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Abstract: L-histidine (HIS) is an essential amino acid with unique roles in proton buffering, metal ion
chelation, scavenging of reactive oxygen and nitrogen species, erythropoiesis, and the histaminergic
system. Several HIS-rich proteins (e.g., haemoproteins, HIS-rich glycoproteins, histatins, HIS-rich
calcium-binding protein, and filaggrin), HIS-containing dipeptides (particularly carnosine), and methyl-
and sulphur-containing derivatives of HIS (3-methylhistidine, 1-methylhistidine, and ergothioneine)
have specific functions. The unique chemical properties and physiological functions are the basis of the
theoretical rationale to suggest HIS supplementation in a wide range of conditions. Several decades
of experience have confirmed the effectiveness of HIS as a component of solutions used for organ
preservation and myocardial protection in cardiac surgery. Further studies are needed to elucidate
the effects of HIS supplementation on neurological disorders, atopic dermatitis, metabolic syndrome,
diabetes, uraemic anaemia, ulcers, inflammatory bowel diseases, malignancies, and muscle performance
during strenuous exercise. Signs of toxicity, mutagenic activity, and allergic reactions or peptic ulcers
have not been reported, although HIS is a histamine precursor. Of concern should be findings of hepatic
enlargement and increases in ammonia and glutamine and of decrease in branched-chain amino acids
(valine, leucine, and isoleucine) in blood plasma indicating that HIS supplementation is inappropriate
in patients with liver disease.

Keywords: histidine supplementation; HTK solution; carnosine; beta-alanine; ammonia; glutamine;
branched-chain amino acids; Bretschneider’s solution

1. Introduction and Aims

L-Histidine (HIS) is a nutritionally essential amino acid (EAA) with unique biochemical and
physiological properties, which have created a good theoretical rationale to suggest the use of HIS as
a nutritional supplement in a wide range of conditions. Initially, HIS was shown to treat rheumatoid
arthritis and anaemia in patients with chronic renal failure [1,2]. Currently, HIS and/or HIS-containing
dipeptides (HIS-CD) are investigated to prevent fatigue during strenuous exercise and for therapy in
ageing-related disorders, metabolic syndrome, atopic dermatitis, ulcers, inflammatory bowel diseases,
ocular diseases, and neurological disorders [3–9].

The first aim of the article is to provide an overview of main pathways of HIS metabolism; chemical
and biological properties of HIS, such as proton buffering, metal ion chelation, and antioxidant functions;
and a role of several proteins and peptides containing large amounts of HIS residues, such as carnosine
(CAR), filaggrin, and histatins. With this explanation as a background, the results of studies examining
the benefits and therapeutic potential of HIS and HIS-CD will be discussed or reviewed.
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2. Histidine, Chemical, and Biological Properties

The unique chemical properties of HIS, which are mainly attributed to the imidazole ring
(Figure 1), include proton buffering, metal ion chelation, and antioxidant activities. These cytoprotective
interactions may involve free HIS, HIS-containing peptides, HIS-CD, and HIS residues in proteins.
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Figure 1. Histidine structure: histidine (HIS) contains an α-amino group, a carboxylic acid group,
and an imidazole side chain. Under physiological conditions, the amino group is protonated and the
carboxylic group is deprotonated. The imidazole ring is responsible for the proton buffering, metal ion
chelating, and antioxidant properties.

2.1. HIS as a pH Buffer

Of all the amino acid side chains in proteins, only the imidazole ring of HIS is suitable to function as
a pH buffer [10], and either of the two nitrogens of the imidazole ring can bind or release a proton to form
the acid or the base form. The pKa values of imidazole group of free L-HIS are 6.2 and 6.5 when bound
in proteins, 7.0 in CAR, and 7.1 in anserine [11]. Therefore, HIS-CD, such as CAR and anserine, act as
powerful buffers and attenuate changes in intracellular pH in muscles during anaerobic exercise [11].
The role of HIS as an efficient H+ buffer enables use of HIS as a component of solutions employed for
organ preservation before transplantation and myocardial protection in cardiac surgery [12–14].

2.2. HIS and Metal Ion Chelation

Several studies have reported the ability of HIS and HIS-CD, particularly CAR, and HIS-rich
proteins to form complexes with metal ions, such as Fe2+, Cu2+, Co2+, Ni2+, Cd2+, and Zn2+ [15,16].
Specifically, HIS is responsible for binding of iron in haemoglobin and myoglobin molecules and is
frequently present in the active sites of metalloenzymes, such as carbonic anhydrase, cytochromes,
heme peroxidases, nitric oxide synthase, and catalases, where plays a role in regulating their activity.
Histidine-rich glycoprotein present in plasma of vertebrates interacts with many ligands, including
zinc, has an important role in immunity [15].

Several metal ions promote the production of free radicals through the Fenton reaction [17] and
exert toxic effects on organism, which can be attenuated by HIS or HIS-CD. It has been proven that
CAR protects against copper- and zinc-induced neurotoxicity [18].

2.3. HIS as an Antioxidant

The antioxidant activity of HIS is mediated by metal ion chelation (see above), by the scavenging
of reactive oxygen (ROS) and nitrogen (RNS) species, and by sequestering advanced glycation (AGE;
e.g., glyoxal and methylglyoxal) and advanced lipoxidation (ALE; e.g., malondialdehyde and acrolein)
end products [19–24]. High concentrations of AGE/ALE are recognized as noxious factors related to
various complications, notably, microangiopathy and retinopathy of diabetes [23].

HIS-CD, particularly CAR, is more effective ROS/RNS and AGE/ALE scavengers than free
HIS [19,20]. The underlying mechanisms of the antioxidant effects of imidazole-containing compounds
remain obscure [25].
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3. HIS Requirements and Sources

3.1. Effects of a HIS-Deficient Diet

HIS-deficient diet does not result in the prompt negative protein balance observed with other
EAAs. Therefore, HIS was originally classified as a dispensable, nonessential amino acid [26]. Then,
the body has been shown to compensate for a HIS deficiency in food for long periods through the
enhanced catabolism of haemoglobin and CAR followed by a decrease in the haemoglobin levels
in the blood and CAR content in the muscles [27–31]. The evidence of HIS essentiality to maintain
positive nitrogen balance was shown in rats by Nasset and Gatewood [32] and in adult humans fed
a HIS-deficient diet for at least one moth [27–31]. In addition, atopic dermatitis and decreased HIS
levels in plasma and urine are frequently observed is HIS-deficient subjects [27].

3.2. Requirements and Sources of Dietary HIS

Estimated average requirement and recommended dietary allowance for HIS are 11 mg/kg/day
and 14 mg/kg/day, respectively, for adults of 19 years and older [32]. HIS is obtained from the diet
mainly in the form of proteins. Its content in proteins of animal sources, like meat, chicken, and fishes,
is 25–30 mg/g, and in plant proteins, like soybean, kidney beans, peas, oat, and wheat, is 20–30 mg/g [33].
Animal sources are better due to higher content of proteins.

High amounts of HIS (109 mg/g) have been detected in dried bonito broth, a food ingredient used
commonly in Japanese meals, called dashi. Bonito (skipjack tuna; Katsuwonus pelamis) is commonly
consumed fish; dried bonito broth is used more frequently than beef or chicken bouillon for soup
stock [34].

In addition to proteins, HIS is present in the mammalian musculature as part of HIS-CD, notably
CAR and anserine. A rich source of CAR and anserine is a chicken breast extract (CBEXTM) used
mainly in Japan. CBEXTM is obtained via hot-water extraction of chicken breast, anserine content is
~1.4 g/100 mL, and CAR content is ~0.6 g/100 mL [35]. Both dashi and CBEXTM have been used in several
studies examining the effects of HIS and HIS-CD supplementation [9,36,37].

It should be noted that cellular concentrations of HIS and HIS-related compounds in specific
organs relate to their functions. For example, high concentrations of CAR and anserine are found in
muscles (buffering/antioxidant role) and high concentrations of N-acetyl-L-HIS are found in brain,
retina, and lens of poikilothermic vertebrates (osmolyte/antioxidant role) [38]. Concentrations of CAR
are higher in fast-twitch (white) muscles when compared with slow-twitch (red) muscles; in the case of
HIS concentrations, the opposite is true [39].

4. HIS Metabolism

There are several pathways of HIS metabolism (Figure 2). Quantitatively most significant are
HIS turnover in synthesis and breakdown of proteins and HIS catabolism via urocanate to glutamate.
I will overview the pathways of HIS catabolism and importance of HIS as a precursor of histamine,
HIS-rich proteins, HIS-containing dipeptides (particularly CAR), and methyl- and sulphur-containing
derivatives of HIS.
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Figure 2. Main pathways of HIS metabolism. Most HIS metabolism is directed to protein turnover and
catabolism to glutamate. The minor pathways, such as synthesis of carnosine (CAR), histamine, and
HIS-rich proteins, make HIS unique among other amino acids.

4.1. Catabolism of HIS

Average daily intake of HIS of about 800 mg in adult humans implies that the same amount of HIS
should be degraded. The main pathway of HIS catabolism (Figure 3) begins with deamination catalysed
by histidase (EC 4.3.1.3), leading to the production of trans-urocanate and ammonia. The enzyme is
primarily located in the stratum corneum of the skin and the liver.
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Figure 3. HIS catabolism. 1, histidase; 2, urocanase, 3, imidazolone propionate hydrolase; 4, glutamate
formimino transferase; 5, glutamate dehydrogenase; 6, alanine aminotransferase; 7, glutamine synthetase; 8,
histidine aminotransferase. Ala, alanine; Asp, aspartic acid; FIGLU, formiminoglutamate; Gln; glutamine;
Glu, glutamic acid; Gln, glutamine; Gly, glycine; HC, homocysteine; Met, methionine; Pyr, pyruvate; SAHC,
S-adenosylhomocysteine; SAME, S-adenosylmethionine; Ser, serine; THF, tetrahydrofolate; TCAc, tricarboxylic
acid cycle; UV, ultraviolet radiation; α-AA, α-amino acid; α-KA, α-keto acid; α-KG, α-ketoglutarate.
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4.1.1. HIS Catabolism in the Skin

In the skin, filaggrin, a skin barrier protein with high HIS content, is the main HIS source for
histidase to generate ammonia and urocanate [40]. Because most of the ammonia produced in the
splanchnic region is detoxified to urea in the liver, the skin should be considered a significant source of
blood ammonia in the systemic circulation.

Since the skin lacks urocanase (the second enzyme in HIS catabolism), trans-urocanate accumulates
in the stratum corneum, contributing to the formation of “natural moisturizing factors”, and acts
as one of the major ultraviolet (UV)-absorbing compounds [40]. In the presence of UV radiation,
trans-urocanate is isomerized to cis-urocanate, which probably plays a role in the UV radiation-induced
suppression of the immune system [41].

4.1.2. HIS Catabolism in the Liver

Histidase expression in the liver is regulated by HIS availability. Histidase activity increases when
protein intake is high and decreases when protein intake is low [42,43]. Urocanase (EC 4.2.1.49) converts
the urocanate produced in the liver by a histidase reaction to imidazolone propionic acid, which
is hydrolysed to formiminoglutamate (FIGLU). FIGLU is converted to glutamic acid by formimino
transferase (E.C. 2.1.2.5) in a tetrahydrofolate (THF)-dependent reaction. If folate is deficient, FIGLU
accumulates and HIS catabolism is impaired [44]; HIS-loading (FIGLU excretion test) is a diagnostic
tool for THF deficiency [45]. Depletion of THF after HIS loading may cause a net reduction in the
capacity for glycine synthesis from serine (see Figure 3), as described by Meléndez-Hevia et al. [46]
and by Holeček and Vodeničarovová [39].

THF is derived from several sources that might affect the flux of HIS through the HIS degradation
pathway (Figure 3). Several articles have demonstrated that methionine, S-adenosylmethionine,
homocysteine, and S-adenosylhomocysteine activate HIS catabolism by increasing the availability of
THF [47,48].

Glutamate produced by the formimino transferase reaction may be used for synthesis of glutamine,
may become deaminated to α-ketoglutarate in a glutamate dehydrogenase reaction, and/or may be
released to the blood [49]. Transamination to alanine is unlikely to occur due to excess alanine
concentration obtained from extrahepatic tissues.

A high HIS concentration increases HIS flux through the HIS degradation pathway, resulting
in increased ammonia production and altered concentrations of several amino acids, particularly
increased concentrations of glutamate, alanine, and glutamine and decreased branched-chain amino
acids (BCAA) concentrations in the blood plasma [39].

4.1.3. Role of HIS Aminotransferase

The minor pathway of HIS degradation is mediated by HIS aminotransferase, which transforms
HIS to imidazole pyruvate, leading to aspartate production (Figure 3). HIS aminotransferase exists
in two isoforms. Isoenzyme 1 is expressed only in the liver and is active towards pyruvate and
α-ketoglutarate. Isoenzyme 2 is expressed in the liver, kidneys, heart, and skeletal muscle and is active
towards pyruvate (resulting in alanine formation) and not active towards α-ketoglutarate [50].

4.2. Histamine

Most histamine is synthesized and stored in granules in mast cells and basophils, from which it is
released via degranulation induced by immunological stimulation (Figure 4), particularly interactions
of allergens with IgE antibodies. Parietal cells in the stomach and histaminergic neurons in the brain are
additional important sites of histamine synthesis and storage. Parietal cells produce hydrochloric acid;
histaminergic neurons of the posterior hypothalamus modulate a variety of physiological functions,
including appetite, wakefulness, emotions, and cognitive functions.
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Figure 4. Synthesis and degradation of histamine: Histamine is formed by the decarboxylation of HIS
by L-histidine decarboxylase (EC 4.1.1.22) found in many tissues. Released histamine is degraded
to 1,4-methyl imidazoleacetic acid; the second pathway of histamine degradation is oxidation to
imidazoleacetic acid. The metabolites are released in the urine or processed to other metabolites.
1, histidine decarboxylase; 2, histamine-N-methyltransferase; 3, monoamino oxidase; 4, aldehyde
dehydrogenase; 5, diamino oxidase.

Histamine plays also an important role as a regulator of microcirculation in muscles during exercise
and sustained post-exercise vasodilation [51,52]. Histidine decarboxylase expression is induced in
mast cells, vascular endothelial cells, and muscle fibers themselves by cytokines (particularly IL-1 and
TNF-α), increased temperature, decreased pH, and hypoxia-inducible factor 1 [53–56].

Histamine exerts its effects through four types of G protein-coupled receptors: H1, H2, H3, and
H4 (Table 1) [57]:

Table 1. Histamine receptors.

Receptor Expression Main Functions

H1
Ubiquitously (brain, respiratory epithelium,

endothelial and smooth muscle cells, and
lymphocytes)

Causes bronchoconstriction and vasodilation
(urticaria) and induces wakefulness in the

brain.

H2 Gastric parietal cells, smooth muscle, brain, and
heart.

Stimulates parietal cells to produce
hydrochloric acid and vasodilation.

H3 Exclusively in neurons
Presynaptic receptor that inhibits the release

of histamine from histaminergic neurons.
Activation promotes sleep.

H4 Immune cells, mast cells, intestinal epithelial
cells, sensory neurons, and cancer cells

Induces chemotaxis and degranulation of
mast cells.

Effects of Dietary HIS on Histamine Levels

According to several studies, dietary HIS affects histamine concentrations in immune cells, the stomach,
and the brain [58–61]. Altered function of the immune system, allergic reactions, and/or peptic ulcers have
not been reported after HIS administration. However, HIS administration has been shown to affect brain
function [62–68].

Increased HIS intake in the form of a dried bonito broth has improved mood state and mental
task performance of human subjects [33,34,36]. Several studies have reported an anorectic effect of
HIS administration [65–68] and HIS-enriched diet [62–64]. Insufficient HIS intake reduces the brain
histamine content and is associated with anxiety-like behaviors in mice [61].

4.3. Methyl- and Sulphur-Containing Derivatives of HIS

The major HIS derivatives present in the human body are 3-methylhistidine, 1-methylhistidine,
and ergothioneine (Figure 5).
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4.3.1. 3-Methylhistidine (3-MH)

3-MH is formed by the posttranslational methylation of HIS residues of the main myofibrillar
proteins actin and myosin. During protein catabolism, 3-MH is released but cannot be reutilized.
Therefore, the plasma concentration and urine excretion of 3-MH are sensitive markers of myofibrillar
protein degradation [69]. Approximately 75% of 3-MH is estimated to originate from skeletal muscle [69].
In addition to the degradation of muscle proteins, the 3-MH level is affected by the degradation of
intestinal proteins and meat intake.

4.3.2. 1-Methylhistidine (1-MH)

1-MH is not formed in humans and results from the metabolism of the dipeptide anserine obtained
from food. 1-MH represents a potentially useful marker of meat intake. In the absence of meat or fish
in the diet, the excretion of 1-MH is minimal and predicts a vegetarian status [70].

4.3.3. Ergothioneine

Ergothioneine (2-mercapto-L-histidine trimethyl-betaine) contains a sulphur atom on the imidazole
ring. It is produced from HIS by cyanobacteria, mycobacteria, and fungi. In humans, ergothioneine is
acquired from the diet and accumulates in many tissues. The precise physiological role of ergothioneine
remains unclear.

It has been hypothesized that ergothioneine administration may prevent tissues against oxidative
damage [71] and that decreased blood plasma levels of ergothioneine have been reported in elderly [72]
and Parkinson’s disease [73]. Studies in animals and humans have found no toxicity, and ergothioneine
has been recently approved as a nutritional supplement [74,75].

4.4. HIS-Rich Proteins and Peptides

The main HIS-rich proteins include haemoproteins, HIS-rich glycoprotein, histatins, HIS-rich
calcium-binding protein, and filaggrin (Table 2).

Table 2. HIS-rich proteins and peptides.

HIS-Rich Protein Or Peptide The Role Reference

Haem-containing proteins
(haemoproteins)

Structure of haemoglobin, myoglobin, cytochromes,
haem peroxidases, nitric oxide synthase, catalases, etc. [76]

HIS-rich glycoprotein

Plasma protein that interacts with many ligands,
including zinc, phospholipids, fibrinogen, heparin, and

immunoglobulins, plays roles in regulating several
biological processes, such as coagulation and immunity.

[15]

Histatins
Salivary copper- and zinc-binding peptides with

antibacterial, antifungal, and wound-healing properties.
Investigated for the treatment of oral diseases.

[77]
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Table 2. Cont.

HIS-Rich Protein Or Peptide The Role Reference

HIS-rich calcium-binding protein

170 kDa protein primarily expressed in striated muscles
and arteriolar smooth muscle cells with high capacity

binding Ca++. Roles in the uptake, storage, and release
of calcium ions by cardiac sarcoplasmic reticulum and

regulation of cardiac rhythmicity.

[78]

Filaggrin
(filament-aggregating protein)

Skin barrier protein that aggregates cytokeratin filaments
of keratinocytes to form corneocytes. Degradation of

filaggrin into amino acids, urocanic acid, and pyrrolidine
carboxylic acid contributes to the formation of the

“natural moisturizing factor” of the skin.

[40]

4.5. HIS-Containing Dipeptides (HIS-CD)

The main HIS-CD synthetized in humans are CAR (beta-alanyl-L-histidine) and homocarnosine
(gamma-aminobutyryl-L-histidine) (Figure 6).
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4.5.1. L-Carnosine (CAR)

CAR is synthesized under hydrolysis of ATP from HIS and beta-alanine, which is obtained
through the diet or uracil degradation in the liver [10]. CAR is abundantly present in skeletal muscle
and olfactory bulb and in smaller quantities in the cardiac muscle, brain, and other tissues [11,16,79].

CAR is an efficient intracellular pH buffer, heavy metal chelator, anti-glycating agent, and regulator
of many receptors [11]. Increased muscle CAR concentrations are presumed to exert ergogenic effects
and to decrease fatigue during high-intensity exercise [80]. Fast-twitch muscle fibres have, in accordance
with their anaerobic energy delivery and supposed role of CAR as a pH buffer, higher CAR content
compared with slow-twitch fibres [39,81]. In experiments with rapidly ageing mice, CAR delayed the
ageing of the animals, probably due to the improvement in their antioxidant status [22].

CAR is catabolised by 2 enzymes [82,83]. The enzyme carnosinase (CN1) exhibits narrow specificity
and is present in the serum and brain. The enzyme CN2 (also known as a nonspecific dipeptidase)
exhibits broad substrate specificity and is ubiquitously expressed. It has been shown that most of the
CAR provided by food is rapidly hydrolysed by serum carnosinase to HIS and beta-alanine, which can
then be taken up by muscles where CAR is synthesized [84].

4.5.2. Homocarnosine

Homocarnosine has been detected in the brain, but its physiological function has not been
completely elucidated. Homocarnosine has been suggested to serve as a source of gamma-aminobutyric
acid (GABA), the main inhibitory neurotransmitter in the mammalian brain [85].

4.5.3. Other HIS-CD

Other HIS-CD found in vertebrates and not in invertebrates, plants, and fungi include
anserine (beta-alanyl-N-π-methylhistidine), balenine (ophidine, beta-alanyl-N-tau-methylhistidine),
acetyl carnosine (N-acetyl-β-alanyl-L-histidine), carcinine (beta-alanylhistamine), and homoanserine
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(gamma-aminobutyryl-L-1-histidine). A dipeptide, HIS-leucine, forms in the process of converting
angiotensin I to angiotensin II, and this dipeptide does not appear to exert any haemodynamic effects
in normotensive and hypertensive rats [86].

5. HIS and HIS-Containing Substances as Nutritional Supplements

Due to the wide range of potentially beneficial physiological properties, such as antioxidant
properties, proton-buffering power, and chelating function, HIS-containing supplements have been
investigated in the wide range of conditions (Figure 7). In most studies, daily HIS supplementation
doses range from 1 to 4 g, which represents approximately 2–8% of the recommended intake of nitrogen
and an increase in daily intake of HIS up to six times [3,34,87].
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CAR is predicted to be a more efficient proton-buffering and antioxidant compound than HIS.
Hence, several intervention studies have been performed using CAR, which is rapidly inactivated
by serum carnosinase in humans [84]. Therefore, short-term studies indicate possibly the combined
effects of HIS and beta-alanine rather than CAR. If it concerns chronic supplementation interventions,
these studies can indicate effects of muscle CAR loading.

5.1. Effects on Muscle Performance and Fatigue

HIS supplementation is predicted to increase the intracellular CAR concentration, which effectively
buffers hydrogen ions formed during high-intensity exercise and might ameliorate fatigue due to
increased histamine synthesis in the brain [34,36,37]. However, it has been shown that the rate-limiting
precursor of CAR synthesis in humans is beta-alanine and that its chronic supplementation is more
effective at increasing the CAR content than HIS [81,88–90]. Beta-alanine administered in daily doses
of 4.8–6.4 g increased human muscle CAR content by 60% in 4 weeks and 80% in 10 weeks [80,91].

Several original and review articles have described the positive effects of long-term beta-alanine
supplementation on muscle performance [92–96], and chronic beta-alanine supplementation is a popular
ergogenic strategy. It should be noted that a substantial decrease in the HIS content (~30%) in
muscles and plasma after beta-alanine supplementation has been reported [89]. However, in another,
methodologically similar study, β-alanine supplementation for 28 days (6 g/day) did not reduce HIS in
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muscles [90]. Further studies are needed to determine whether beta-alanine supplementation requires
a concomitant increase in HIS intake.

5.2. Effects on Neurodegenerative and Age-Related Disorders

It is now recognized that ROS/RNS and the neuronal histaminergic system contribute to the
pathogenesis of neurodegenerative and age-related disorders, e.g., Parkinson’s and Alzheimer’s
diseases, cancer, atherosclerosis, and cataract. Hence, HIS and HIS-containing substances may exert
beneficial effects via their antioxidant, anti-inflammatory, and chelating properties and may modulate
the histamine content in the brain.

In rats, HIS administration ameliorates aspirin-induced gastric mucosal damage [97], mitigates
the development of brain infarction induced by the occlusion of the middle cerebral artery [98],
and prevents isoproterenol- and doxorubicin-induced cardiotoxicity [99,100]. CAR administration
rescues cognitive decline in a mouse model of Alzheimer’s disease [101]; suppresses tumorigenesis
in human glioblastoma, pheochromocytoma, colorectal and ovarian carcinoma cells [102–105]; and
delays the development of cataracts in diabetic rats [106].

Unfortunately, the articles reporting data from the clinical trials performed to date (Table 3) are
rare and have various limitations, particularly because only a small number of subjects were evaluated,
and sometimes, the results have been presented by only one research group.

Table 3. Effects of HIS and HIS-containing dipeptides (HIS-CD) on the elderly and ageing-related disorders.

Study Design Main Findings Reference

Elderly volunteers (n = 39), anserine/CAR (3:1),
1 g/day, 3 months. A double-blind randomized

controlled trial.

Positive effects on verbal episodic memory, decreased
the secretion of proinflammatory cytokines, and

improved brain perfusion.
[7]

Age-related cataract (n = 75), eye drops containing
N-acetylcarnosine. Two drops, twice daily, for 9

months.
Rejuvenation of visual functions [6]

Alzheimer’s disease, a mixture of antioxidants
including CAR (100 mg/day) plus donepezil or a

placebo plus donepezil for 6 months. A double-blind
study.

Improvement of cognition functions. [107]

Parkinson’s disease (n = 36), inclusion of CAR (1.5
g/day for 30 days) in the therapy.

Improvement in neurological symptoms and a
decrease in blood plasma protein carbonyl and lipid

hydroperoxide levels.
[8]

Gulf War illness (n = 25), CAR (500, 1000, and 1500
mg doses increasing at 4-week intervals) for 12

weeks. A double-blind randomized controlled trial.
Positive effect on cognitive functions. [108]

Schizophrenia, administration of CAR as an adjunct
treatment (2 g/day) for 3 months. A double-blind

randomized controlled trial.
Improvement in the performance on cognitive tests. [109]

Mental fatigue and sleep disruption (n = 20), HIS
(1.65 g/day) for 2 weeks. A placebo controlled

double-blind crossover trial.

Ameliorated feelings of fatigue and improved
attentiveness and performance during working

memory tasks.
[34]

Mental fatigue (n = 48), ingestion of dried bonito
broth (2.45 g) for 4 weeks. A placebo controlled

double-blind crossover trial.

Improved the mood state and increased performance
on a simple calculation task. [37]

Healthy females (n = 31), ingestion of dried bonito
broth (4.5 g) for 2 weeks. A placebo controlled

double-blind randomized crossover study.

Improved mood, increased peripheral blood flow,
and decreased levels of urinary oxidative stress

markers.
[36]

Elderly people (n = 56), anserine/CAR (2.5 g/day) for
13 weeks. Double blind study.

Decrease in the body mass index and improvement
in cognitive functions and physical capacity. [110]

Chronic heart failure (n = 50), CAR (500 mg/day
orally) for 6 months.

Prospective, randomized study.

Beneficial effects on exercise performance and quality
of life. [111]
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5.3. Metabolic Syndrome

Metabolic syndrome refers to the cooccurrence of several risk factors, including insulin resistance,
obesity, dyslipidaemia, and hypertension. It identifies a subgroup of patients who are at high risk of
developing cardiovascular diseases and type 2 diabetes [112]. General characteristics of metabolic
syndrome include oxidative stress and increased production of inflammatory cytokines, ROS/RNS,
and AGE/ALE. Therefore, the anorectic effect of HIS supplementation and the anti-inflammatory and
antioxidant properties of HIS and CAR may be beneficial.

HIS or CAR supplementation has been shown to be effective on insulin resistance, plasma lipid
levels, and inflammatory markers and has delayed the development of atherosclerosis in several rodent
models of diabetes and metabolic syndrome [113–116]. The results of studies investigating the effects
of HIS or CAR intake on metabolic syndrome in human subjects are summarized in Table 4.

Table 4. The effects of HIS and CAR on humans with obesity and metabolic syndrome.

Study Design Main Findings Reference

Subjects with prediabetes (n = 62) and
supplement containing cinnamon, chromium,

and CAR (200 mg/day), 4 months.
Double-blind, placebo-controlled study.

Decrease in fasting plasma glucose levels
and increase in the fat-free mass. [117]

Obese women with metabolic syndrome, HIS
(4 g/day), 12 weeks. Double-blind,

placebo-controlled study.

Improved insulin sensitivity and decreased
body mass index, waist circumference, body
fat, and markers of systemic inflammation.

[87]

Examination of serum HIS concentrations in
obese (n = 235) and non-obese (n = 217) women.

Lower HIS concentrations were observed in
obese women than in nonobese; negative

relationships with inflammation and
oxidative stress were identified.

[118]

Examination of HIS and energy intake by
female Japanese students (n = 1689) aged

18 years.

Daily HIS intake correlated inversely with
energy intake. [119]

Internet-based cross-sectional study in
a Chinese population (n = 88).

Dietary HIS intake was inversely correlated
with energy intake, the status of insulin

resistance, inflammation, oxidative stress,
and the prevalence of obesity.

[120]

5.4. Rheumatoid Arthritis

A significant decrease in the blood HIS concentration has been observed in patients with
rheumatoid arthritis [121,122]. The cause is obscure. A randomized double-blind trial did not show an
advantage of oral HIS over the placebo [1].

5.5. Inflammatory Bowel Disease

It has been shown that inflammatory bowel diseases, such as Crohn’s disease and ulcerative
colitis, might be influenced by HIS administration. Orally administered HIS ameliorates murine colitis
and suppresses the production of various inflammatory factors by macrophages [123]. A zinc-CAR
complex was shown to protect the gastric mucosa from experimental ulcerations and Helicobacter
pylori-associated gastritis [5,124]. Furthermore, it has been shown that a decreased plasma HIS level
predicts a risk of relapse in patients with ulcerative colitis [125].

5.6. Organ Preservation for Transplantation and Myocardial Protection in Cardiac Surgery

The unique proton-buffering capability prompted the use of HIS as a component of solutions for
the preservation of organs intended for transplantation [12–14]. A high HIS concentration of 198 mM is
in the histidine-tryptophan-ketoglutarate (HTK) solution routinely used for myocardial protection in
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cardiac surgery [12]. In our recent study [39], the administration of a HIS load in a dose corresponding to
the HIS load in human cardiac surgery to rats markedly increased ammonia levels and impaired the
energy status of the liver and skeletal muscle.

5.7. Modulation of the Sensitivity of Cancer Cells to Methotrexate

Methotrexate is a widely used anticancer agent that inhibits dihydrofolate reductase, an enzyme
that generates tetrahydrofolate, an essential cofactor in nucleotide synthesis. A depletion of THF causes
cell death by suppressing DNA and RNA synthesis. It has been suggested that the drain of cellular pool
of THF by dietary HIS supplementation might improve methotrexate efficacy and might enable reduced
dosing of this toxic agent [126].

5.8. Atopic Dermatitis

Atopic dermatitis (eczema) is a chronic inflammatory disorder characterized by itchy, red, and
cracked skin. The aetiology has been linked to deficiencies in the HIS-rich epidermal barrier protein
termed filaggrin [127]. It can be assumed that observations of eczematous rash in infants and adults
fed a HIS-deficient diet [27] are due to impaired filaggrin formation.

Studies performed in rodents revealed the rapid incorporation of 3 H-HIS filaggrin after an injection [128],
and in vitro studies using human keratinocytes showed that HIS increases filaggrin protein formation [3].
Data from one clinical study performed on 24 adults revealed that 4 g of HIS administered once daily over
a period of 4 weeks improved symptoms of eczema [3].

5.9. Anaemia of Patients with Uraemia

A HIS deficiency may contribute to the anaemia observed in uremic patients since HIS is essential for
haemoglobin synthesis; furthermore, a HIS-deficient diet is associated with anaemia development [27].
Anaemia associated with decreased HIS concentration in the blood has been repeatedly observed in
patients with chronic kidney disease, particularly in patients undergoing dialysis [129,130]. Increased
haematocrit values in HIS-supplemented patients with uraemia have been reported by Giordano et al. [2].
However, the design of the study by Giordano and colleagues has been criticized by Phillips et al. [131],
and the results of 2 subsequent studies suggested that HIS supplementation did not improve anaemia in
patients with uraemia [129,130].

The use of recombinant human erythropoietin therapy and iron supplementation almost completely
eradicated severe anaemia in uremic patients, and therefore, the potential benefits of HIS therapy appear
to be obsolete. However, unfortunately, some haemodialysis patients have anaemia that is refractory to
erythropoietin therapy, and several pharmacological agents, such as androgens, vitamin C, and L-carnitine,
have been studied to determine their effects on improving the response to erythropoietin [132]. Studies
examining the effects of HIS supplementation on these patients are not available.

In addition to the supposed positive effect of HIS on erythropoiesis, a reason to advocate HIS
supplementation in patients with chronic kidney disease is its potential to neutralize excessive
production of ROS and tissue damage associated with iron overload [133]. Combined supplementation
of iron with HIS has been shown to be more effective in therapy of uremic anemia when compared
with iron alone [129].

6. Side Effects of Increased HIS Intake

There are no reports of signs of toxicity or mutagenic activity in HIS-treated subjects, and
researchers have reached a consensus that increased intake of HIS and/or CAR is safe [134]. Although
HIS is a precursor of histamine, allergic reactions or peptic ulcers caused by increased gastric acid
secretion have not been reported. Practically important might be reduced folate status [45,46,126],
anorexia [62–69], and increased loss of zinc in urine reported after HIS administration in overweight
subjects and patients with progressive systemic sclerosis [135,136]. Several metabolic alterations noted
below indicate that increased HIS consumption is inappropriate in subjects with liver injury.



Nutrients 2020, 12, 848 13 of 20

First, the results of several studies performed using rats reveal that a HIS-supplemented diet may
induce hypercholesterolemia and liver enlargement [137–140].

Second, 3 nitrogen atoms are present in the HIS molecule, which should appear as ammonia when
HIS is catabolized. A high ammonia concentration in HIS-loaded subjects, which might occur after
an infusion of HTK solution during cardiac surgery, may exert detrimental effects on the course of
the underlying disease, particularly in subjects with impaired hepatic function. Increased ammonia
concentrations have been observed in blood plasma, liver, and muscles of HIS-loaded rats [39].

Third, several studies have shown that HIS administration may lead to marked alterations in
aminoacidaemia, which may impair signs of hepatic encephalopathy. Increases in glutamate, alanine,
and glutamine concentrations and decreases in glycine and branched-chain amino acid (BCAA; valine,
leucine, and isoleucine) concentrations in blood plasma have been reported frequently [39,59,140–143].

7. Summary and Conclusion

HIS possesses unique chemical and metabolic properties that are the basis for its use as a treatment
for a wide range of conditions. HIS-rich solutions have clear benefits in the preservation of organs for
transplantation and myocardial protection in cardiac surgery. Further studies are needed to elucidate
the effects on muscle fatigue during strenuous exercise, neurological disorders, metabolic syndrome,
atopic dermatitis, uraemic anaemia resistant to erythropoietin therapy, and inflammatory bowel
diseases and as a supplement to increase the effectiveness of methotrexate in treatment of malignancies.

Signs of toxicity, mutagenic activity, and allergic reactions have not been reported. Of concern
should be reports of hepatic enlargement, increases in ammonia and glutamine levels, and decreases in
BCAA levels, indicating that HIS supplementation might be inappropriate in patients with liver disease.

In conclusion, HIS-containing supplements appear to be safe and efficient compounds with
a promising therapeutic potential in remarkably large number of conditions. Randomized controlled
intervention trials in humans utilizing HIS-containing compounds are warranted to validate their
effectiveness for specific disorders.
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