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Abstract: Leptin, a hormone that is capable of effectively reducing food intake and body weight,
was initially considered for use in the treatment of obesity. However, obese subjects have since been
found to have high levels of circulating leptin and to be insensitive to the exogenous administration
of leptin. The inability of leptin to exert its anorexigenic effects in obese individuals, and therefore,
the lack of clinical utility of leptin in obesity, is defined as leptin resistance. This phenomenon
has not yet been adequately characterized. Elucidation of the molecular mechanisms underlying
leptin resistance is of vital importance for the application of leptin as an effective treatment for
obesity. Leptin must cross the blood–brain barrier (BBB) to reach the hypothalamus and exert its
anorexigenic functions. The mechanisms involved in leptin transportation across the blood–brain
barrier continue to be unclear, thereby preventing the clinical application of leptin in the treatment
of obesity. In recent years, new strategies have been developed to recover the response to leptin
in obesity. We have summarized these strategies in this review.
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1. Introduction

Twenty-five years ago, leptin, a 160-kDa hormone produced and secreted by the adipose tissue
in direct relation to the amount of body fat, was discovered [1]. Much of the research on leptin
performed during the early days focused on its role in regulating energy homeostasis and obesity at
the level of the central nervous system. The role of leptin in the regulation of energy homeostasis was
demonstrated by observing leptin-deficient patients, who develop hyperphagia and obesity during
childhood, and can be aided by leptin replacement therapies that suppress appetite and increase
energy expenditure [2]. This attracted a lot of interest toward the clinical use of leptin for the treatment
of obesity in humans. However, most obese subjects are not deficient in the leptin gene, and the
circulating levels of leptin are elevated compared to those in non-obese subjects. Paradoxically,
these obese subjects remain obese, reflecting a state of leptin resistance that leads to the intake of extra
calories and prevents sustained weight loss [3,4]. The mechanisms involved in leptin resistance have not
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been clarified since the discovery of leptin in 1994. Different mechanisms have been suggested, such as
elevated levels of C-reactive protein, the downregulation of the leptin-activated signal transduction
pathway, or a decrease in histone deacetylase activity [5–7]. However, alterations in the transport
of leptin to the brain through the blood–brain barrier (BBB), a mechanism that has not been completely
deciphered [8], seem to play a fundamental role [9–11].

2. Blood–Brain Barrier and Obesity

The blood–brain barrier (BBB) is made up of several highly specialized cell types that protect the
brain from toxic substances and regulate the passage of macromolecules as well as the bidirectional
transport of nutrients and hormones between the blood and brain. Food intake and metabolism
are regulated by different hormones, such as leptin, whose circulating levels must be regulated very
precisely and are often altered in obesity. These hormones must reach the brain by crossing the
BBB through a specific transporter [12]. As many of these transporters are affected by saturation
mechanisms, the circulating levels of hormones affect their activity and regulation, and therefore,
transporters at the level of the BBB play a critical role in the regulation of metabolism. In addition,
obesity can generate pathological changes in the cellular integrity of the BBB, independently of the
transporters, which can aggravate the pathological situation at the level of the central nervous system.

Obesity and chronic consumption of a high-fat diet (HFD) produce important changes at the level
of the BBB as well as in different regions of the brain, especially in the regions of neuronal populations
with high metabolic demands, such as the hippocampus [13,14]. Some studies in rodents have shown
that feeding with a HFD produces neuronal loss in the arcuate nucleus and hypothalamus [13],
in addition to causing a decrease in the integrity of the BBB because of the loss of tanycytes
(specialized ependymal cells in the median eminence) and transporters at the level of the BBB [14].

3. Leptin, Brain and Blood-Brain Barrier

Leptin is an adipokine that reflects, at the level of the brain, the degree of adiposity of an organism.
To exert this action, it must pass through the BBB through a specific and saturable transporter.
Right from early studies, it was postulated that as adiposity increases, serum leptin levels also
increase, which can lead to the development of resistance at the level of the BBB transporter [10].
This implies that a lesser amount of leptin will reach the brain, thereby leading to reduced activation
of the signaling pathway for body weight regulation. Several studies have shown that obese mice
are sensitive to intracerebro-ventricular (ICV), but not subcutaneous or intraperitoneal (IP), or the
administration of leptin [15,16], indicating that the lack of leptin activity is due to 35% decrease in BBB
permeability [10]. Moreover, the cerebrospinal fluid/serum leptin ratio in obese humans is 4–5 times
lower [17,18]. These data suggest that reduced brain access is the source of leptin resistance in obesity
and further increase in body weight. Until now, it has been unclear which mechanism allows leptin
access to the central nervous system to further exert its effects. With a size of 16-kDa, leptin does
not appear likely to use a passive diffusion mechanism, although direct access to the neurons in the
mediobasal hypothalamus (MBH) region, which are not protected by the BBB, has been observed [19].
The entry of leptin into the brain is partially saturable [20], which indicates the involvement of a
protein transporter. Moreover, leptin transport by tanycytes in the MHB requires the presence of the
leptin receptor (OBR) [21] as well as the short isoforms of the receptor (OBRa and OBRc) [22–26],
which are highly expressed in the BBB. The loss of OBR isoforms reduces the amount of leptin in the
brain of mice [26]. Interestingly, the decrease in the passage of leptin through the BBB does not appear
to be due to the loss of leptin transporters [27,28]. The molecular mechanism involved in this effect is
unknown. Considering that leptin is transported through the BBB by the leptin receptor, which is,
therefore, subject to the regulatory mechanisms of the membrane receptors, it is expected that the
high levels of circulating leptin could activate the mechanisms of desensitization and downregulation,
causing the degradation of these receptors. Leptin resistance at the BBB has been attributed to receptor
saturation effects exerted by excess leptin or reversible inhibition caused by circulating factors such as
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triglycerides [9]. It has been described that at the physiological concentrations of circulating leptin,
this transporter works at 50% saturation [29], which suggests that leptin plays its role as a regulator
of body weight within very defined and narrow concentration ranges. In addition, with progressing
obesity, a phenomenon of double-level resistance is observed in the BBB and in the leptin receptor
in the arcuate nucleus [10,16,30].

However, new studies have been questioning the proclaimed decrease in leptin transport
through the BBB in obese individuals, thereby opening up to the idea of leptin resistance unrelated
to transportation through the BBB. Initial studies have shown that the ICV administration of leptin
has no effect on food intake or weight loss in diet-induced obesity (DIO) mice [11]. In addition,
the use of leptin receptor antagonists in DIO mice indicates that the endogenous leptin remains
functional [31], a fact that has also been observed in humans [32]. Unchanged leptin–BBB transport
kinetics has also been observed in DIO mice [33]. A recent study investigated the transportation
of leptin through the BBB in obese mice by using a novel and interesting visualization technique
based on fluorescently labeled leptin and light-sheet fluorescence microscopy [34]. In this crisp article,
no differences in leptin accumulation were noted between obese and lean mice in different parts of the
brain (Figure 1). In addition, weight loss in these animals by caloric restriction or pharmacological
intervention produces an increase in the expression of leptin and its receptor in some parts of the brain.
This suggests that in a state of obesity, leptin accumulation is maintained in the key areas of the brain
involved in metabolism and weight control.
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Figure 1. Three-dimensional reconstruction of the brain, indicating the accumulation of fluorescent
leptin (leptin-CW800) in the median eminence (ME) and choroid plexus (CP) of lean (Chow, standard diet)
(i) and diet-induced obesity (DIO) (ii) mice. From [34], visit http://creativecommons.org/licenses/by/4.0/.

During the last 25 years, leptin resistance, as observed in obesity, has been thought to be primarily
due to the loss of the capacity of leptin to cross the BBB, chiefly by means of its specific transporter,
but considering previously published data, the molecular mechanisms implicated in leptin resistance
as well as the mechanism by which the brain pulls up leptin from the systemic circulation are
poorly understood.

4. Is It Possible to Use Leptin for the Treatment of Obesity?

The weight loss achieved with caloric restriction-based diets, lifestyle modifications, and/or rarely
used pharmacological treatments against obesity indicate a recovery of leptin sensitivity, which could
be used to maintain body weight.

Irrespective of the mechanism(s) responsible for leptin resistance, it is plausible to use leptin for
weight loss if the leptin receptor and the underlying intracellular signaling pathway are specifically
activated in the corresponding parts of the brain. Different methodological approaches have been used
(Figure 2).
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Figure 2. Schematic representation of different anti-obesity therapies based on the use of leptin
(OBR = leptin receptor).

One of the most intuitive approaches is to increase the passage of leptin through the BBB. It is
important to point out that many strategies used to increase the passage of substances through the
BBB in different pathological conditions consider that the BBB maintains its physiological properties;
however, the pathological condition itself can modify the integrity of the BBB, promoting the failure
of these therapies. Therefore, it is necessary that therapies based on an increase in the passage of leptin
through the BBB ensure the integrity of the BBB. Strategies that improve the passage of leptin to the
brain include the development of modifications in the structure of leptin or leptin analogues as well as
the development of new leptin receptor agonists with increased BBB permeability. One of the most
widely used modifications in the development of targeted therapeutic agents in the brain is the addition
of hydrophilic polyethylene glycol (PEG)-containing polymers. However, PEG-modified leptin is
unable to pass through the BBB and thereby reduce body weight in humans [35–37]. Other strategies
based on the addition of a glucidic residue, such as leptin fused with a trans-activating transcriptional
activator Tat (Tat-Leptin) or pluronic, have shown an increase in BBB transportation in DIO mice [38–41].
In addition, new techniques such as PASylation of leptin, which aim to prolong its half-life, can increase
the effectiveness of leptin [42].

Endogenous leptin is a molecule that is not very stable in vivo and has a short half-life, which means
that it is less useful in the case of leptin resistance. Therefore, the use of synthetic molecules similar
to leptin, which are more stable, may aid in the activation of the OBR. Leptin-related analogs such
as 22–56, 57–92, 93–105, and 116–130 are capable of mimicking the interaction and activation of the
OBR in order to improve their anti-obesity effects, albeit with relatively limited success [43,44]. OB3 is
a synthetic leptin agonist containing the C-terminal aminoacidic residues 116 ≥ 122. This peptide
crosses the BBB through an independent mechanism of the OBRb, reaching a higher concentration
in the central nervous system compared to leptin, and reducing food intake and body weight in an
obesity model of OBRb-deficient db/db mice [45]. In addition, it regulates energy balance, glycemia,
and insulin sensitivity in CB57/BL6 obese mice [46].

Several studies have shown that conventional leptin replacement therapies in obese subjects
have very modest effects. To this point, several studies have proposed combinatorial therapies of the
different hormones involved in energy regulation to act upon various mechanisms of action and
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avoid compensatory mechanisms. In leptin-resistant rats, the combination of amylin, a 37-amino
acid-long anorexigenic hormone, with leptin results in the greater inhibition of food intake and loss
in body weight, when compared to leptin monotherapy, as well as improved metabolism in the long
term [47–54]. In humans, a combination of pramlintide acetate (a synthetic analog of amylin) and
metreleptin (a methionyl form of leptin) has been used, which caused more weight loss compared
to that observed individually with these compounds [55,56]. However, this therapeutic strategy was
suspended because of the development of anti-metreleptin antibodies.

Cholecystokinin (CCK) and glucagon-like peptide (GLP-1) and their analogues are other molecules
that can be used in combination therapies with leptin. The subcutaneous administration of CCK,
amylin, and leptin caused a remarkable reduction in food intake, body weight, and adiposity in DIO
mice [57]. The use of leptin and exendin-4, a natural ligand of the GLP-1 receptor, led to the recovery
of leptin sensitivity in DIO mice undergoing weight loss [35]. Fibroblast growth factor 21 (FGF21)
has also been used as a leptin co-treatment to counteract leptin resistance [35]. It is noteworthy that
in some of these studies, the loss of body weight was found to be insufficient to regain sensitivity
to leptin, thus indicating the need to use combined strategies with two or more hormones to exert
significant and lasting effects on weight loss [35,58]. Leptin-enhancing effects have also been observed
in its co-administration with cluterin, a ligand for low-density lipoprotein (LDL) receptor-related
protein-2 (LRP2) [59]. Other animal studies have been reported, wherein leptin treatment with
insulin has been shown to promote browning of the white adipose tissue [60], and drugs that activate
5-hydroxytryptamine (5-HT) 2C receptors, such as meta-chlorophenylpiperazine, might exert an
additive effect on weight loss [61].

The ligand–receptor interaction is important for a variety of biological functions as well as in
pharmacological development. The ligand-centered approach is one available approach, while another
approach is to focus efforts on the receptor as well as on the subsequently activated intracellular
signaling pathway. However, the OBR presents particular characteristics based on its aminoacidic
sequence, which accord it particular properties that further regulate the presence of receptors and
their activity at the level of the plasma membrane. The OBR exhibits a high degree of constitutive
internalization in the absence of interaction with leptin [62–68]. This property can be attributed to the
presence of two lysine residues in the intracellular region of the OBR. On the other hand, the receptors
that are internalized after interaction with leptin following the classic desensitization processes have
a low recycling rate. In addition, a substantial part of the receptors that are synthesized de novo is
retained in the trans-Golgi network [63]. All these incidents result in the reduced expression (5–25%)
of the leptin receptor in the plasma membrane [69], thereby naturally reducing leptin sensitivity and
intracellular signaling. This could be related to leptin resistance in obesity and could be one of the
causes of the limited effects exerted by leptin in anti-obesity therapies. Therefore, therapies that
mobilize the OBR from intracellular pools and allow for increased OBR on the cell surface might
be useful in achieving greater sensitivity to leptin in obesity. Basic studies have been performed
in this direction, identifying ubiquitin ligase RNF41 (a protein encoded by the db gene, formed by an
alternative splicing, namely, endospanin), and LRP2, which for allow the enhanced presence of OBR
on the cell surface and/or activation of key proteins such as STAT3 in the leptin-activated intracellular
signaling pathway [70–73]. These need to be studied in further detail in the context of obesity and
leptin resistance.

Once OBR is activated, the leptin-mediated signaling pathway comes into action. In the OBR-leptin
system, two proteins are primarily responsible for managing leptin-activated signaling, which are important
in terms of response regulation and are therefore potential therapeutic candidates. These proteins are
suppressors of cytokine signaling-3 (SOCS3) and protein tyrosine phosphatase-1B (PTP1B). Animal
models with SOCS3-specific deletion or modification in the OBR region that alter interactions with
SOCS3 have shown increased sensitivity to leptin, and decreased food intake, weight loss, and resistance
to DIO [74–78]. However, no specific SOCS3 inhibitors have been developed. On the other hand, PTB1B
deletion is known to exert positive effects on leptin sensitivity, decrease in body weight and fat mass,



Nutrients 2019, 11, 2704 6 of 11

improved glucose homeostasis, and resistance to DIO [79–83]. In contrast, increased PTB1B expression
is associated with leptin resistance [84]. PTP1B inhibitors have been developed for use in obese subjects.
Among these, thiazolidinedione derivatives have shown their ability to suppress body weight and
to improve the circulating lipid profile in HFD mice. Trodusquemine, an allosteric inhibitor of PTBP1B
with the ability to traverse the BBB, has also caused considerable reduction in the food intake, fat mass,
and body weight in DIO mice [84,85]. Considering the implication of negative regulators of leptin
signaling, the use of SOCS3 and PTP1B inhibitors represents an interesting option for use in restoring
leptin response. However, there are multiple challenges in the development of these inhibitors for
clinical application, with regard to their specificity. SOCS3 and PTP1B are proteins involved in the
signaling pathways activated by different agonists that regulate cellular functions, and their inhibition
can cause serious alterations; some knock-out models present intrauterine mortality [78,80]. It is,
therefore, necessary that these inhibitors specifically act in the neuronal circuits involved in the
regulation of body weight.

5. Other Potential Therapies

The development of leptin resistance in obesity is also associated with an increase in endoplasmic
reticulum (ER) stress in animal models [86]. Chemical chaperones are a group of compounds that have
been characterized as agents that increase the functionality of ER and decrease the accumulation and
aggregation of misfolded proteins in the ER by reducing ER stress [87]. Four-phenylbutyrate (PBA)
and tauroursodeoxycholic acid (TUDCA) are US Food and Drug Administration (FDA)-approved
molecules [88,89] that have been used to reduce ER stress at the hypothalamic level, thereby recovering
leptin sensitivity in DIO mice by reducing food intake and body weight [86]. Other compounds such
as fluvoxamine, a serotonin reuptake inhibitor, and flurbiprofen, a molecule with anti-inflammatory
capacity, are able to reduce ER stress and leptin resistance along with causing weight loss in murine
models [90,91].

Because various neuropeptides can be delivered into the central nervous system through an
intranasal administration route, intranasal leptin might prove an effective treatment approach for
obesity. Obese rats receiving leptin intranasally preserve the orexigenic effect of leptin in a manner
similar to that observed in non-obese rats [92]. This activates STAT3 phosphorylation in specific
parts of the brain and reduces hepatic lipids by increasing the secretion of hepatic triglycerides and
decreasing lipogenesis, with a possible therapeutic application for non-alcoholic fatty liver disease
(NAFLD) [93]. However, the use of intranasal leptin for the treatment of obese patients presents
some challenges that have not yet been overcome, such as high doses of peptidic hormones, variable
absorption by the nasal mucosa, and the high price of recombinant leptin.

Irrespective of the mechanism(s) involved in the occurrence of leptin resistance in obese individuals,
it is important to note the presence of high concentrations of circulating leptin. This could also be
the origin of leptin resistance. High levels of leptin could be responsible for activating the molecular
mechanisms underlying leptin resistance, and therefore, a possible strategy could be the reduction
of circulating leptin levels to their physiological levels. Previous data obtained, and patented, by our
group have shown that the treatment of DIO rats with polyclonal anti-leptin antibody serum caused
a reduction in circulating leptin levels, decreased food intake, and caused ~5% loss of body weight.

6. Conclusions

The impact of obesity and its effects on human health have increased at very high rates over recent
years since the discovery of leptin. Although leptin is the hallmark of obesity and a major appetite
suppressant, no effective obesity therapy based on this hormone has been developed. However,
research on obesity and metabolism control continues to focus on this interesting hormone because
the prevention and treatment of leptin resistance represents one of the greatest challenges in the
treatment of obesity. The scientific community has developed experimental animal models in which
different leptin-based approaches have shown some success, but no clinically relevant application
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has been derived to date. Some of these approaches, perhaps most of them, are based on the idea
that leptin resistance is caused by impaired leptin transportation across the BBB; however, this idea
is yet unclear. Some data implicate another underlying cause, which, if correct, would have a large
impact on the clinical application of leptin in the future. New mechanisms and pathways activated by
leptin are continuously being discovered, together with the development of new techniques and drug
combinations that could improve the effectiveness and safety of leptin. These approaches regenerate
the hope of using leptin as an effective treatment for obesity.
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