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Abstract: Coffee, wine and chocolate are three frequently consumed substances with a significant
impact on cognition. In order to define the structural and cerebral blood flow correlates of
self-reported consumption of coffee, wine and chocolate in old age, we assessed cognition and
brain MRI measures in 145 community-based elderly individuals with preserved cognition (69 to
86 years). Based on two neuropsychological assessments during a 3-year follow-up, individuals
were classified into stable-stable (52 sCON), intermediate (61 iCON) and deteriorating-deteriorating
(32 dCON). MR imaging included voxel-based morphometry (VBM), tract-based spatial statistics
(TBSS) and arterial spin labelling (ASL). Concerning behavior, moderate consumption of caffeine was
related to better cognitive outcome. In contrast, increased consumption of wine was related to an
unfavorable cognitive evolution. Concerning MRI, we observed a negative correlation of wine and
VBM in bilateral deep white matter (WM) regions across all individuals, indicating less WM lesions.
Only in sCON individuals, we observed a similar yet weaker association with caffeine. Moreover,
again only in sCON individuals, we observed a significant positive correlation between ASL and wine
in overlapping left parietal WM indicating better baseline brain perfusion. In conclusion, the present
observations demonstrate an inverse association of wine and coffee consumption with cognitive
performances. Moreover, low consumption of wine but also moderate to heavy coffee drinking was
associated with better WM preservation and cerebral blood-flow notably in cognitively stable elders.
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1. Introduction

Coffee, wine and chocolate are three frequently consumed substances with a significant impact
on cognitive performances.

Early studies in community-based samples suggested that moderate caffeine consumption is
associated with decreased incidence of both mild cognitive impairment (MCI) and clinically overt
AD [1–4]. More recently, a case-control study revealed that plasma caffeine levels greater than
1200 ng/mL in MCI subjects were associated with no conversion to dementia during a 2–4-year
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follow-up [5]. Importantly, in the Italian Longitudinal study of aging, moderate caffeine consumption
over time (from 1 to 2 cups of coffee/day) was associated with lower incidence rate of MCI in
cognitively intact older individuals. However, an inverse association was found for those who
increased their daily caffeine consumption [6,7].

A U-shape relationship between cognitive performance and wine consumption has been
postulated with a marked detrimental effect of heavy drinking but a decrease of Alzheimer disease
(AD) and dementia risk among light to moderate drinkers. However, this latter association
has been challenged due to confounding by socioeconomic class and intelligence (for review see
References [8–10]).

Recent lines of evidence suggest that regular consumption of cocoa is associated with
dose-dependent improvements in general cognition, attention, processing speed, and working memory
that have been documented in animal models of normal aging but also in a limited series of healthy
elders (for review see [11,12]).

The impact of these substances on resting state brain function and AD pathology has been
intensively explored. A limited number of randomized controlled trials explored the acute effects of
caffeine, cocoa flavonoids and alcohol in brain function and perfusion [13–15]. Overall, caffeine intake
was associated with a significant reduction of ASL-measured gray matter cerebral blood flow, increased
load-related activation compared to placebo in the left and right dorsolateral prefrontal cortex during
working memory encoding, but decreased load-related activation in the left thalamus during working
memory maintenance. Alcohol intake led to increased cerebral blood flow in a dose-dependent manner
(for review see Joris et al. [16]). Chronic caffeine intake has been shown to reduce Aβ-induced cell
death in vitro, decrease brain amyloid levels [6,17–21], reduce hippocampal tau phosphorylation
and proteolytic fragments but also mitigate several proinflammatory and oxidative stress markers in
AD transgenic models [22]. Several studies pointed to a caffeine-mediated decrease of resting-state
connectivity across the brain in healthy controls. More recently, it was shown that although this is
true in respect to visual and motor areas, the blood oxygenation level dependent (BOLD) functional
connectivity of the default mode network (DMN) might increase via the recruitment of attentional
networks partly explaining the caffeine-mediated elevated alertness [23–26]. Low concentrations of
ethanol have been shown to protect against toxicity induced by Aβ oligomers [27]. In alcohol drinkers
(without misuse or dependence), resting state functional connectivity is reduced in posterior cortical
areas as precuneus, postcentral gyrus, insula, right fusiform and lingual gyri and visual cortex [28] but
also in the sub-callosal cortex, in left temporal fusiform cortex and left inferior temporal gyrus [29].
In the same line, cocoa extracts reduce oligomerization of beta amyloid and modulates the brain
neurotrophic-derived factor signalling pathway in AD animal models [30,31]. At the cellular level,
chocolate and other flavonoids interact with signalization cascades involving protein and lipid kinases
that lead to the inhibition of neuronal death by apoptosis induced by neurotoxicants such as oxygen
radicals and promote neuronal survival and synaptic plasticity (for review see [32]).

Contrasting with the substantial amount of data on resting state fMRI effects of wine, coffee
and chocolate intake, a surprisingly low number of studies addressed the consequences of their
chronic consumption on structural MRI parameters in healthy controls (without any misuse or
addiction-related behaviors). Most of them concerned alcohol beverages and remain highly
controversial. Linear decrease of grey matter (GM) volumes were reported with weekly alcohol
consumption mainly in men whereas white matter (WM) volume analysis led to conflicting data [33–36].
Regular caffeine use is known to reduce arterial spin labelling (ASL)-assessed cerebral blood flow
(CBF) [37,38] in healthy controls. To our knowledge, there were no studies investigating the relationship
between chocolate consumption and structural MRI parameters as well as ASL-assessed CBF.

In order to define the structural and cerebral blood flow correlates of regular consumption of
coffee, wine and chocolate in old age, we performed voxel-based morphometry (VBM), tract-based
spatial statistics (TBSS) that detect changes in grey and white matter microstructure and arterial spin
labelling (ASL) perfusion imaging in a community-based series of 145 elderly individuals aged from
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69.3 to 85.8 who were cognitively preserved at inclusion and underwent two neuropsychological
assessments during a subsequent 3-year period.

2. Materials and Methods

2.1. Participants

The data engaged in this article was retrieved from an ongoing large population-based
longitudinal study on healthy aging that is still ongoing in the Geneva and Lausanne counties.
The cohort included 526 elderly Caucasian white individuals living in Geneva and Lausanne
catchment area. Due to the need for excellent French knowledge (in order to participate in
detailed neuropsychological testing) the vast majority of the participants were Swiss (or born in
French-speaking European countries, 92%). At baseline, all individuals were evaluated with an
extensive neuropsychological battery, including the Mini-Mental State Examination (MMSE) [39],
the Hospital Anxiety and Depression Scale (HAD [40]), and the Lawton Instrumental Activities of
Daily Living (IADL, [41]). Cognitive assessment included (a) attention (Digit-Symbol-Coding [42],
Trail Making Test A [43]), (b) working memory (verbal: Digit Span Forward [44]), visuo-spatial:
Visual Memory Span (Corsi) [45], (c) episodic memory (verbal: RI-48 Cued Recall Test [46]), visual:
Shapes Test [47], (d) executive functions (Trail Making Test B [43], Wisconsin Card Sorting Test
and Phonemic Verbal Fluency Test), (e) language (Boston Naming [48]), (f) visual gnosis (Ghent
Overlapping Figures), (g) praxis: ideomotor [49], reflexive [50], and constructional (Consortium to
Establish a Registry for Alzheimer’s Disease (CERAD), Figures copy [51]). All individuals were
also evaluated with the Clinical Dementia Rating scale (CDR) [52]. In agreement with the criteria of
Petersen et al. [53], participants with a CDR of 0.5 but no dementia and a score exceeding 1.5 standard
deviations below the age-appropriate mean in any of the cognitive tests were classified as MCI
and were excluded. Participants with neither dementia nor MCI were classified as cognitively
healthy controls and underwent full neuropsychological assessment at follow-ups, on average 18 and
36 months later. Exclusion criteria included psychiatric or neurologic disorders, sustained head injury,
history of major medical disorders (neoplasm or cardiac illness), alcohol or drug abuse, regular use of
neuroleptics, antidepressants or psychostimulants and contraindications to MR imaging. To control for
the confounding effect of cardiovascular diseases, individuals with subtle cardiovascular symptoms
and a history of stroke, severe hypertension and transient ischemic episodes were also excluded from
the present study.

At follow-up, which took place 18 months after inclusion, the cognitively healthy individuals
underwent full neuropsychological assessment. Individuals who obtained stable cognitive scores over
the baseline and follow-up evaluation were classified as stable controls. The progressive control group
obtained a follow-up evaluation of at least 0.5 standard deviations (SD) lower than measured at baseline,
on a minimum of two cognitive tests. Two neuropsychologists clinically assessed all individuals
independently. The final classification was determined by a trained neuropsychologist considering
both the results of the neuropsychological tests and overall clinical assessment [54]. All of the case’s
individuals were assessed once again 18 months later with the same neuropsychological battery.
The participants were subsequently grouped as described above (−0.5 SD in at least two cognitive
tests), with comparison of the scores of the latest assessment. Stable individuals showing no changes in
the second assessment were classified in the stable-stable (sCON) group and progressive individuals
demonstrating a further decline as deteriorating-deteriorating (dCON). The intermediate group (iCON)
refers to participants demonstrating a fluctuating scoring pattern, incorporating stable-progressive,
progressive-stable or progressive-improved individuals.

The final sample consisted of 52 sCON (mean age 73 ± 3 years; 32 women), 61 iCON (mean age
73 ± 3 years; 30 women) and 32 dCON (mean age 74 ± 4.0 years; 18 women). All participants gave
informed written consent after formal approval by the local Ethics Committee.
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The timeline of neuropsychological assessment, MR imaging and questionnaire is illustrated
online in Figure S1.

2.2. Substance Questionnaire

Usual caffeinated foods and beverages (coffee, chocolate) consumption as well as wine intake were
assessed by a self-administered questionnaire. Participants were asked to complete the questionnaire
entering the amount consumed by day, month and year (see online Supplementary Material). After
reception of the questionnaire and in case of doubt, additional information was obtained by phone calls
in order to obtain a global estimation of the consumption. In contrast, the type of coffee preparation
or wine was not explored further since no lines of evidence indicate a differential impact of these
preparations (or type of wine) in the human brain. The caffeine questionnaire was derived from
Reference [55] and related caffeine content can be found in References [56,57].

2.3. MRI Data Acquisition

Imaging data were acquired on a 3T MRI scanner (TRIO SIEMENS Medical Systems, Erlangen,
Germany) Essential data include: a high-resolution T1-weighted anatomical scan (magnetization
prepared rapid gradient echo (MPRAGE), 256 × 256 matrix, 176 slices 1 mm isotropic, TR = 2.27 ms),
a pulsed ASL sequence (64 × 64 matrix, 24 slices, voxel size 3.44 × 3.44 × 5 mm3, TE = 12 ms,
TR = 4000 ms, inversion time (TI) 1600 ms) and a diffusion tensor imaging DTI sequence (b = 0 and
30 diffusion directions with b = 1000 s/mm2, 128 × 128 matrix, voxel size 2.0 × 2.0 × 2.0 mm3,
TE = 82.4 ms, TR = 7900 ms and 1 average).

Additional sequences included axial fast spin-echo T2w imaging (4000/105, 30 sections,
4-mm section thickness), susceptibility weighted imaging (28/20, 208 × 256 × 128 matrix,
1 mm × 1mm × 1 mm voxel size) were performed to exclude brain disease, such as ischemic stroke,
subdural hematomas, or space-occupying lesions.

2.4. Statistical Analysis of Demographic and Substance Data

Comparison among the three groups were performed with Fisher exact test, Kruskal-Wallis
test or one way ANOVA according to the distribution of the variables. Caffeinated foods and
beverages were considered as continuous variables, z-scores and also as tertile (light, moderate,
heavy consumers). Consumption of coffee was divided in tertile as follows: light (0–28 cups/month),
moderate (29–60 cups/month), heavy (61–168 cups/month). Light drinkers for wine corresponded to
a consumption of 0–8 units /month, moderate to a consumption of 9–28 units /month, and heavy to a
consumption of 29–200 units/month. Consumption of chocolate was divided in tertile as follows: light
(0–20 serving/month), moderate: 20–80 serving/month, heavy: 81–226 serving/month). Unadjusted,
adjusted and multiple ordered logistic regression models were used to predict group membership
(see results section for details) from the different type of consumptions (chocolate, coffee and wine).

2.5. MR Data Analysis

2.5.1. Whole-Brain Voxel-Based Morphometry (VBM)

The voxel-based morphometry analysis was carried out using the FSL software package [58],
according to the standard procedure. The essential processing steps included brain extraction using
Brain Extraction Tool [59], tissue-type segmentation using FMRIB’s Automated Segmentation Tool [60],
nonlinear transformation into Montreal Neurological Institute (MNI) reference space, and creation
of a study-specific GM template to which the native GM images were then nonlinearly re-registered.
The modulated segmented images were then smoothed with an isotropic Gaussian kernel with a sigma
of 2 mm. Finally, the voxel-wise FSL General Linear Model was applied by using permutation-based
non-parametric testing with the FSL Randomize Tool with the threshold-free cluster enhancement
(TFCE) correction for multiple comparisons [61], considering fully corrected p values < 0.05 as
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significant. The analysis was performed twice. First, the analysis was performed across all participants
across the entire brain using coffee, wine or chocolate as dependent variables- and age, gender,
education and MMSE score as potential confounders. Second, the analysis was performed as separate
models for the groups sCON, iCON and dCON using only one explanatory variable (coffee, wine or
chocolate) and again age, gender, education and MMSE score as non-explanatory variables.

2.5.2. Arterial Spin Labelling (ASL)

The reconstructed relCBF (relative cerebral blood flow) ASL perfusion images were spatially
normalized using a linear spatial alignment from ASL raw data to the individual high-resolution
3DT1 image, followed by the application of the non-linear spatial registration determined in the
pre-processing of the 3DT1 data. The spatial transformations were then applied to the relCBF
maps calculated directly on the MRI scanner, this two-steps approach results in a non-linear spatial
registration of the ASL relCBF map into the MNI space. We then calculated the whole brain average
relCBF, which was compared between groups with caffeine, wine and chocolate as dependent variables
with age, gender, education and MMSE score as potential confounders. Moreover, we applied a
voxel-wise local permutation-based, with threshold-free cluster enhancement (TFCE) correction for
multiple comparisons, considering fully corrected p values < 0.05 as significant. The statistical models
were performed similar to VBM described above.

2.5.3. Diffusion Tensor Imaging (DTI) Tract Based Spatial Statistics (TBSS)

The TBSS analysis of the DTI data was done implementing the FSL software package [58],
according to the standard procedure described in detail [62]. All subjects’ FA data were projected
onto a mean FA skeleton using a non-linear spatial registration. The tract skeleton is the basis for
voxel-wise cross-subject statistics and reduces potential misregistrations as the source for false-positive
or false-negative analysis results. The other DTI-derived parameters—longitudinal, radial, and mean
diffusivity were analyzed in the same way using spatial transformation parameters that were estimated
in the initial FA analysis. Similar to the VBM analysis above, the TBSS was analyzed using voxel-wise
statistical analysis was performed TFCE correction for multiple comparisons, considering fully
corrected p values < 0.05 as significant. We used the John Hopkins University DTI-based white
matter tractography atlas, which is distributed in the FSL package, for anatomic labeling of the
supra-threshold voxels. The statistical models were performed similar to VBM described above.

2.5.4. GM Region of Interest (ROI) Analysis

In addition to the voxel-wise whole-brain analysis described above, we additionally performed a
region of interest (ROI) analysis. The whole was parcellated into 133 regions using the Combinostics
cMRI software package [63]. We performed bivariate linear regression models to predict each
MRI regional parameters from group and each substance entered either as z-score or as an ordinal
variable (tertile).

3. Results

3.1. Clinical, Demographic and Substance Data

The clinical and demographic data are summarized in Table 1. There were no statistically
significant differences in age, gender and education among the groups sCON, iCON and dCON.

When including one type of consumption as z-score in ordered logistic regression model to predict
group membership without and while adjusting for age, sex, education level and MMS, only wine
was associated with an increased risk of adverse evolution (ORunadjusted 1.012, 95% CI 1.002–1.023;
p = 0.017 unadjusted), (ORadjusted 1.012, 95% CI 1.001–1.022; p = 0.028 adjusted). In a multiple ordered
logistic regression model adjusted for the same confounders as above and all type of consumptions,
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wine consumption remained significantly associated with the dCON status (ORadjusted 1.401, 95% CI
1.003–1.955; p = 0.048).

When analyzing the consumption data as tertile, moderate coffee drinkers are less likely to
be classified as dCON (ORunadjusted 0.451, 95% CI 0.214–0.950; p = 0.036) (ORadjusted 0.447, 95% CI
0.210–0.952; p = 0.037). This observation persists after adjusting for wine and chocolate consumption
ORadjusted = 0.455; 95% CI 0.208–0.995; p = 0.048.

Table 1. Clinical, demographic and substance data by evolution groups.

sCON
(Stable-Stable/

Stable-Improved)

iCON (Stable-Progressed/
Progressed-Stable/

Progressed-Improved)

dCON
(Progressed-Progressed) Total p Value

N 52 61 32 145

Age 73.6 ± 3.4 73.9 ± 3.3 74.0 ± 3.8 73.8 ± 3.5 0.898

Gender
0.321Female 33 (63.5%) 30 (49.2%) 18 (56.3%) 81 (55.9%)

Male 19 (36.5%) 31 (50.8%) 14 (43.8%) 64 (44.1%)

Education (year)

0.315
<9 10 (19.2%) 5 (8.2%) 6 (18.8%) 21 (14.5%)
9–12 20 (38.5%) 29 (47.5%) 16 (50.0%) 65 (44.8%)
>12 22 (42.3%) 27 (44.3%) 10 (31.3%) 59 (40.7%)

MMSE 28.6 ± 1.2 28.3 ± 1.3 28.5 ± 1.7 28.5 ± 1.4 0.534

Chocolate (serving/month) 61.3 ± 58.5 56.0 ± 49.2 46.4 ± 44.4 55.8 ±
51.7 0.443

Coffee (cup/month) 56.3 ± 32.6 50.6 ± 36.1 58.7 ± 43.2 54.4 ±
36.5 0.535

Wine (glass/month) 18.6 ± 18.3 28.1 ± 29.9 34.5 ± 43.7 26.1 ±
30.7 0.054

Chocolate (tertile)

0.689
Light 18 (34.6%) 20 (32.8%) 15 (46.9%) 53 (36.6%)
Moderate 17 (32.7%) 22 (36.1%) 7 (21.9%) 46 (31.7%)
Heavy 17 (32.7%) 19 (31.1%) 10 (31.3%) 46 (31.7%)

Coffee (tertile)

0.228
Light 12 (23.1%) 25 (41.0%) 13 (40.6%) 50 (34.5%)
Moderate 21 (40.4%) 19 (31.1%) 7 (21.9%) 47 (32.4%)
Heavy 19 (36.5%) 17 (27.9%) 12 (37.5%) 48 (33.1%)

Wine (tertile)

0.154
Light 24 (46.2%) 17 (27.9%) 12 (37.5%) 53 (36.6%)
Moderate 19 (36.5%) 30 (49.2%) 8 (25.0%) 57 (39.3%)
Heavy 9 (17.3%) 14 (23.0%) 12 (37.5%) 35 (24.1%)

3.2. MRI Analysis across the Entire Group

Across all participants, we observed a negative correlation in VBM with wine notably in bilateral
deep white matter regions (Figure 1).
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In contrast, no significant differences were observed for ASL or TBSS measures as a function of
the substances studied.

3.3. Group MRI Analysis

In sCON cases, we observed a significant positive correlation between ASL measures and wine
in left parietal white matter (Figure 2), overlapping with the results of the VBM correlation of all
individuals reported above.
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Moreover, we observed a negative correlation between VBM and caffeine only in sCON
individuals notably in the white matter that was more pronounced in left parietal and right frontal
regions (Figure 3).

Importantly, there were no significant associations between these substances and MRI findings in
both iCON and dCON groups.
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4. Discussion

We demonstrate an inverse association of wine and coffee consumption with cognitive
performances. In addition, low consumption of wine but also moderate to heavy coffee drinking was
associated with better WM preservation and cerebral blood-flow notably in cognitively stable elders.

At the behavioral level, the present study reveals that moderate consumption of caffeine is related
to better cognitive outcome in a community-based sample of 145 elderly controls that undergo two
detailed neuropsychological follow-ups in a 3-year period. Importantly, this association is limited to
low quantities and did not persist in cases with very subtle signs of cognitive instability (iCON) or
early phases of cognitive decline (dCON).

In contrast, increased consumption of wine is related to unfavorable cognitive evolution.
The relationship between drinking and cognitive performances in old age remains a highly
controversial issue. The deleterious effect of heavy wine consumption on cognitive evolution over time
in elderly controls has been already documented [8–10,64,65]. Several lines of evidence have suggested
that moderate drinking could have a slight positive impact on memory and verbal abilities [66,67] but
negative data have been also reported [64,68]. In our highly selected cases that mostly consumed very
low levels of alcohol (more than 75% among them consumed less than one unit per day and almost one
third less than eight units per month), we failed to document a positive association between moderate
wine drinking and cognition. In contrast, we found a negative relationship between increased wine
consumption and neuropsychological performances as already suggested previously (for review see
Reference [64]). It should, however, be noted that this finding was obtained when using z-scores
but not tertiles indicating that the heavy consumption of a limited number of elderly controls led
to this result. In contrast to wine, moderate caffeine consumption (up to two cups of coffee/day)
was associated with better cognitive outcome in our 3-year follow-up. This observation parallels
several previous reports on the protection conferred by moderate caffeine consumption in cognitive
aging [1–5]. Not surprisingly, chronic chocolate consumption was not associated with cognition in
our elderly controls. A positive effect of cocoa products seems to be confined to acute consumption as
previously reported [11,12].

Concerning brain MRI, we first assessed the entire dataset of healthy elderly controls and observed
a negative correlation between wine consumption and VBM in bilateral fronto-parietal white matter
(WM). This result may appear contra-intuitive at first glance, as VBM is usually used to assess
modifications in grey matter (GM) concentration. However, it should be noted that microvascular
WM lesion are very frequent in the elderly population. They appear as hypersignal on T2w/FLAIR
(fluid attenuated inversion recovery) sequences, and are usually reported on those sequences, e.g.,
using the Fazekas score. Although less evident and consequently usually less frequently assessed,
those microvascular WM lesions also appear as a hypointense signal on T1w images, which is the
basis of the VBM analysis. The negative correlation between wine and VBM in WM indicates less
hypointense signal on T1 and consequently a reduced severity of WM lesions with increasing wine
intake. Interestingly, the additionally performed TBSS analysis of the WM skeleton did not reveal
significant differences in FA (fractional anisotropy), which is considered as a microstructural marker
of axonal integrity. Taking together the results of VBM and TBSS, this indicates that increased wine
intake may reduce microvascular lesions of the fronto-parietal WM, while association between this
consumption and microstructural integrity of the WM seems more difficult to establish. Interestingly,
an increasing number of studies point to the positive association between low to moderate wine
consumption and WM integrity. In particular, Verbaten reported less white matter damage in elderly
light and moderate drinkers [33]. Similar results were reported by Mukamal for elders consuming
less than six units per week [69] for the vast majority of the present cases. Interestingly and unlike
cognitive performances, we did not detect a negative association between heavy drinking and WM
integrity. The absence of a U-shape association here may be related to the limited number of heavy
drinkers in this sample and low exposure to cardiovascular risk factors due to the exclusion criteria.
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A separate set of findings concerned with the association between consumption and brain
structure as a function of the cognitive fate in this longitudinal series. We built regression models for
each subgroup. Based on repeated neurocognitive testing, the healthy controls were sub-classified
into sCON, iCON and dCON. It is important to emphasize that even for the dCON participants,
the cognitive profile remains within the normal limits at follow-up, however, the individual cognitive
profile slightly decreased two times at 18 and 36 months follow-up. In contrast, the cognitive profile
remains constant twice for the sCON participants, and is intermediate for the iCON participants.
Only in the sCON individuals, we observed a positive correlation between wine and ASL in the WM,
overlapping with the regions of the VBM results across all participants reported above. This indicates
that wine does not only reduce the WM lesion load, but also improves brain perfusion at baseline;
however, this effect is limited in cases who remained cognitively stable over time. It is noteworthy
that among sCON cases, only six cases corresponded to the classical definition of heavy drinking
(≥8 units for women and 15 for men), the mean consumption being less than one unit/day. In the
same line, we found a negative association between caffeine consumption and VBM only for sCON
participants in the right frontal and left parietal WM regions, without a significant association with
TBSS parameters. Similar to the argumentat above, this might indicate that caffeine reduces WM lesion
load only in sCON participants, without having a significant effect on WM microstructural integrity.
Interestingly, and in contrast to wine, most of the sCON cases were of moderate or heavy consumption
of caffeine, not supporting the idea of a U-shaped association between caffeine consumption and WM
lesions. Moreover, the positive association between caffeine consumption and cognition was present
only in sCON participants consistent with the view that caffeine is a cognitive normalizer rather than a
cognitive enhancer [70,71]. As for cognitive outcome, chocolate consumption was not associated with
the MRI parameters studied in the present series suggesting that the chronic consumption of chocolate
is not beneficial nor deleterious for brain integrity or cognitive performances in old age.

5. Conclusions

In conclusion, the present observations confirm the opposite associations between wine and
coffee consumption on cognitive performances, suggesting a detrimental effect of heavy drinking
and benefits of chronic consumption of moderate quantities of coffee. The low consumption of wine
but also moderate to heavy coffee drinking is associated with better WM preservation and cerebral
blood-flow in cognitively stable elders without significant cerebrovascular pathologies. Strengths of
the present study include the longitudinal follow-up with detained neuropsychological battery in all
of our community-dwelling cases and absence of health-related confounders such as neurological,
psychiatric and cerebrovascular pathologies. Several limitations should however be considered when
interpreting these data. First, our cohort of healthy controls was without significant vascular pathology
and a high level of daily functioning without any symptom of substance abuse is not representative of
the entire spectrum of old age. Second, current consumption was assessed with a food questionnaire
based on self-reporting, leading to possible underestimation of wine consumption. Third, no data
on lifetime consumption were obtained, so the possible deleterious or beneficial effect of wine and
coffee use at midlife cannot be assessed. Finally, MRI assessment was performed at baseline and thus
we cannot comment on the association between MRI structural parameter changes and wine and
coffee consumption over time. Future studies in large community-based samples combining self and
proxy-reports, lifetime assessment of wine and coffee consumption and repeated MRI scans are needed
to shed additional light into the complex relationships between these substances and structural MRI
parameters in old age.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6643/10/10/1391/
s1, Figure S1: Timeline of imaging and neuropsychological testing.

Author Contributions: Conceptualization, S.H. and P.G.; Methodology, S.H., P.G.; Formal Analysis, S.H., M.-L.M.,
F.R.H.; Investigation, C.R.; Patient recruitment and neuropsychological testing, C.R.; Writing-Review & Editing,
S.H., M.-L.M., P.G.; Funding Acquisition, C.R., P.G.

http://www.mdpi.com/2072-6643/10/10/1391/s1
http://www.mdpi.com/2072-6643/10/10/1391/s1


Nutrients 2018, 10, 1391 10 of 13

Funding: This work is supported by Swiss National Foundation grants SNF 3200B0-1161193 and SPUM
33CM30-124111 and an unrestricted grant from the Assocation Suisse pour la Recherche Alzheimer.

Acknowledgments: We thank all volunteers for participating in this study.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to
publish the results.

References

1. Lindsay, J.; Laurin, D.; Verreault, R.; Hébert, R.; Helliwell, B.; Hill, G.B.; McDowell, I. Risk factors for
Alzheimer’s disease: A prospective analysis from the Canadian Study of Health and Aging. Am. J. Epidemiol.
2002, 156, 445–453. [CrossRef] [PubMed]

2. Maia, L.; de Mendonca, A. Does caffeine intake protect from Alzheimer’s disease? Eur. J. Neurol. 2002, 9,
377–382. [CrossRef] [PubMed]

3. Van Gelder, B.M.; Buijsse, B.; Tijhuis, M.; Kalmijn, S.; Giampaoli, S.; Nissinen, A.; Kromhout, D. Coffee
consumption is inversely associated with cognitive decline in elderly european men: The fine study. Eur. J.
Clin. Nutr. 2006, 61, 226–232. [CrossRef] [PubMed]

4. Eskelinen, M.H.; Ngandu, T.; Tuomilehto, J.; Soininen, H.; Kivipelto, M. Midlife coffee and tea drinking and
the risk of late-life dementia: A population-based CAIDE study. J. Alzheimers Dis. 2009, 16, 85–91. [CrossRef]
[PubMed]

5. Ritchie, K.; Artero, S.; Portet, F.; Brickman, A.; Muraskin, J.; Beanino, E.; Ancelin, M.; Carrière, I. Caffeine,
cognitive functioning, and white matter lesions in the elderly: Establishing causality from epidemiological
evidence. J. Alzheimers Dis. 2010, 20 (Suppl. 1), S161–S166. [CrossRef] [PubMed]

6. Chu, Y.-F.; Chang, W.-H.; Black, R.M.; Liu, J.-R.; Sompol, P.; Chen, Y.; Wei, H.; Zhao, Q.; Cheng, I.H. Crude
caffeine reduces memory impairment and amyloid β1–42 levels in an alzheimer’s mouse model. Food Chem.
2012, 135, 2095–2102. [CrossRef] [PubMed]

7. Solfrizzi, V.; Panza, F.; Imbimbo, B.P.; D’Introno, A.; Galluzzo, L.; Gandin, C.; Misciagna, G.; Guerra, V.;
Osella, A.; Baldereschi, M.; et al. Coffee consumption habits and the risk of mild cognitive impairment:
The Italian longitudinal study on aging. J. Alzheimers Dis. 2015, 47, 889–899. [CrossRef] [PubMed]

8. Ilomaki, J.; Jokanovic, N.; Tan, E.C.; Lonnroos, E. Alcohol consumption, dementia and cognitive decline:
An overview of systematic reviews. Curr. Clin. Pharmacol. 2015, 10, 204–212. [CrossRef] [PubMed]

9. Panza, F.; Frisardi, V.; Seripa, D.; Logroscino, G.; Santamato, A.; Imbimbo, B.P.; Scafato, E.; Pilotto, A.;
Solfrizzi, S. Alcohol consumption in mild cognitive impairment and dementia: Harmful or neuroprotective.
Int. J. Geriatr. Psychiatry 2012, 27, 1218–1238. [CrossRef] [PubMed]

10. Topiwala, A.; Ebmeier, K.P. Effects of drinking on late-life brain and cognition. Evid. Based Ment. Health 2018,
21, 12–15. [CrossRef] [PubMed]

11. Sokolov, A.N.; Pavlova, M.A.; Klosterhalfen, S.; Enck, P. Chocolate and the brain: Neurobiological impact of
cocoa flavanols on cognition and behavior. Neurosci. Biobehav. Rev. 2013, 37, 2445–2453. [CrossRef] [PubMed]

12. Socci, V.; Tempesta, D.; Desideri, G.; De Gennaro, L.; Ferrara, M. Enhancing human cognition with cocoa
flavonoids. Front. Nutr. 2017, 4. [CrossRef] [PubMed]

13. Decroix, L.; Tonoli, C.; Soares, D.D.; Tagougui, S.; Heyman, E.; Meeusen, R. Acute cocoa flavanol improves
cerebral oxygenation without enhancing executive function at rest or after exercise. Appl. Physiol. Nutr. Metab.
2016, 41, 1225–1232. [CrossRef] [PubMed]

14. Klaassen, E.B.; de Groot, R.H.M.; Evers, E.A.T.; Snel, J.; Veerman, E.C.I.; Ligtenberg, A.J.M.; Jolles, J.;
Veltman, D.J. The effect of caffeine on working memory load-related brain activation in middle-aged males.
Neuropharmacology 2013, 64, 160–167. [CrossRef] [PubMed]

15. Vidyasagar, R.; Greyling, A.; Draijer, R.; Corfield, D.R.; Parkes, L.M. The effect of black tea and caffeine
on regional cerebral blood flow measured with arterial spin labeling. J. Cereb. Blood Flow Metab. 2013, 33,
963–968. [CrossRef] [PubMed]

16. Joris, P.J.; Mensink, R.P.; Adam, T.C.; Liu, T.T. Cerebral blood flow measurements in adults: A review on the
effects of dietary factors and exercise. Nutrients 2018, 10. [CrossRef] [PubMed]

http://dx.doi.org/10.1093/aje/kwf074
http://www.ncbi.nlm.nih.gov/pubmed/12196314
http://dx.doi.org/10.1046/j.1468-1331.2002.00421.x
http://www.ncbi.nlm.nih.gov/pubmed/12099922
http://dx.doi.org/10.1038/sj.ejcn.1602495
http://www.ncbi.nlm.nih.gov/pubmed/16929246
http://dx.doi.org/10.3233/JAD-2009-0920
http://www.ncbi.nlm.nih.gov/pubmed/19158424
http://dx.doi.org/10.3233/JAD-2010-1387
http://www.ncbi.nlm.nih.gov/pubmed/20164564
http://dx.doi.org/10.1016/j.foodchem.2012.04.148
http://www.ncbi.nlm.nih.gov/pubmed/22953961
http://dx.doi.org/10.3233/JAD-150333
http://www.ncbi.nlm.nih.gov/pubmed/26401769
http://dx.doi.org/10.2174/157488471003150820145539
http://www.ncbi.nlm.nih.gov/pubmed/26338173
http://dx.doi.org/10.1002/gps.3772
http://www.ncbi.nlm.nih.gov/pubmed/22396249
http://dx.doi.org/10.1136/eb-2017-102820
http://www.ncbi.nlm.nih.gov/pubmed/29273599
http://dx.doi.org/10.1016/j.neubiorev.2013.06.013
http://www.ncbi.nlm.nih.gov/pubmed/23810791
http://dx.doi.org/10.3389/fnut.2017.00019
http://www.ncbi.nlm.nih.gov/pubmed/28560212
http://dx.doi.org/10.1139/apnm-2016-0245
http://www.ncbi.nlm.nih.gov/pubmed/27849355
http://dx.doi.org/10.1016/j.neuropharm.2012.06.026
http://www.ncbi.nlm.nih.gov/pubmed/22728314
http://dx.doi.org/10.1038/jcbfm.2013.40
http://www.ncbi.nlm.nih.gov/pubmed/23486295
http://dx.doi.org/10.3390/nu10050530
http://www.ncbi.nlm.nih.gov/pubmed/29693564


Nutrients 2018, 10, 1391 11 of 13

17. Arendash, G.W.; Schleif, W.; Rezai-Zadeh, K.; Jackson, E.K.; Zacharia, L.C.; Cracchiolo, J.R.; Shippy, D.; Tan, J.
Caffeine protects alzheimer’s mice against cognitive impairment and reduces brain β-amyloid production.
Neuroscience 2006, 142, 941–952. [CrossRef] [PubMed]

18. Arendash, G.W.; Mori, T.; Cao, C.; Mamcarz, M.; Runfeldt, M.; Dickson, A.; Rezai-Zadeh, K.; Tan, J.;
Citron, B.A.; Lin, X.; et al. Caffeine reverses cognitive impairment and decreases brain amyloid-beta levels in
aged Alzheimer’s disease mice. J. Alzheimers Dis. 2009, 17, 661–680. [CrossRef] [PubMed]

19. Dall’Igna, O.P.; Fett, P.; Gomes, M.W.; Souza, D.O.; Cunha, R.A.; Lara, D.R. Caffeine and adenosine A2a
receptor antagonists prevent β-amyloid (25–35)-induced cognitive deficits in mice. Exp. Neurol. 2007, 203,
241–245. [CrossRef] [PubMed]

20. Espinosa, J.; Rocha, A.; Nunes, F.; Costa, M.S.; Schein, V.; Kazlauckas, V.; Kalinine, E.; Souza, D.O.;
Cunha, R.A.; Porciúncula, L.O.; et al. Caffeine consumption prevents memory impairment, neuronal
damage, and adenosine A2A receptors upregulation in the hippocampus of a rat model of sporadic dementia.
J. Alzheimers Dis. 2013, 34, 509–518. [CrossRef] [PubMed]

21. Han, K.; Jia, N.; Li, J.; Yang, L.; Min, L.Q. Chronic caffeine treatment reverses memory impairment and the
expression of brain BNDF and TrkB in the PS1/APP double transgenic mouse model of Alzheimer’s disease.
Mol. Med. Rep. 2013, 8, 737–740. [CrossRef] [PubMed]

22. Cao, C.; Wang, L.; Lin, X.; Mamcarz, M.; Zhang, C.; Bai, G.; Nong, J.; Sussman, S.; Arendash, G. Caffeine
synergizes with another coffee component to increase plasma GCSF: Linkage to cognitive benefits in
Alzheimer’s mice. J. Alzheimers Dis. 2011, 25, 323–335. [CrossRef] [PubMed]

23. Laurienti, P.J.; Field, A.S.; Burdette, J.H.; Maldjian, J.A.; Yen, Y.-F.; Moody, D.M. Dietary caffeine consumption
modulates fmri measures. NeuroImage 2002, 17, 751–757. [CrossRef] [PubMed]

24. Rack-Gomer, A.L.; Liau, J.; Liu, T.T. Caffeine reduces resting-state bold functional connectivity in the motor
cortex. NeuroImage 2009, 46, 56–63. [CrossRef] [PubMed]

25. Wong, C.W.; Olafsson, V.; Tal, O.; Liu, T.T. Anti-correlated networks, global signal regression, and the effects
of caffeine in resting-state functional mri. NeuroImage 2012, 63, 356–364. [CrossRef] [PubMed]

26. Tal, O.; Diwakar, M.; Wong, C.-W.; Olafsson, V.; Lee, R.; Huang, M.-X.; Liu, T.T. Caffeine-induced global
reductions in resting-state bold connectivity reflect widespread decreases in meg connectivity. Front. Hum.
Neurosci. 2013, 7. [CrossRef] [PubMed]

27. Muñoz, G.; Urrutia, J.C.; Burgos, C.F.; Silva, V.; Aguilar, F.; Sama, M.; Yeh, H.H.; Opazo, C.; Aguayo, L.G. Low
concentrations of ethanol protect against synaptotoxicity induced by aβ in hippocampal neurons. Neurobiol.
Aging 2015, 36, 845–856. [CrossRef] [PubMed]

28. Vergara, V.M.; Liu, J.; Claus, E.D.; Hutchison, K.; Calhoun, V. Alterations of resting state functional network
connectivity in the brain of nicotine and alcohol users. Neuroimage 2017, 151, 45–54. [CrossRef] [PubMed]

29. Spagnolli, F.; Cerini, R.; Cardobi, N.; Barillari, M.; Manganotti, P.; Storti, S.; Mucelli, R.P. Brain modifications
after acute alcohol consumption analyzed by resting state fMRI. Magn. Reson. Imaging 2013, 31, 1325–1330.
[CrossRef] [PubMed]

30. Wang, J.; Varghese, M.; Ono, K.; Yamada, M.; Levine, S.; Tzavaras, N.; Gong, B.; Hurst, W.J.; Blitzer, R.D.;
Pasinetti, G.M. Cocoa extracts reduce oligomerization of amyloid-β: Implications for cognitive improvement
in Alzheimer’s disease. J. Alzheimers Dis. 2014, 41, 643–650. [CrossRef] [PubMed]

31. Cimini, A.; Gentile, R.; D’Angelo, B.; Benedetti, E.; Cristiano, L.; Avantaggiati, M.L.; Giordano, A.; Ferri, C.;
Desideri, G. Cocoa powder triggers neuroprotective and preventive effects in a human alzheimer’s disease
model by modulating bdnf signaling pathway. J. Cell. Biochem. 2013, 114, 2209–2220. [CrossRef] [PubMed]

32. Nehlig, A. The neuroprotective effects of cocoa flavanol and its influence on cognitive performance. Br. J.
Clin. Pharmacol. 2013, 75, 716–727. [CrossRef] [PubMed]

33. Verbaten, M.N. Chronic effects of low to moderate alcohol consumption on structural and functional
properties of the brain: Beneficial or not? Hum. Psychopharmacol. Clin. Exp. 2009, 24, 199–205. [CrossRef]
[PubMed]

34. Anstey, K.J.; Jorm, A.F.; Réglade-Meslin, C.; Maller, J.; Kumar, R.; von Sanden, C.; Windsor, T.D.; Rodgers, B.;
Wen, W.; Sachdev, P. Weekly alcohol consumption, brain atrophy, and white matter hyperintensities in a
community-based sample aged 60 to 64 years. Psychosom. Med. 2006, 68, 778–785. [CrossRef] [PubMed]

35. Debruin, E.; Hulshoffpol, H.; Schnack, H.; Janssen, J.; Bijl, S.; Evans, A.; Leonkenemans, J.; Kahn, R.;
Verbaten, M. Focal brain matter differences associated with lifetime alcohol intake and visual attention in
male but not in female non-alcohol-dependent drinkers. NeuroImage 2005, 26, 536–545. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.neuroscience.2006.07.021
http://www.ncbi.nlm.nih.gov/pubmed/16938404
http://dx.doi.org/10.3233/JAD-2009-1087
http://www.ncbi.nlm.nih.gov/pubmed/19581722
http://dx.doi.org/10.1016/j.expneurol.2006.08.008
http://www.ncbi.nlm.nih.gov/pubmed/17007839
http://dx.doi.org/10.3233/JAD-111982
http://www.ncbi.nlm.nih.gov/pubmed/23241554
http://dx.doi.org/10.3892/mmr.2013.1601
http://www.ncbi.nlm.nih.gov/pubmed/23900282
http://dx.doi.org/10.3233/JAD-2011-110110
http://www.ncbi.nlm.nih.gov/pubmed/21422521
http://dx.doi.org/10.1006/nimg.2002.1237
http://www.ncbi.nlm.nih.gov/pubmed/12377150
http://dx.doi.org/10.1016/j.neuroimage.2009.02.001
http://www.ncbi.nlm.nih.gov/pubmed/19457356
http://dx.doi.org/10.1016/j.neuroimage.2012.06.035
http://www.ncbi.nlm.nih.gov/pubmed/22743194
http://dx.doi.org/10.3389/fnhum.2013.00063
http://www.ncbi.nlm.nih.gov/pubmed/23459778
http://dx.doi.org/10.1016/j.neurobiolaging.2014.10.017
http://www.ncbi.nlm.nih.gov/pubmed/25433458
http://dx.doi.org/10.1016/j.neuroimage.2016.11.012
http://www.ncbi.nlm.nih.gov/pubmed/27864080
http://dx.doi.org/10.1016/j.mri.2013.04.007
http://www.ncbi.nlm.nih.gov/pubmed/23680187
http://dx.doi.org/10.3233/JAD-132231
http://www.ncbi.nlm.nih.gov/pubmed/24957018
http://dx.doi.org/10.1002/jcb.24548
http://www.ncbi.nlm.nih.gov/pubmed/23554028
http://dx.doi.org/10.1111/j.1365-2125.2012.04378.x
http://www.ncbi.nlm.nih.gov/pubmed/22775434
http://dx.doi.org/10.1002/hup.1022
http://www.ncbi.nlm.nih.gov/pubmed/19330800
http://dx.doi.org/10.1097/01.psy.0000237779.56500.af
http://www.ncbi.nlm.nih.gov/pubmed/17012533
http://dx.doi.org/10.1016/j.neuroimage.2005.01.036
http://www.ncbi.nlm.nih.gov/pubmed/15907310


Nutrients 2018, 10, 1391 12 of 13

36. Sachdev, P.S.; Chen, X.; Wen, W.; Anstey, K.J.; Anstry, K.J. Light to moderate alcohol use is associated with
increased cortical gray matter in middle-aged men: A voxel-based morphometric study. Psychiatry Res. 2008,
163, 61–69. [CrossRef] [PubMed]

37. Addicott, M.A.; Yang, L.L.; Peiffer, A.M.; Burnett, L.R.; Burdette, J.H.; Chen, M.Y.; Hayasaka, S.; Kraft, R.A.;
Maldjian, J.A.; Laurienti, P.J. The effect of daily caffeine use on cerebral blood flow: How much caffeine can
we tolerate? Hum. Brain Mapp. 2009, 30, 3102–3114. [CrossRef] [PubMed]

38. Pelligrino, D.A.; Xu, H.L.; Vetri, F. Caffeine and the control of cerebral hemodynamics. J. Alzheimers Dis.
2010, 20 (Suppl. 1), S51–S62. [CrossRef] [PubMed]

39. Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”. A practical method for grading the cognitive
state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [CrossRef]

40. Zigmond, A.S.; Snaith, R.P. The hospital anxiety and depression scale. Acta Psychiatr. Scand. 1983, 67, 361–370.
[CrossRef] [PubMed]

41. Barberger-Gateau, P.; Commenges, D.; Gagnon, M.; Letenneur, L.; Sauvel, C.; Dartigues, J.-F. Instrumental
activities of daily living as a screening tool for cognitive impairment and dementia in elderly community
dwellers. J. Am. Geriatr. Soc. 1992, 40, 1129–1134. [CrossRef] [PubMed]

42. Wechsler, D.A. Wechsler Memory Scale, 3rd ed.; Psychological Corporation: San Antonio, TX, USA, 1997.
43. REITAN, R.M. Validity of the trail making test as an indicator of organic brain damage. Percept. Mot. Ski.

1958, 8, 271–276. [CrossRef]
44. Wechsler, D. Manual for the Wechsler Adult Intelligence Scale; Psychological Corporation: New York, NY, USA,

1955.
45. Milner, B. Interhemispheric differences in the localization of psychological processes in man. Columbia Méd.

Bull. 1971, 27, 272–277. [CrossRef]
46. Buschke, H.; Sliwinski, M.J.; Kuslansky, G.; Lipton, R.B. Diagnosis of early dementia by the double memory

test: Encoding specificity improves diagnostic sensitivity and specificity. Neurology 1997, 48, 989–996.
[CrossRef] [PubMed]

47. Baddley, A.; Emslie, H.; Nimmo-Smith, I. Doors and People: A Test of Visual and Verbal Recall and Recognition;
Bury St Edmunds: St Edmundsbury, UK, 1994.

48. Kaplan, E.F.; Goodglass, H.; Weintraub, S. The Boston Naming Test, 2nd ed.; Lea & Febiger: Philadelphia, PA,
USA, 1983.

49. Schnider, A.; Hanlon, R.E.; Alexander, D.N.; Benson, D.F. Ideomotor apraxia: Behavioral dimensions and
neuroanatomical basis. Brain Lang. 1997, 58, 125–136. [CrossRef] [PubMed]

50. Poeck, K. Clues to the Nature of disruption to limb Praxis. In Neuropsychological Studies of Apraxia and Related
Disorders; Elsevier: Amsterdam, The Netherlands, 1985; pp. 99–109.

51. Welsh, K.A.; Butters, N.; Mohs, R.C.; Beekly, D.; Edland, S.; Fillenbaum, G.; Heyman, A. The consortium to
establish a registry for alzheimer’s disease (cerad). Part V. A normative study of the neuropsychological
battery. Neurology 1994, 44, 609–614. [CrossRef] [PubMed]

52. Hughes, C.P.; Berg, L.; Danziger, W.L.; Coben, L.A.; Martin, R.L. A new clinical scale for the staging of
dementia. Columbia J. Psychiatry 1982, 140, 566–572. [CrossRef]

53. Petersen, R.C.; Doody, R.; Kurz, A.; Mohs, R.C.; Morris, J.C.; Rabins, P.V.; Ritchie, K.; Rossor, M.; Thal, L.;
Winblad, B. Current concepts in mild cognitive impairment. Arch. Neurol. 2001, 58, 1985–1992. [CrossRef]
[PubMed]

54. Xekardaki, A.; Rodriguez, C.; Montandon, M.-L.; Toma, S.; Tombeur, E.; Herrmann, F.R.; Zekry, D.;
Lovblad, K.-O.; Barkhof, F.; Giannakopoulos, P.; et al. Arterial spin labeling may contribute to the prediction
of cognitive deterioration in healthy elderly individuals. Radiology 2015, 274, 490–499. [CrossRef] [PubMed]

55. Bolca, S.; Huybrechts, I.; Verschraegen, M.; De Henauw, S.; Van de Wiele, T. Validity and reproducibility
of a self-administered semi-quantitative food-frequency questionnaire for estimating usual daily fat, fibre,
alcohol, caffeine and theobromine intakes among belgian post-menopausal women. Int. J. Environ. Res.
Public Heal. 2009, 6, 121–150. [CrossRef] [PubMed]

56. Harland, B.F. Caffeine and nutrition. Nutrition 2000, 16, 522–526. [CrossRef]
57. Heckman, M.A.; Weil, J.; de Mejia, E.G. Caffeine (1, 3, 7-trimethylxanthine) in foods: A comprehensive review

on consumption, functionality, safety, and regulatory matters. J. Food Sci. 2010, 75, R77–R87. [CrossRef]
[PubMed]

58. FSL Software Package. Available online: http://www.fmrib.ox.ac.uk/fsl/ (accessed on 20 February 2018).

http://dx.doi.org/10.1016/j.pscychresns.2007.08.009
http://www.ncbi.nlm.nih.gov/pubmed/18407470
http://dx.doi.org/10.1002/hbm.20732
http://www.ncbi.nlm.nih.gov/pubmed/19219847
http://dx.doi.org/10.3233/JAD-2010-091261
http://www.ncbi.nlm.nih.gov/pubmed/20182032
http://dx.doi.org/10.1016/0022-3956(75)90026-6
http://dx.doi.org/10.1111/j.1600-0447.1983.tb09716.x
http://www.ncbi.nlm.nih.gov/pubmed/6880820
http://dx.doi.org/10.1111/j.1532-5415.1992.tb01802.x
http://www.ncbi.nlm.nih.gov/pubmed/1401698
http://dx.doi.org/10.2466/pms.1958.8.3.271
http://dx.doi.org/10.1093/oxfordjournals.bmb.a070866
http://dx.doi.org/10.1212/WNL.48.4.989
http://www.ncbi.nlm.nih.gov/pubmed/9109889
http://dx.doi.org/10.1006/brln.1997.1770
http://www.ncbi.nlm.nih.gov/pubmed/9184099
http://dx.doi.org/10.1212/WNL.44.4.609
http://www.ncbi.nlm.nih.gov/pubmed/8164812
http://dx.doi.org/10.1192/bjp.140.6.566
http://dx.doi.org/10.1001/archneur.58.12.1985
http://www.ncbi.nlm.nih.gov/pubmed/11735772
http://dx.doi.org/10.1148/radiol.14140680
http://www.ncbi.nlm.nih.gov/pubmed/25291458
http://dx.doi.org/10.3390/ijerph6010121
http://www.ncbi.nlm.nih.gov/pubmed/19440274
http://dx.doi.org/10.1016/S0899-9007(00)00369-5
http://dx.doi.org/10.1111/j.1750-3841.2010.01561.x
http://www.ncbi.nlm.nih.gov/pubmed/20492310
http://www.fmrib.ox.ac.uk/fsl/


Nutrients 2018, 10, 1391 13 of 13

59. Brain Extraction Tool. Available online: http://www.fmrib.ox.ac.uk/fsl/fslwiki/BET (accessed on
20 February 2018).

60. FMRIB’s Automated Segmentation Tool. Available online: http://www.fmrib.ox.ac.uk/fsl/fslwiki/fast
(accessed on 20 February 2018).

61. Smith, S.; Nichols, T. Threshold-free cluster enhancement: Addressing problems of smoothing, threshold
dependence and localisation in cluster inference. NeuroImage 2009, 44, 83–98. [CrossRef] [PubMed]

62. Smith, S.M.; Jenkinson, M.; Johansen-Berg, H.; Rueckert, D.; Nichols, T.E.; Mackay, C.E.; Watkins, K.E.;
Ciccarelli, O.; Cader, M.Z.; Matthews, P.M.; et al. Tract-based spatial statistics: Voxelwise analysis of
multi-subject diffusion data. Neuroimage 2006, 31, 1487–1505. [CrossRef] [PubMed]

63. Combinostics cMRI Software Package. Available online: https://www.cneuro.com (accessed on 20
February 2018).

64. Sabia, S.; Elbaz, A.; Britton, A.; Bell, S.; Dugravot, A.; Shipley, M.; Kivimaki, M.; Singh-Manoux, A. Alcohol
consumption and cognitive decline in early old age. Neurology 2014, 82, 332–339. [CrossRef] [PubMed]

65. Xu, G.; Liu, X.; Yin, Q.; Zhu, W.; Zhang, R.; Fan, X. Alcohol consumption and transition of mild cognitive
impairment to dementia. Psychiatry Clin. Neurosci. 2009, 63, 43–49. [CrossRef] [PubMed]

66. Corley, J.; Jia, X.; Brett, C.E.; Gow, A.J.; Starr, J.M.; Kyle, J.A.M.; McNeill, G.; Deary, I.J. Alcohol intake
and cognitive abilities in old age: The lothian birth cohort 1936 study. Neuropsychology 2011, 25, 166–175.
[CrossRef] [PubMed]

67. Huntley, J.; Corbett, A.; Wesnes, K.; Brooker, H.; Stenton, R.; Hampshire, A.; Ballard, C. Online assessment
of risk factors for dementia and cognitive function in healthy adults. Int. J. Geriatr. Psychiatry 2018, 33,
e286–e293. [CrossRef] [PubMed]

68. Lobo, E.; Dufouil, C.; Marcos, G.; Quetglas, B.; Saz, P.; Guallar, E.; Lobo, A. Is There an Association Between
Low-to-Moderate Alcohol Consumption and Risk of Cognitive Decline? Am. J. Epidemiol. 2010, 172, 708–716.
[CrossRef] [PubMed]

69. Mukamal, K.J. Alcohol consumption and abnormalities of brain structure and vasculature. Am. J. Geriatr.
Cardiol. 2004, 13, 22–28. [CrossRef] [PubMed]

70. Haller, S.; Montandon, M.L.; Rodriguez, C.; Moser, D.; Toma, S.; Hofmeister, J.; Sinanaj, I.; Lovblad, K.O.;
Giannakopoulos, P. Acute caffeine administration effect on brain activation patterns in mild cognitive
impairment. J. Alzheimers Dis. 2014, 41, 101–112. [CrossRef] [PubMed]

71. Cunha, R.A.; Agostinho, P.M. Chronic caffeine consumption prevents memory disturbance in different
animal models of memory decline. J. Alzheimers Dis. 2010, 20 (Suppl. 1), S95–S116. [CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.fmrib.ox.ac.uk/fsl/fslwiki/BET
http://www.fmrib.ox.ac.uk/fsl/fslwiki/fast
http://dx.doi.org/10.1016/j.neuroimage.2008.03.061
http://www.ncbi.nlm.nih.gov/pubmed/18501637
http://dx.doi.org/10.1016/j.neuroimage.2006.02.024
http://www.ncbi.nlm.nih.gov/pubmed/16624579
https://www.cneuro.com
http://dx.doi.org/10.1212/WNL.0000000000000063
http://www.ncbi.nlm.nih.gov/pubmed/24431298
http://dx.doi.org/10.1111/j.1440-1819.2008.01904.x
http://www.ncbi.nlm.nih.gov/pubmed/19154211
http://dx.doi.org/10.1037/a0021571
http://www.ncbi.nlm.nih.gov/pubmed/21381824
http://dx.doi.org/10.1002/gps.4790
http://www.ncbi.nlm.nih.gov/pubmed/28960500
http://dx.doi.org/10.1093/aje/kwq187
http://www.ncbi.nlm.nih.gov/pubmed/20699263
http://dx.doi.org/10.1111/j.1076-7460.2004.01334.x
http://www.ncbi.nlm.nih.gov/pubmed/14724398
http://dx.doi.org/10.3233/JAD-132360
http://www.ncbi.nlm.nih.gov/pubmed/24577471
http://dx.doi.org/10.3233/JAD-2010-1408
http://www.ncbi.nlm.nih.gov/pubmed/20182043
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Participants 
	Substance Questionnaire 
	MRI Data Acquisition 
	Statistical Analysis of Demographic and Substance Data 
	MR Data Analysis 
	Whole-Brain Voxel-Based Morphometry (VBM) 
	Arterial Spin Labelling (ASL) 
	Diffusion Tensor Imaging (DTI) Tract Based Spatial Statistics (TBSS) 
	GM Region of Interest (ROI) Analysis 


	Results 
	Clinical, Demographic and Substance Data 
	MRI Analysis across the Entire Group 
	Group MRI Analysis 

	Discussion 
	Conclusions 
	References

