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Abstract: A healthy dietary pattern is associated with a lower risk of metabolic syndrome (MetS) and
reduced inflammation. To explore this at the molecular level, we investigated the effect of a Nordic diet
(ND) on changes in the gene expression profiles of inflammatory and lipid-related genes in peripheral
blood mononuclear cells (PBMCs) of individuals with MetS. We hypothesized that the intake of an
ND compared to a control diet (CD) would alter the expression of inflammatory genes and genes
involved in lipid metabolism. The individuals with MetS underwent an 18/24-week randomized
intervention to compare a ND with a CD. Eighty-eight participants (66% women) were included
in this sub-study of the larger SYSDIET study. Fasting PBMCs were collected before and after the
intervention and changes in gene expression levels were measured using TaqMan Array Micro Fluidic
Cards. Forty-eight pre-determined inflammatory and lipid related gene transcripts were analyzed.
The expression level of the gene tumor necrosis factor (TNF) receptor superfamily member 1A
(TNFRSF1A) was down-regulated (p = 0.004), whereas the nuclear factor kappa-light-chain-enhancer
of activated B cells (NF-κB) subunit, RELA proto-oncogene, was up-regulated (p = 0.016) in the ND
group compared to the CD group. In conclusion, intake of an ND in individuals with the MetS may
affect immune function.

Keywords: metabolic syndrome; randomized controlled dietary intervention; gene expression;
peripheral blood mononuclear cells; inflammation

1. Introduction

The metabolic syndrome (MetS) includes a cluster of related risk factors causing increased risk
of cardiovascular diseases (CVD) and type 2 diabetes mellitus (T2DM). Central obesity is one of the
major factors causing MetS, and metabolic alterations caused by obesity are associated with low-grade
chronic inflammation [1–3]. The development of MetS is associated with a sedentary lifestyle, excessive
energy intake, and an unhealthy diet [4]. It is well known that a Mediterranean-style dietary pattern
reduces the risk of MetS [4,5]. The biological mechanisms causing the beneficial effects of a healthy
diet are, however, largely unknown.

Peripheral blood mononuclear cells (PBMCs) are immune cells consisting of lymphocytes and
monocytes. It is well established that a number of dietary factors modulate gene expression profiles
in PBMCs [6–15]. Since these cells play a key role in the process of inflammation and are exposed to
many of the same circulating factors as organs and the arterial wall, they may provide information on
how the diet influences systemic inflammation and metabolic changes in peripheral tissues [15].

We have previously shown that a Nordic diet (ND) improved the lipid profile, and the circulating
inflammatory marker IL-1 receptor antagonist (IL-1Ra) in individuals with MetS compared to a control
diet (CD) (The SYSDIET study) [16]. In addition, we have shown, using global transcriptome profiling,
that an ND resulted in the differential expression of inflammatory gene pathways in subcutaneous
adipose tissue and PBMCs compared with a CD [12,14]. The ND also resulted in the down-regulation
of toll-like receptor 4 (TRL4), interleukin 18 (IL18), and thrombospondin (CD36), and the up-regulation
of peroxisome proliferator-activated receptor delta (PPARD) after a 2 h oral glucose tolerance test in
PBMCs [13].

In this sub-study of the SYSDIET study, our specific aim was to examine the effect of a ND
compared to a CD on pre-determined inflammatory and lipid related gene transcripts in fasting PBMC
samples. To further understand the mechanisms behind the improved lipid profile and the possible
anti-inflammatory effect of ND, we hypothesized that the intake of an ND compared to a CD would
alter the expression of inflammatory genes and genes involved in lipid metabolism.
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2. Materials and Methods

2.1. The SYSDIET Study

The SYSDIET study was a randomized controlled multi-center study conducted in 2009–2010
in Kuopio and Oulu (Finland), Uppsala and Lund (Sweden), Aarhus (Denmark) and Reykjavik
(Iceland), as previously described [16]. The primary outcome was glucose tolerance and insulin
sensitivity. The secondary outcomes were related to MetS risk factors, i.e., blood pressure, serum lipids,
inflammatory markers and gene expression. The detailed information on the study design and the
main measurements have been described previously [16]. Briefly, after a one-month run-in period, the
participants were randomized into a CD group or an ND group for 18 to 24 weeks. The main inclusion
criteria were a body mass index (BMI) of 27–38 kg/m2, 30–65 years of age, and two other International
Diabetes Federation (IDF) criteria for MetS [17]. A stable use of anti-hypertensive and lipid lowering
medication during the intervention was allowed. The main exclusion criteria have been described
previously [16].

The major visits were in the beginning (0 week), at 12 weeks, and at either 18 or 24 weeks (end of
the study). The diets were isocaloric and the study participants were instructed to keep physical activity
and body weight constant and their smoking and drinking habits or drug treatment during the study
unchanged. All study participants provided written informed consent and local Ethical committees of
all the centers included in the current analysis (Research Ethics Committee of the Hospital District
of Northern Savo and Northern Ostrobothnia Hospital District, Oulu, Finland and Regional Ethical
Review Board, Lund) approved the study protocol in accordance with the Helsinki Declaration. The
study is registered at clinicaltrials.gov as NCT00992641.

For this sub-study of SYSDIET, we included participants (n = 94) who had given PBMCs in
Kuopio, Lund, and Oulu, and who fulfilled the inclusion criteria (Figure 1). In total, 54 participants
in the ND group and 40 in the CD group were included, as previously reported by Leder et al. [13].
The maximum weight change during the study was +/−4 kg, none of the participants used statins,
and the high-sensitivity C-reactive protein (hsCRP) was <10 mg/L at baseline and at the end of the
intervention, and the BMI was <39 kg/m2, as previously reported [13]. Two of the centers had 24 weeks
of study length (Kuopio and Lund) and one center had 18 weeks of study length (Oulu) [16].
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2.2. Diet

The Nordic nutrition recommendations formed the basis for the ND [18], and the mean nutrient
intake in the Nordic countries formed the basis for the CD. The main emphasis in the ND group was
whole-grain products, abundant use of berries, fruits and vegetables, rapeseed oil, three meals of fish
per week, low-fat dairy products and the avoidance of sugar-sweetened products. More details about
the diet is described elsewhere [16]. To assess the dietary intake, the participants filled in a 4-day dietary
record during the run-in period (baseline intake) and three times during the intervention period.

2.3. Biochemical Measurements

All standard laboratory measurements, and anthropometric measurements were performed
locally according to the standard operational procedures [16]. The plasma interleukins, plasma tumor
necrosis factor receptor II (TNF RII), and serum high molecular weight (HMW) adiponectin were
measured using ELISA, as previously described [16].

2.4. Sampling of PBMCs and RNA Extraction

The PBMCs were isolated from blood samples collected after overnight fasting (12 h) using cell
preparation tubes (CPT) according to the manufacturer’s instructions (Becton, Dickinson and Company,
Franklin Lakes, NJ, USA) within 30 to 45 min. All PBMC samples for the RNA analyses were prepared
in the same laboratory (Karolinska Institute, Stockholm). The total RNA was extracted using the
RNeasy Mini Kit according to the manufacturer’s instructions (Qiagen, Valencia, CA, USA). The RNA
integrity was checked using a Bioanalyzer device (Agilent 2100 Bioanalyzer, Agilent Technologies,
Santa Clara, CA, USA).

2.5. Real-Time Polymerase Chain Reaction RT-qPCR

The RNA from all samples was reverse transcribed by a high-capacity cDNA reverse transcription
kit (Applied Biosystems, Foster City, CA, USA). The selection of genes was primarily based on previous
dietary intervention studies where the PBMC gene expression of lipid and cholesterol metabolism
genes was modulated.

RT-qPCR was performed on an ABI PRISM 7900HT (Applied Biosystems). TaqMan Array Micro
Fluidic Cards (Applied Biosystems) were used for RT-qPCR amplification of the gene transcripts.
Three samples were excluded due to a low RNA quality, two samples were excluded due to technical
problems, and one samples was excluded after quality control. In total, 88 samples were included in the
final analyses. ∆Ct was calculated as Ct(reference gene) − Ct(target) and the log ratio (∆∆Ct) was calculated
as ∆Ct(end of study) − ∆Ct(baseline). The TATA-binding protein (TBP) was selected as the reference gene
for normalization.

2.6. Statistical Analysis

Gene expression (Ct-values) was normalized using TBP as a reference gene, and the change from
the baseline to the end of study was calculated as a log ratio (delta Ct (end of study) - delta Ct (baseline)).
The difference between the CD and the ND was tested with a linear regression model, adjusted for
age, sex and study center. The differences between baseline and end-of-study gene expression within
the groups were tested with a paired t-test. The correlations between gene expression changes and
changes in various biochemical measures and inflammatory markers were analyzed with Spearman’s
correlation using the rcorr function. p-values < 0.05 were considered significant. All statistical analyses
were performed in R.
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3. Results

3.1. Baseline Characteristics

Eighty-eight individuals (n = 48 ND group, n = 40 CD group) were included in the analyses of the
present study (Figure 1). Their baseline characteristics are shown in Table 1.

Table 1. Baseline characteristics of the participants.

CD (n = 40) ND (n = 48)

Male (n,%) 15 (37.5%) 15 (31.3%)
Age (years) 55.8 (7.8) 54.2 (8.3)
BMI (kg/m2) 31.9 (2.7) 31.7 (3.1)

Waist circumference (cm) 105.4 (9.3) 102.6 (9.0)
BP systolic (mmHg) 131 (17) 127 (14)
BP diastolic (mmHg) 82 (12) 83 (10)

Glucose (mmol/L) 5.8 (0.6) 5.9 (0.6)
Insulin (pmol/L) 59.5 (47–80.8) 56.0 (41.8–75.3)

Triglycerides (mmol/L) 1.5 (0.5) 1.5 (0.7)
Total cholesterol (mmol/L) 5.3 (1) 5.3 (1)
HDL cholesterol (mmol/L) 1.3 (0.5) 1.4 (0.3)
LDL cholesterol (mmol/L) 3.3 (0.9) 3.2 (0.9)

hsCRP (mg/L) 1.5 (0.9–3.1) 1.5 (0.8–2.8)
sTNFRII (ng/L) 1900 (415) 1953 (466)

IL-6 (ng/L) 1.3 (1.1–1.7) 1.3 (1–1.8)
IL-10 (ng/L) 0.9 (0.8–1.5) 0.8 (0.8–1.5)
IL-1β (ng/L) 0.12 (0.12–0.17) 0.12 (0.12–0.13)
IL1 Ra (ng/L) 309 (238–463) 301 (220–466)

HMW adiponectin (µg/L) 3.6 (2.2–6.7) 3.9 (2.8–6)

Values are presented either as mean (SD), median (25th–75th percentile) or n (%).

The changes in nutrient intake were in agreement with the results obtained for the whole study
population, as previously reported [13]. The polyunsaturated fatty acid (PUFA) intake increased,
saturated fatty acid (SFA) intake decreased and the intakes of β-carotene and fiber increased in the ND
group compared to the CD group.

3.2. Gene Expression Profiling in PBMCs

Compared to the CD group, the expression level of TNFRSF1A was significantly down-regulated
in the ND group after intervention (p = 0.004), whereas the expression level of RELA was significantly
increased (p = 0.016) after the intervention (Figure 2). No other differences in gene expression among
inflammatory genes were observed between the groups after the intervention (Figure 3, Supplementary
Table S1). No altered expression levels of the lipid metabolism-related genes were observed in the ND
group compared to the CD group (Figure 4, Supplementary Table S1).

A within-group analysis showed that the between-group differences were mediated by
down-regulation of the TNFRSF1A gene in the ND group (p = 0.037) (Supplementary Figure S1),
whereas the expression level of the RELA gene was significantly down-regulated in the CD group
(p = 0.007) (Supplementary Figure S2). In addition, there were several within-group changes in both
the ND and the CD groups (Supplementary Figures S1 and S2).



Nutrients 2019, 11, 2932 6 of 11
Nutrients 2019, 11, x FOR PEER REVIEW  6  of  11 

 

Figure 2. Gene expression changes (log ratio) of RELA and TNFRSF1A in the Nordic diet (ND) and 

control diet (CD) groups, adjusted for age, sex and study center. ΔCt was calculated as Ct(reference gene)‐

Ct(target), and the log ratio (ΔΔCt) was calculated as ΔCt(end of study)‐ΔCt(baseline). Differences between the 

groups were tested with a linear regression model. p‐values < 0.05 were considered significant. 

 

Figure 3. Gene expression changes (log ratio) in the ND relative to the CD of inflammation related 

genes. ΔCt was calculated as Ct(reference gene)‐Ct(target), and the log ratio (ΔΔCt) was calculated as ΔCt(end of 

study)‐ΔCt(baseline). Differences between the groups were tested with a linear regression model, adjusted 

for age, sex and study center. p‐values < 0.05 were considered significant. 

Figure 2. Gene expression changes (log ratio) of RELA and TNFRSF1A in the Nordic diet (ND) and
control diet (CD) groups, adjusted for age, sex and study center. ∆Ct was calculated as Ct(reference gene) −

Ct(target), and the log ratio (∆∆Ct) was calculated as ∆Ct(end of study) − ∆Ct(baseline). Differences between
the groups were tested with a linear regression model. p-values < 0.05 were considered significant.

Nutrients 2019, 11, x FOR PEER REVIEW  6  of  11 

 

Figure 2. Gene expression changes (log ratio) of RELA and TNFRSF1A in the Nordic diet (ND) and 

control diet (CD) groups, adjusted for age, sex and study center. ΔCt was calculated as Ct(reference gene)‐

Ct(target), and the log ratio (ΔΔCt) was calculated as ΔCt(end of study)‐ΔCt(baseline). Differences between the 

groups were tested with a linear regression model. p‐values < 0.05 were considered significant. 

 

Figure 3. Gene expression changes (log ratio) in the ND relative to the CD of inflammation related 

genes. ΔCt was calculated as Ct(reference gene)‐Ct(target), and the log ratio (ΔΔCt) was calculated as ΔCt(end of 

study)‐ΔCt(baseline). Differences between the groups were tested with a linear regression model, adjusted 

for age, sex and study center. p‐values < 0.05 were considered significant. 
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∆Ct(end of study) − ∆Ct(baseline). Differences between the groups were tested with a linear regression
model, adjusted for age, sex and study center. p-values < 0.05 were considered significant.

3.3. Correlation Analysis

We correlated the changes in gene expression of TNFRSF1A and RELA with changes in several
plasma markers related to health, irrespective of group. Whereas the change in the mRNA level of
TNFRSF1A did not significantly correlate with any of the circulating metabolites, the change in the
mRNA level of RELA positively correlated with the change in hsCRP concentration and negatively
with the change in low-density lipoprotein (LDL)-cholesterol (LDL-C) concentration, respectively (data
not shown).

4. Discussion

In the present study, we investigated the impact of a ND compared to a CD on inflammation and
lipid metabolism-related genes of PBMCs in individuals with MetS participating in a multi-center
intervention study for 18/24 weeks. The ND group had an increased expression level of RELA and a
decreased expression level of TNFRSF1A in their isolated PBMCs compared to the CD group. Our data
are in line with previous findings [19] where the expression level of several inflammatory genes such
as TNFRSF1A and TNFRSF1B were down-regulated in PBMCs in a diet-induced weight loss study
including 34 overweight individuals with abnormal glucose metabolism and MetS. In the present study,
the individuals kept a stable body weight, but despite this, the ND down-regulated the gene expression
level of TNFRSF1A, which supports the key role of diet in the treatment of the MetS. Our data also
agree with, and extend our previous findings using a transcriptome-wide approach, demonstrating
that pathways regulating the mitochondrial electron transport chain, immune response, and cell cycle
in addition to gene transcripts with common motifs for the transcription factors Nuclear respiratory
factor 1 (NRF1), NRF2, and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) were
down-regulated in the ND group compared to CD [14].
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The increased intake of SFA in contrast to PUFA has been shown to increase liver fat and liver
enzyme levels [20–22]. While the individuals included in the present study were characterized by
having MetS, studies have suggested that both MetS and non-alcoholic fatty liver disease (NAFLD)
very early in the progression share several common stimulatory mechanisms [23]. Interestingly, the
pro-inflammatory TNF superfamily has been suggested to play a key role in the development of
NAFLD and subsequently non-alcoholic steatohepatitis (NASH) [24]. Increased gene expression
levels of both TNF and TNFR1 have been shown in humans with NASH, thus supporting a role for
the TNFR1 pathway in the progression of NASH. Our finding of a reduced gene expression level of
TNFRSF1A could thus be associated with attenuation of both inflammation and liver fat accumulation.
The inflammatory gene expression profile in PBMCs has previously been shown to reflect the immune
component of white adipose tissue [25] and liver lipid metabolism [26], further supporting the notion
that PBMC gene expression may be useful in providing information about metabolic health in general.

In addition, the gene transcript RELA encoding for the p65 NF-κB subunit was significantly
up-regulated in the ND group compared to the CD group. This between-group difference was primarily
caused by a down-regulation of this gene within the CD group and therefore, this finding may suggest
that the ND plays a role in maintaining homeostasis in the immune response. The activation of
the NF-κB system seems to be important in promoting liver inflammation [27]; however, the role of
RELA (p65) in the development of atherosclerosis is less clear. Nonetheless, RELA has been shown
to be a key regulator of the inflammatory response in macrophages [28], where overexpression of
RELA in apolipoprotein E knock-out mice led to reduced atherosclerotic lesion size and higher energy
expenditure. Thus, the effects of the activation of RELA and the NFκB pathway may vary in different
tissues (liver/macrophages) and depend on the inflammatory state of the individuals (chronic/acute).
The observed increase in RELA gene expression in PBMCs (precursor for macrophages) in the present
study in the ND group compared with the CD group in the present study may, thus, be associated
with an atheroprotective effect. However, future studies are warranted to further understand the role
of an ND in the regulation of RELA, and the consequences of this regulation in immune cells.

None of the gene transcripts encoding proteins related to lipid metabolism were changed by
the ND compared to the CD. We have previously shown that exchanging SFA with PUFA reduced
total cholesterol and LDL-C by 9% and 11%, respectively, among subjects with slightly elevated
cholesterol [29], and changed the PBMC expression levels of several lipid metabolism-related genes [30].
The reason why we did not observe any changes in lipid metabolism-related genes in the present study,
may be due to the smaller effect of the ND on the lipid profile as previously shown [16].

Interestingly, when only comparing changes in gene expression levels within the groups, we
observed that there are many more genes regulated within the CD group compared to within the ND
group. We can speculate that the reason for the larger effect in the CD group may be that volunteers in
this kind of study are usually a health-conscious population. If the subjects in the CD group changed
to a not-so-healthy diet, a more pronounced effect on the gene expression profiles might be seen.
An unhealthy diet may stress the system more than eating a healthier diet (ND group). These findings
are also in line with the results from the white adipose tissue whole genome expression profiles in the
SYSDIET study [12].

A major strength of the present study is that we were able to use data from a well-designed
randomized controlled dietary intervention study, where the changes in gene expression in the ND
group were compared to the changes in a CD group. A problem with longitudinal studies using
PBMCs is the short (2–3 weeks) life span of the mononuclear cells. Thus, some cells were exposed to
the diet longer than other cells, which might influence the results.

5. Conclusions

We found an increased expression of RELA and a reduced expression level of TNFRSF1A in
individuals with MetS after the intervention. These data provide further evidence that the consumption
of a ND compared to a CD may affect the immune response at the molecular level in PBMCs. Within
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the preselected genes that were examined, no gene expression changes in lipid metabolism-related
genes were observed between the ND and CD, and further studies are needed to confirm if PBMC
gene expression profiles may explain the improvement of the lipid profile in circulation observed after
intake of a ND.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6643/11/12/2932/s1,
Figure S1. Gene expression changes (deltaCt) in the ND group at baseline and end of study. ∆Ct was calculated as
Ct(reference gene) − Ct(target), and the log ratio (∆∆Ct) was calculated as ∆Ct(end of study) − ∆Ct(baseline). Differences
between the time points are tested with a paired t-test. p-values < 0.05 were considered significant. Figure
S2. Gene expression changes (deltaCt) in the CD group at baseline and end of study. ∆Ct was calculated as
Ct(reference gene) − Ct(target), and the log ratio (∆∆Ct) was calculated as ∆Ct(end of study) − ∆Ct(baseline). Differences
between the time points are tested with a paired t-test. p-values < 0.05 were considered significant. Table S1. Gene
expression change from baseline to end of study in SYSDIET relative to control group,
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Lankinen, M.; Orešič, M.; Lehto, S.; et al. The effect of fatty or lean fish intake on inflammatory gene
expression in peripheral blood mononuclear cells of patients with coronary heart disease. Eur. J. Nutr. 2009,
48, 447–455. [CrossRef]

7. van Dijk, S.J.; Feskens, E.J.; Bos, M.B.; de Groot, L.C.; de Vries, J.H.; Müller, M.; Afman, L.A. Consumption of
a high monounsaturated fat diet reduces oxidative phosphorylation gene expression in peripheral blood
mononuclear cells of abdominally overweight men and women. J. Nutr. 2012, 142, 1219–1225. [CrossRef]

http://www.mdpi.com/2072-6643/11/12/2932/s1
http://dx.doi.org/10.1172/JCI25102
http://www.ncbi.nlm.nih.gov/pubmed/15864338
http://dx.doi.org/10.1172/JCI20514
http://www.ncbi.nlm.nih.gov/pubmed/14679172
http://www.ncbi.nlm.nih.gov/pubmed/16613757
http://dx.doi.org/10.1016/S0002-8703(03)00442-3
http://dx.doi.org/10.1001/jama.292.12.1440
http://dx.doi.org/10.1007/s00394-009-0033-y
http://dx.doi.org/10.3945/jn.111.155283


Nutrients 2019, 11, 2932 10 of 11

8. Myhrstad, M.C.W.; Ulven, S.M.; Günther, C.C.; Ottestad, I.; Holden, M.; Ryeng, E.; Borge, G.I.; Kohler, A.;
Brønner, K.W.; Thoresen, M.; et al. Fish oil supplementation induces expression of genes related to cell
cycle, endoplasmic reticulum stress and apoptosis in peripheral blood mononuclear cells: A transcriptomic
approach. J. Intern. Med. 2014, 276, 498–511. [CrossRef]

9. Radler, U.; Stangl, H.; Lechner, S.; Lienbacher, G.; Krepp, R.; Zeller, E.; Brachinger, M.; Eller-Berndl, D.;
Fischer, A.; Anzur, C.; et al. A combination of (omega-3) polyunsaturated fatty acids, polyphenols and
L-carnitine reduces the plasma lipid levels and increases the expression of genes involved in fatty acid
oxidation in human peripheral blood mononuclear cells and HepG2 cells. Ann. Nutr. Metab. 2011, 58,
133–140. [CrossRef]

10. Afman, L.; Milenkovic, D.; Roche, H.M. Nutritional aspects of metabolic inflammation in relation to
health-insights from transcriptomic biomarkers in PBMC of fatty acids and polyphenols. Mol. Nutr. food Res.
2014, 58, 1708–1720. [CrossRef]

11. Kolehmainen, M.; Mykkänen, O.; Kirjavainen, P.V.; Leppänen, T.; Moilanen, E.; Adriaens, M.; Laaksonen, D.E.;
Hallikainen, M.; Pimiä, P.R.; Pulkkinen, L.; et al. Bilberries reduce low-grade inflammation in individuals
with features of metabolic syndrome. Mol. Nutr. Food Res. 2012, 56, 1501–1510. [CrossRef] [PubMed]

12. Kolehmainen, M.; Ulven, S.M.; Paananen, J.; de Mello, V.; Schwab, U.; Carlberg, C.; Myhrstad, M.;
Pihlajamäki, J.; Dungner, E.; Sjölin, E.; et al. Healthy Nordic diet downregulates the expression of genes
involved in inflammation in subcutaneous adipose tissue in individuals with features of the metabolic
syndrome. Am. J. Clin. Nutr. 2015, 101, 228–239. [CrossRef] [PubMed]

13. Leder, L.; Kolehmainen, M.; Narverud, I.; Dahlman, I.; Myhrstad, M.C.; De Mello, V.D.; Paananen, J.;
Carlberg, C.; Schwab, U.; Herzig, K.-H.; et al. Effects of a healthy Nordic diet on gene expression changes in
peripheral blood mononuclear cells in response to an oral glucose tolerance test in subjects with metabolic
syndrome: A SYSDIET sub-study. Genes Nutr. 2016, 11, 3. [CrossRef] [PubMed]

14. Myhrstad, M.C.; de Mello, V.D.; Dahlman, I.; Kolehmainen, M.; Paananen, J.; Rundblad, A.; Carlberg, C.;
Olstad, O.K.; Pihlajamäki, J.; Holven, K.B.; et al. Healthy Nordic Diet Modulates the Expression of Genes
Related to Mitochondrial Function and Immune Response in Peripheral Blood Mononuclear Cells from
Subjects with Metabolic Syndrome-A SYSDIET Sub-Study. Mol. Nutr. Food Res. 2019, 68, 1801405. [CrossRef]

15. de Mello, V.D.; Kolehmanien, M.; Schwab, U.; Pulkkinen, L.; Uusitupa, M. Gene expression of peripheral
blood mononuclear cells as a tool in dietary intervention studies: What do we know so far? Mol. Nutr. Food
Res. 2012, 56, 1160–1172. [CrossRef]

16. Uusitupa, M.; Hermansen, K.; Savolainen, M.J.; Schwab, U.; Kolehmainen, M.; Brader, L.; Mortensen, L.S.;
Cloetens, L.; Persson, A.J.; Önning, G.; et al. Effects of an isocaloric healthy Nordic diet on insulin sensitivity,
lipid profile and inflammation markers in metabolic syndrome—A randomized study (SYSDIET). J. Intern.
Med. 2013, 274, 52–66. [CrossRef]

17. Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.T.;
Loria, C.M.; Smith, S.C., Jr. Harmonizing the metabolic syndrome: A joint interim statement of the
International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and
Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society;
and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645.

18. Nordic Council of Ministers. Nordic Nutrition Recommendations 2012: Intergrating Nutrition and Physical
Activity; Nordic Council of Ministers: Copenhagen, Denmark, 2014.

19. De Mello, V.D.F.; Kolehmainen, M.; Pulkkinen, L.; Schwab, U.; Mager, U.; Laaksonen, D.E.; Gylling, H.;
Atalay, M.; Rauramaa, R.; Uusitupa, M. Downregulation of genes involved in NFkappaB activation in
peripheral blood mononuclear cells after weight loss is associated with the improvement of insulin sensitivity
in individuals with the metabolic syndrome: The GENOBIN study. Diabetologia 2008, 51, 2060–2067.
[CrossRef]

20. Rosqvist, F.; Iggman, D.; Kullberg, J.; Cedernaes, J.; Johansson, H.E.; Larsson, A. Overfeeding polyunsaturated
and saturated fat causes distinct effects on liver and visceral fat accumulation in humans. Diabetes 2014, 63,
2356–2368. [CrossRef]

21. Rosqvist, F.; Kullberg, J.; Ståhlman, M.; Cedernaes, J.; Heurling, K.; Johansson, H.E.; Iggman, D.; Wilking, H.;
Larsson, A.; Eriksson, O.; et al. Overeating saturated fat promotes fatty liver and ceramides compared to
polyunsaturated fat: A randomized trial. J. Clin. Endocrinol. Metab. 2019, 104, 6207–6219. [CrossRef]

http://dx.doi.org/10.1111/joim.12217
http://dx.doi.org/10.1159/000327150
http://dx.doi.org/10.1002/mnfr.201300559
http://dx.doi.org/10.1002/mnfr.201200195
http://www.ncbi.nlm.nih.gov/pubmed/22961907
http://dx.doi.org/10.3945/ajcn.114.092783
http://www.ncbi.nlm.nih.gov/pubmed/25527767
http://dx.doi.org/10.1186/s12263-016-0521-4
http://www.ncbi.nlm.nih.gov/pubmed/27482295
http://dx.doi.org/10.1002/mnfr.201801405
http://dx.doi.org/10.1002/mnfr.201100685
http://dx.doi.org/10.1111/joim.12044
http://dx.doi.org/10.1007/s00125-008-1132-7
http://dx.doi.org/10.2337/db13-1622
http://dx.doi.org/10.1210/jc.2019-00160


Nutrients 2019, 11, 2932 11 of 11

22. Bjermo, H.; Iggman, D.; Kullberg, J.; Dahlman, I.; Johansson, L.; Persson, L.; Berglund, J.; Pulkki, K.; Basu, S.;
Uusitupa, M.; et al. Effects of n-6 PUFAs compared with SFAs on liver fat, lipoproteins, and inflammation
in abdominal obesity: A randomized controlled trial. Am. J. Clin. Nutr. 2012, 95, 1003–1012. [CrossRef]
[PubMed]

23. Preuss, H.G.; Kaats, G.R.; Mrvichin, N.; Swaroop, A.; Bagchi, D.; Clouatre, D. Examining the Relationship
Between Nonalcoholic Fatty Liver Disease and the Metabolic Syndrome in Nondiabetic Subjects. J. Am. Coll.
Nutr. 2018, 37, 457–465. [CrossRef] [PubMed]

24. Aparicio-Vergara, M.; Hommelberg, P.P.; Schreurs, M.; Gruben, N.; Stienstra, R.; Shiri-Sverdlov, R.;
Kloosterhuis, N.J.; de Bruin, A.; van de Sluis, B.; Koonen, D.P.Y.; et al. Tumor necrosis factor receptor 1
gain-of-function mutation aggravates nonalcoholic fatty liver disease but does not cause insulin resistance in
a murine model. Hepatology 2013, 57, 566–576. [CrossRef] [PubMed]

25. O’Grada, C.M.; Morine, M.J.; Morris, C.; Ryan, M.; Dillon, E.T.; Walsh, M.; Gibney, R.R.; Brennan, L.;
Gibney, M.J.; Roche, H.M. PBMCs reflect the immune component of the WAT transcriptome—Implications as
biomarkers of metabolic health in the postprandial state. Mol. Nutr. Food Res. 2014, 58, 808–820. [CrossRef]

26. Bouwens, M.; Afman, L.A.; Müller, M. Fasting induces changes in peripheral blood mononuclear cell gene
expression profiles related to increases in fatty acid beta-oxidation: Functional role of peroxisome proliferator
activated receptor alpha in human peripheral blood mononuclear cells. Am. J. Clin. Nutr. 2007, 86, 1515–1523.
[CrossRef]

27. Li, J.; Sapper, T.N.; Mah, E.; Moller, M.V.; Kim, J.B.; Chitchumroonchokchai, C. Green tea extract treatment
reduces NFkappaB activation in mice with diet-induced nonalcoholic steatohepatitis by lowering TNFR1
and TLR4 expression and ligand availability. J. Nutr. Biochem. 2017, 41, 34–41. [CrossRef]

28. Ye, X.; Jiang, X.; Guo, W.; Clark, K.; Gao, Z. Overexpression of NF-kappaB p65 in macrophages ameliorates
atherosclerosis in apoE-knockout mice. Am. J. Physiol. Endocrinol. Metab. 2013, 305, E1375–E1383. [CrossRef]

29. Ulven, S.M.; Leder, L.; Elind, E.; Ottestad, I.; Christensen, J.J.; Telle-Hansen, V.H. Exchanging a few commercial,
regularly consumed food items with improved fat quality reduces total cholesterol and LDL-cholesterol: A
double-blind, randomised controlled trial. Br. J. Nutr. 2016, 116, 1383–1393. [CrossRef]

30. Ulven, S.M.; Christensen, J.J.; Nygård, O.; Svardal, A.; Leder, L.; Ottestad, I. Using metabolic profiling and
gene expression analyses to explore molecular effects of replacing saturated fat with polyunsaturated fat-a
randomized controlled dietary intervention study. Am. J. Clin. Nutr. 2019, 109, 1239–1250. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3945/ajcn.111.030114
http://www.ncbi.nlm.nih.gov/pubmed/22492369
http://dx.doi.org/10.1080/07315724.2018.1443292
http://www.ncbi.nlm.nih.gov/pubmed/29652564
http://dx.doi.org/10.1002/hep.26046
http://www.ncbi.nlm.nih.gov/pubmed/22941955
http://dx.doi.org/10.1002/mnfr.201300182
http://dx.doi.org/10.1093/ajcn/86.5.1515
http://dx.doi.org/10.1016/j.jnutbio.2016.12.007
http://dx.doi.org/10.1152/ajpendo.00307.2013
http://dx.doi.org/10.1017/S0007114516003445
http://dx.doi.org/10.1093/ajcn/nqy356
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	The SYSDIET Study 
	Diet 
	Biochemical Measurements 
	Sampling of PBMCs and RNA Extraction 
	Real-Time Polymerase Chain Reaction RT-qPCR 
	Statistical Analysis 

	Results 
	Baseline Characteristics 
	Gene Expression Profiling in PBMCs 
	Correlation Analysis 

	Discussion 
	Conclusions 
	References

