access to food and water. Animals were sacrificed at 1, 2, 4, 8, 12 and
24 h after ingestion. The control (CTR) group (designated as t = 0 h) was sacrificed after the
ingestion of the gelatine pellets without the BLF, to be subjected to the same stimulus and
stress of manipulation.

2.6. Collection of Biological Samples

At the end of each time point, the animals were sacrificed by an overdose of 145 mg/kg
sodium pentobarbital (intraperitoneally; EUTHASOL® 400 mg/mL, ESTEVE, Barcelona,
Spain), followed by cardiac puncture. Blood was collected in lithium-heparin tubes and
then centrifuged (1400× g, 15 min, 4 ◦C) to obtain plasma [7]. Whenever possible, urine
was collected directly from the bladder. Faecal pellets were collected from the large
intestine. The kidneys, liver and epididymal adipose tissue were also harvested. Samples
were stored at −80 ◦C before being processed for the determination of glucosinolates and
their derivatives. For histopathological analysis, one kidney, one liver lobe and one lung
were harvested.

2.7. Histopathology

The organs collected for histopathological analysis were fixed by immersion in 10%
buffered formalin [7]. After fixation, organs were sectioned, dehydrated through a graded
series of alcohols and embedded in paraffin. Tissue sections with 3 µm thick were stained
with hematoxylin and eosin (H&E) and observed under a light microscope for histologi-
cal analysis.
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2.8. Determination of Glucosinolates and Derivatives in Plasma
2.8.1. Pre-Processing Method

The deep-frozen plasma samples were lyophilised and then suspended in 0.2 mL
ammonium acetate 13 Mm pH 7/0.1% formic acid in acetonitrile (50:50, v/v) by vortex and
sonication for 10 min. Then, the samples were vortexed and centrifuged (10,000× rpm,
5 min, 4 ◦C). The supernatants were collected and filtered through a 0.22 µm Millex-HV13
membrane (Millipore Corp., Bedford, MA, USA).

2.8.2. Reverse Phase—High-Performance Liquid Chromatography—Diode Array Detector
(RP-HPLC-DAD) Analysis

The RP-HPLC-DAD system (Thermo Finnigan, San Jose, CA, USA) analysis was
carried out to determine glucosinolates and their metabolic derivatives in plasma. The
analysis equipment is composed of three parts, including an LC pump (Surveyor; Thermo
Fisher Scientific, Waltham, MA, USA), autosampler (Surveyor) and PDA detector (Sur-
veyor). Sample extracts, in triplicate, were injected into a C18 column (250 × 4.6 mm, 5 µm
particle size; ACE, Aberdeen, Scotland), through a chromatographic gradient developed
by applying different percentages of the solvents (A) 13 mM ammonium acetate pH 7 and
(B) acetonitrile/formic acid (99.99:0.01, v/v) (Supplementary Table S1) according to the
multipurpose method, which separates intact glucosinolates, isothiocyanates, and their
metabolites [45]. The injection volume was 10 µL and the flow rate was kept at 1.0 mL
min−1. The glucosinolates and isothiocyanates content of the plasma samples analysed
was expressed as µmol/L.

2.9. Determination of Glucosinolates and Derivatives in Urine, Faeces, Kidney, Liver
and Adipose Tissue
2.9.1. Pre-Processing Method

The deep-frozen samples were lyophilised and then suspended in 0.2 mL ammonium
acetate 13 Mm pH 7 (0.1% formic acid)/acetonitrile (50:50, v/v), mixture by vortex, and
sonicated for 10 min. Then, the samples were vortexed and centrifuged (10,000× rpm,
5 min, 4 ◦C). The supernatants were collected and filtered through a 0.22 µm Millex-HV13
membrane (Millipore Corp., Bedford, MA, USA). The faeces and tissue fresh samples were
processed as previously described [46]. Briefly, faeces and tissues (kidney, liver and adipose
tissue) were prepared by freezing in liquid nitrogen and grinding to a powder with a tissue
grinder. Tissue powder (100 mg) was transferred to a microcentrifuge tube and 400 µL of
1% formic acid was added. The sample was vortexed and then sonicated for 3 s. Ice-cold
acetonitrile (50 µL) was added to precipitate proteins and the samples were vortexed again,
followed by centrifugation at 21,000× g for 5 min. The supernatants were removed and
kept on ice. This procedure was repeated two times for each tissue and the supernatants
were pooled.

2.9.2. Ultra High-Pressure Liquid Chromatography Coupled to Electrospray Ionisation
(UHPLC-ESI-QqQ-MS/MS) Analysis

The analysis of the quantitative profile of glucosinolates and their metabolic deriva-
tives in the liver, kidney, adipose tissue, faeces and urine samples was performed by Ultra
High-Pressure Liquid Chromatography coupled to Electrospray Ionisation (ESI) and a 6460
tandem Mass Spectrometer with Triple Quadrupole Technology (UHPLC/MS/MS, Agilent
Technologies, Waldron, Germany). Chromatographic separation was carried out on a ZOR-
BAX Eclipse Plus C18 (2.1 × 50 mm, 1.8 µm) (Agilent Technologies, Waldron, Germany)
through a chromatographic gradient developed by applying different percentages of the
solvents A: 13 mM ammonium acetate pH 7 and B: acetonitrile/formic acid (99.99:0.01, v/v),
according to the method previously described [45] (Supplementary Table S1). The identifi-
cation of the compounds was made through their MS2 fragmentation pattern (mass/charge
ratio), applying positive or negative ionisation mode depending on the compound consid-
ered at the optimal ESI conditions (Supplementary Table S2), and their retention time in
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comparison with authentic standards [45] (Supplementary Table S3). The glucosinolates
and isothiocyanates content was expressed as ng/mg tissue fresh weight (fw) on the base
of pooled external standard curves freshly prepared each day of analysis.

2.10. Statistics

The concentration data of the compounds present in the biological samples are pre-
sented as mean ± standard deviation (SD). For histologic analysis, data are expressed as
percentages and the Chi-square test was performed using the SPSS program (Statistical
Package for Social Sciences, Chicago, IL, USA) version 17. Differences were considered
significant when p < 0.05.

3. Results
3.1. Liver, Kidney and Lung Histology

Regarding hepatic lesions, at 1 h, 2 h and 4 h post-ingestion of BLF, no lesions were
observed. However, all mice from the CTR (0 h) group (100%) and at 12 h post-ingestion
of BLF (100%) presented cell swelling accentuated by hydropic degeneration. One animal
at 8 h (33%) and two mice at 24 h (66%) also presented these lesions, with the rest of
the animals showing mild hydropic changes, 66% and 33%, respectively. All groups that
showed hepatic hydropic changes, namely, CTR (0 h), 8 h, 12 h and 24 h post-ingestion,
differed significantly (p < 0.05) from the groups without visible liver lesions (1 h, 2 h, and
4 h post-ingestion). Representative images are shown in Figure 1. No lesions were observed
in the kidney and lung.

3.2. Quantification of Glucosinolates and Isothiocyanates after BLF Ingestion

Table 1 shows the concentrations of glucosinolates, isothiocyanates and their metabolic
derivatives present in the plasma (µmol/L), liver, kidney or faeces (ng/mg tissue fw) in
mice at time = 0 h, and following ingestion of 790 mg/kg BLF at 1, 2, 4, 8, 12 and 24 h post-
administration. For all time points, samples from three animals were analysed; however,
in several analyses the compounds were only detected in one or two animals. The GR,
the major glucosinolate present in broccoli leaves [7], was not detected in the plasma,
liver, kidney or faeces, and, therefore, is not shown in the table. In turn, its isothiocyanate
derivative, SFN, was absorbed into the plasma, peaking at 4 h, and was excreted in the
faeces, where it reached the highest concentration at 1 h. The immediate derivative of
SFN, SFN-GSH, was not detected in plasma as expected, being only present in the kidney,
where it peaked at 1 h, also showing a second peak at 8 h. SFN-GSH was excreted in
faeces at high concentrations, peaking at 4 h. Its following derivatives, SFN-CYS and
SFN-NAC, were also not detected in plasma, but were found in the liver, peaking at 2 h
and 4 h, respectively. In addition, SFN-CYS and SFN-NAC were excreted in faeces at
much lower concentrations than SFN-GSH, both showing the highest concentrations
at 2 h. GE, the reduced form of GR, was absorbed into the plasma and detected in the
liver and kidney, peaking at 4 h. However, its metabolite, erucin, was not detected in
the biological samples analysed, and, therefore, is not presented in the table. GB, the
second major glucosinolate present in broccoli leaves [7], was detected in plasma and
kidney, peaking at 4 h. In turn, I3C, derived from the metabolism of GB, was absorbed
into the plasma, and was detected in the liver at high concentrations, peaking also at 4 h.
Nevertheless, its derivative, DIM, was not detected in the biological samples analysed,
and, therefore, is not shown in the table. GI was also not detected in any of the biological
samples analysed; however, its metabolite, iberin, was excreted in the faeces, reaching
the highest concentration at 1 h. In the liver, kidney and faeces, none of the compounds
analysed were detected at 12 and 24 h, while in the plasma only at 24 h post-ingestion,
none of the substances were detected.

Regarding the adipose tissue, none of the compounds analysed were detected and
therefore are not presented in the table.
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Urine samples were collected and analysed, but in most samples, the volumes
were not sufficient to be processed or properly quantified and, therefore, the results are
not shown. However, in the urine samples that could be analysed, some compounds
were detected, namely, the glucosinolates GR (at 1 h, 2 h, 4 h and 8 h), GB (at 1 h, 2 h
and 8 h) and GE (at 1 h, 2 h and 8 h), and the derivatives SFN (at 1 h, 2 h, 4 h and 8 h),
SFN-CYS (at 2 h, 4 h and 8 h), SFN-NAC (at 1 h, 2 h, 4 h and 8 h) and I3C (at 1 h, 2 h,
4 h and 8 h).

Figure 1. Liver sections from the animals under study (H&E): image (A) displays hydropic change
with marked cellular swelling visible in an animal of group CTR (0 h); (B) normal hepatocytes
from an animal of group 1 h post-ingestion of 790 mg/kg broccoli leaf flour (BLF); (C) normal liver
architecture and hepatocytes from an animal of group 4 h post-ingestion of BLF; (D,E) hydropic
change and cellular swelling in animals from group 12 h post-ingestion of BLF; and (F) mild hydropic
change, mainly observed on liver zone 2 in an animal from group 24 h post-ingestion of BLF.
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Table 1. Concentrations of glucosinolates, isothiocyanates and their metabolic derivatives in the plasma, liver, kidney and faeces after ingestion of 790 mg/kg BLF.

Biological
Samples Time Point

Compounds Detected

GE GB SFN SFN-GSH SFN-CYS SFN-NAC I3C Iberin

Plasma
(µmol/L)

0 h – - - - - - - -

1 h - 0.018 ± 0.004
(n = 3)

0.012 ± 0.003
(n = 3) - - - 0.030 ± 0.002

(n = 3) -

2 h 0.018 ± 0.002
(n = 3)

0.067 ± 0.012
(n = 3)

0.029 ± 0.003
(n = 3) - - - 0.103 ± 0.007

(n = 3) -

4 h 0.031 ± 0.001
(n = 3)

0.094 ± 0.004
(n = 3)

0.040 ± 0.001
(n = 3) - - - 0.145 ± 0.005

(n = 3) -

8 h 0.023 ± 0.001
(n = 3)

0.081 ± 0.001
(n = 3)

0.035 ± 0.001
(n = 3) - - - 0.116 ± 0.001

(n = 3) -

12 h - 0.008 ± 0.001
(n = 3)

0.005 ± 0.001
(n = 3) - - - 0.015 ± 0.001

(n = 3) -

24 h - - - - - - - -

Liver
(ng/mg fw)

0 h - - - - - - - -

1 h - - - - - - 4.107 ± 2.083
(n = 2) $ -

2 h - - - - 1.195 ± 0.310
(n = 3) - 4.040 ± 2.522

(n = 3) -

4 h 0.112 ± 0.153
(n = 2) $ - - - 0.875 ± 0.282

(n = 2) $
0.040 ± 0.001

(n = 2) $
9.584

(n = 1) $ -

8 h 0.087 ± 0.009
(n = 2) $ - - - 0.754 ± 0.208

(n = 3)
0.035 ± 0.001

(n = 2) $
5.017 ± 0.950

(n = 3) -

12 h - - - - - - - -
24 h - - - - - - - -

Kidney
(ng/mg fw)

0 h - - - - - - - -

1 h - 1.365 ± 0.775
(n = 3) - 6.841 ± 2.749

(n = 3) - - - -

2 h 0.487 ± 0.481
(n = 2) $

1.236 ± 0.262
(n = 3) - 3.767 ± 0.707

(n = 3) - - - -

4 h 0.691 ± 0.100
(n = 2) $

1.796 ± 1.117
(n = 2) $ - 4.525

(n = 1) $ - - - -

8 h 0.481 ± 0.1227
(n = 3)

1.592 ± 0.568
(n = 3) - 5.062 ± 1.008

(n = 3) - - - -

12 h - - - - - - - -
24 h - - - - - - - -
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Table 1. Cont.

Biological
Samples Time Point

Compounds Detected

GE GB SFN SFN-GSH SFN-CYS SFN-NAC I3C Iberin

Faeces
(ng/mg fw)

0 h - - - - - - - -

1 h - - 0.126 ± 0.142
(n = 3)

36.010 ± 9.337
(n = 3)

0.239 ± 0.236
(n = 3)

0.026 ± 0.020
(n = 2) - 0.235 ± 0.308

(n = 3)

2 h - - 0.112 ± 0.059
(n = 3)

36.440 ± 8.305
(n = 3)

0.402 ± 0.336
(n = 3)

0.045 ± 0.010
(n = 3) - 0.037

(n = 1) $

4 h - - 0.042 ± 0.016
(n = 2) $

37.300 ± 1.663
(n = 2) $

0.211 ± 0.113
(n = 2) $

0.031 ± 0.013
(n = 2) $ - -

8 h - - 0.025 ± 0.002
(n = 3)

7.315
(n = 1) $

0.291 ± 0.161
(n = 3)

0.027 ± 0.013
(n = 3) - 0.065 ± 0.064

(n = 3)
12 h - - - - - - - -
24 h - - - - - - - -

Data are presented as mean ± SD; -, below the limit of quantitation; $, only detected in one or two animals; BLF, broccoli leaf flour; fw, fresh weight; GB, glucobrassicin; GE, glucoerucin;
I3C, indole-3-carbinol; SFN, sulforaphane; SFN-GSH, sulforaphane-glutathione; SFN-CYS, sulforaphane-cysteine; SFN-NAC, sulforaphane-N-acetyl-cysteine.
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4. Discussion

Drug metabolism is a process of detoxification to reduce the toxicity of xenobiotics
and to facilitate their excretion. However, during this process, the resultant metabolites
can be biochemically active with therapeutic effects, inactive or toxic [47]. Therefore, it is
important to study the formation and bioavailability of metabolites. Broccoli leaves are
by-products highly rich in glucosinolates, thus presenting a high potential to be reused
for health benefits. Glucosinolates are phytochemicals present in relatively high quantities
in Brassica vegetables, such as broccoli; however, these compounds are relatively inert
and without biological activity [48]. After enzymatic hydrolysis by plant or bacterial
myrosinases, biologically active breakdown products are formed, and are responsible for
the biological effects observed and attributed to glucosinolates [49]. Intact glucosinolates
can be partially absorbed in the stomach; however, due to their hydrophilic nature, these
compounds transit to the small intestine where they are degraded by the released active
plant myrosinases, which were present in the food product [50]. The remaining intact
glucosinolates transit to the colon, where hydrolysis by bacterial myrosinase occurs. The
isothiocyanates and other breakdown products are thus essentially absorbed in the small
intestine and colon [50]. In the present study, the absorption and excretion of glucosinolates
and their breakdown products were quantified in mice after the ingestion of 790 mg/kg
BLF. Within 1 h, SFN and I3C become bioavailable in plasma, peaking at 4 h. SFN and
its derivatives, SFN-GSH, SFN-CYS and SFN-NAC, were all found in the faeces, with the
SFN-GSH being excreted in greater amounts. Of these compounds, only SFN-CYS and
SFN-NAC were accumulated in the liver, while SFN-GSH was the only one detected in
the kidney. In general, the compounds were detected within 1 h after BLF ingestion, and
were detected up to 8 h after administration, except in plasma, where some compounds
were detected up to 12 h. In addition, the compounds analysed are not bioaccumulated
in adipose tissue. Regarding histopathologic changes, normal tissues were observed 1 h,
2 h and 4 h after BLF ingestion. However, contrary to expectations, hepatic lesions were
observed in animals at 0 h, 8 h, 12 h and 24 h post-ingestion of BLF.

4.1. Glucoraphanin (GR), Sulforaphane (SFN) and SFN Conjugates

The glucosinolate GR is the main glucosinolate present in leaves, stems and inflores-
cences of broccoli [7]. In the present study, the absence of GR in plasma and faeces suggests
that this glucosinolate is rapidly and almost entirely hydrolysed after ingestion, although
its presence in urine indicates that intact GR may have been partially absorbed. Also, the
presence of SFN in the faeces suggests a high hydrolysis of GR by bacterial myrosinase in
the colon. SFN is relatively lipophilic, which, combined with a relatively low molecular
weight, confers this molecule a high potential for passive diffusion, resulting in rapid ab-
sorption into the enterocytes [51,52]. Inside these cells, SFN undergoes extensive first-pass
metabolism, where SFN is conjugated with glutathione by GSTs, being then highly effluxed
back into the lumen as SFN-GSH conjugate [53]. Luminal non-enzymatic conjugation may
also occur as GSH is supplied to the intestinal lumen with the bile [54]. This may explain
the high concentration of the SFN-GSH conjugate found in faeces in our study. Moreover,
this high conjugation and efflux may translate into a lower bioavailability of the SNF. Nev-
ertheless, non-enzymatic conjugation of isothiocyanates with GSH is reversible and these
conjugates can be dissociated [55]. The liver contains high levels of GSH and the highest
GST activity; thus, after being absorbed into the portal circulation, the isothiocyanates
undergo extensive hepatic first-pass metabolism, similar to what occurs in enterocytes [49].
Nevertheless, in our study, neither SFN nor SFN-GSH were detected in the liver, with only
SFN-CYS and SFN-NAC derivatives being detected in this organ. GST P1-1 is the most
active isoform on GSH conjugates [56] and is found mainly in extrahepatic tissues, such
as the kidney, although GST P isoforms are also present in mouse liver [57]. Moreover,
the kidney plays a major role in the conversion of GSH conjugates into the corresponding
mercapturic acids, more than the liver [58,59], but in the present work, only SFN-GSH was
accumulated in large quantities in the kidney, while SFN-CYS and SFN-NAC derivatives
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were only present in urine samples. Regarding plasma, only SFN was detected, but failed
to accumulate in the adipose tissue. According to the study by Li and colleagues, an oral
administration of 2.5 mg/g body weight of SFN-rich broccoli sprout preparations by female
mice resulted in rapid absorption of SFN into the plasma and distribution throughout the
lung, heart, kidney, liver, muscle and mammary fat pad [60]. SFN-GSH was also quickly ab-
sorbed and distributed throughout the various tissues and at a much higher concentration
than SFN, except in mammary fat pad where SFN-GSH was under the limit of detection [60].
The bioavailability of glucosinolate hydrolysis products depends on several factors, such
as the initial concentration of glucosinolates and glucosinolate hydrolysis products in the
plant material, the hydrolysis due to storage and processing of the plant material, and
the nature of the plant material [49,60]. Thus, it is expected that the administration of an
SFN-rich broccoli sprout preparation will result in increased bioavailability compared to
the administration of a naturally less enriched broccoli leaf flour. SFN is one of the most
studied metabolites with promising pharmacological effects [17,61–63]; therefore, a high
bioavailability of SFN in the body is desirable. SFN is an indirect antioxidant due to its
ability to induce the expression of several antioxidant enzymes via the KEAP1/Nrf2/ARE
pathway, which maintain redox potential and activity of free radical scavengers such as
vitamins A, C and E [64]. The anticarcinogenic effect of SFN is its most evident and studied
therapeutic effect. SFN induces apoptosis and cell-cycle arrest and has antimetastatic effects
through several mechanisms of action, such as the induction of the antioxidant enzyme
thioredoxin reductase1 (TrxR1), inactivation of inhibitors of apoptosis proteins, activation
of MAP kinases and suppression of matrix metalloproteinases, among others [65].

4.2. Glucoerucin (GE) and Erucin

The GE content in broccoli is relatively low [66]. Nevertheless, in the present study,
the presence of GE, the precursor of erucin, was detected in the liver, plasma and kidney.
The absence of GE in faeces and its bioaccumulation in the kidney indicates that GE is
possibly excreted essentially via the urinary tract; in fact, GE was detected in urine samples.
Despite the presence of GE in the organism, erucin was not detected in any of the samples,
indicating that the hydrolysis of GE was probably very low, being absorbed mainly in its
intact form. However, it is possible that in the eventual formation of erucin, it was rapidly
converted to SFN through oxidation of the sulphide group. In rats gavaged with erucin, 67%
of the applied dose was excreted as SFN-NAC and only 29% as the erucin-NAC conjugate,
demonstrating a favourable oxidation of the sulphide group of erucin compared to the
reduction of the sulfoxide group in SFN [67]. In mice, pure erucin gavage also revealed
its rapid transformation into SFN and subsequent metabolisation via the mercapturic acid
pathway [29]. Similar to SFN, erucin is also an important metabolite with therapeutic
potential reported in the literature. Erucin has been shown to induce antioxidant enzymes
like TrxR1, and to possess hydroperoxide scavenging activity due to its ability to react with
H2O2 and alkyl hydroperoxides [68,69]. The anticancer effects of erucin have also been
shown in in vivo and in vitro models of bladder cancer through downregulation of survivin,
epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2
(HER2/neu), G(2)/M cell cycle accumulation and apoptosis [70]. Also, erucin demonstrated
to have anti-proliferative activity in human lung adenocarcinoma A549 cells through the
induction of p53, p21 and PARP-1 cleavage [71]. Recently, erucin was demonstrated to have
anticancer effects in an in vitro model of triple-negative breast cancer (TNBC) subtype by
inducing apoptosis and autophagy, having also antimetastatic activity [72]. In an in vitro
model of renal cancer, erucin induced a concentration-dependent decrease in cell viability
and cell-cycle arrest at G2/Mitosis [24].

4.3. Glucobrassicin (GB), Indole-3-carbinol (I3C) and 3,3′-Diindolylmethane (DIM)

The glucosinolate GB was reported to be the second highest glucosinolate present
in broccoli leaves (5.23 ± 0.75 mmol/kg dw), occurring in about half the amount of GR
(12.23 ± 1.45 mmol/kg dw) [7]. In the present work, GB was found in plasma and ac-
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cumulated in the kidney, suggesting that intact GB was partially absorbed. In turn, its
hydrolysis product, I3C, was found in plasma and liver. This demonstrates that I3C un-
derwent intestinal absorption after GB breakdown and went to the liver via the portal
circulation, then entering the systemic circulation. Under the acidic conditions of the gut,
I3C is unstable and is converted into its acidic condensation products, mainly DIM [49,73].
However, in our study, DIM was below the limit of quantitation in all the samples analysed.
Possibly, GB was only partially hydrolysed to I3C, which in turn may have resulted in a low
generation of DIM, making its quantification difficult. The bioavailability of I3C and DIM
is also relevant from a pharmacological point of view. A recent study demonstrated that
the administration of I3C attenuated the high salt induced hypertrophy and myocardial
stress in rats [21]. In a mouse model of inflammatory bowel disease, the treatment with
I3C showed to mitigate chronic colitis through aryl hydrocarbon receptor (AhR)-mediated
anti-inflammatory mechanisms [27]. The anti-cancer effects of I3C, as well as DIM, have
also been reported, showing antiproliferative and anti-inflammatory activities in several
types of cancers, such as breast, colorectal, gastric, liver, oral, pancreatic, and prostate can-
cer [26]. DIM was also demonstrated to have a therapeutic effect in rheumatoid arthritis by
inhibiting proliferation, migration and invasion of rheumatoid arthritis fibroblast-like syn-
oviocytes and reducing pro-inflammatory factors induced by TNF-α in vitro by blocking
MAPK and AKT/mTOR pathway, and to prevent inflammation and knee joint destruction
in vivo [22].

4.4. Glucoiberin (GI) and Iberin

The glucosinolate GI is also present in broccoli leaves [7]. However, the absence of
GI detection in all samples, and the detection of iberin in the faeces, suggests that GI
underwent rapid hydrolysis, generating iberin. Nevertheless, this isothiocyanate did not
show bioavailability and was excreted in faeces. Iberin also undergoes metabolisation
via the mercapturic acid pathway, as after consumption of broccoli, mercapturic acid
conjugates of iberin can be detected in human plasma and urine [32]. Iberin is also one of
the isothiocyanates with reported therapeutic effects. The treatment with iberin has shown
anti-tumour effect against ovarian cancer by inhibiting proliferation and inducing apoptosis
through the accumulation of ROS, activation of MAPK signalling, and down-regulation
of glutathione peroxidase-1 (GPX1) expression [23]. Recently, the anti-inflammatory effect
of iberin was demonstrated in human oral epithelial cells stimulated by TNF-α, in which
iberin treatment prevented the activation of specific signal transduction pathways [25].
Also, in a recent study, the treatment with iberin showed protection against renal ischemia-
reperfusion injury by significantly reducing the levels of several inflammatory markers [28].

4.5. Glucosinolates and Gut Microbiome

In the absence of plant-derived myrosinase, the gut microbiome plays an impor-
tant role in the biotransformation of glucosinolates into their respective bioactive isothio-
cyanates, thus influencing their bioavailability and biological effects [15,74]. On the other
hand, the consumption of Brassica vegetables greatly influences gut microflora composi-
tion [15,74]. Several studies in humans and rodents have been shown that consumption of
broccoli can lead to an increase or a decrease in certain species of intestinal bacteria [75–80].
In humans, a Brassica-rich diet was shown to decrease sulphate-reducing bacteria [77],
which are linked to gastrointestinal diseases [81]. These alterations in gut microbiome
induced by Brassica vegetables consumption leads to alterations in metabolism, thus in-
fluencing host health [15,74]. Thus, it is possible that BLF may exert beneficial health
effects through the modulation of the gut microbiome due to SFN and its derivatives being
concentrated in the intestine.

5. Conclusions

In conclusion, the absorption of compounds from BLF when administered orally
in mice is low. Furthermore, most of the compounds, namely, SFN and its derivatives,
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remain in the intestine and are then excreted in the faeces. Nevertheless, the present study
shows that SFN and I3C, two isothiocyanates with important biological activity, become
bioavailable in plasma after ingestion of 790 mg/kg BLF in mice. As a preliminary study,
the present work presents some limitations, namely, it is not possible to know the exact
bioavailability of each glucosinolate and isothiocyanate since the exact ingested amount
is not possible to determine. In the case of urine, it was not always possible to collect a
sufficient amount to be analysed. In this study, we started with the recommended dose of
75 g of vegetables; however, being a pilot study, we used a dose 5 times higher to guarantee
the detection of the compounds, since the leaves have a lower content of glucosinolates than
the inflorescences or sprouts. Still, in some cases, the amount of the compounds was below
the limit of quantitation. Another limitation is the difference between mouse metabolism
and human metabolism, which consequently generates differences in the quantity and
type of bioavailable compounds, thus making it difficult to interpolate the results obtained
in mice to humans. Nevertheless, the application of a dose conversion should be taken
into account in future studies to minimise the differences in results between human and
mouse metabolism.
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