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Abstract: The interplay between inflammation and oxidative stress is a vicious circle, potentially
resulting in organ damage. Essential micronutrients such as selenium (Se) and zinc (Zn) support
anti-oxidative defense systems and are commonly depleted in severe disease. This single-center
retrospective study investigated micronutrient levels under Se and Zn supplementation in critically ill
patients with COVID-19 induced acute respiratory distress syndrome (ARDS) and explored potential
relationships with immunological and clinical parameters. According to intensive care unit (ICU)
standard operating procedures, patients received 1.0 mg of intravenous Se daily on top of artificial
nutrition, which contained various amounts of Se and Zn. Micronutrients, inflammatory cytokines,
lymphocyte subsets and clinical data were extracted from the patient data management system on
admission and after 10 to 14 days of treatment. Forty-six patients were screened for eligibility and
22 patients were included in the study. Twenty-one patients (95%) suffered from severe ARDS and
14 patients (64%) survived to ICU discharge. On admission, the majority of patients had low Se
status biomarkers and Zn levels, along with elevated inflammatory parameters. Se supplementation
significantly elevated Se (p = 0.027) and selenoprotein P levels (SELENOP; p = 0.016) to normal range.
Accordingly, glutathione peroxidase 3 (GPx3) activity increased over time (p = 0.021). Se biomarkers,
most notably SELENOP, were inversely correlated with CRP (rs = −0.495), PCT (rs = −0.413), IL-6
(rs = −0.429), IL-1β (rs = −0.440) and IL-10 (rs = −0.461). Positive associations were found for CD8+

T cells (rs = 0.636), NK cells (rs = 0.772), total IgG (rs = 0.493) and PaO2/FiO2 ratios (rs = 0.504). In
addition, survivors tended to have higher Se levels after 10 to 14 days compared to non-survivors
(p = 0.075). Sufficient Se and Zn levels may potentially be of clinical significance for an adequate
immune response in critically ill patients with severe COVID-19 ARDS.

Keywords: acute respiratory distress syndrome; selen; zinc; critical care; oxidative stress; nutri-
ent supplementation

1. Introduction

Since late 2019, the novel severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) has caused a dramatic outbreak of unusual viral pneumonia [1,2]. Being highly
transmissible and infectious, coronavirus disease 2019 (COVID-19) has spread all over
the world, posing significant threats to global public health. Among other symptoms,
COVID-19 is characterized by fever and pneumonia, which in severe cases may lead
to septic shock, hypoxemic respiratory failure, and acute respiratory distress syndrome
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(ARDS) [3]. These conditions are accompanied by distinct immunopathological changes
such as lymphocytopenia and profuse inflammation, requiring prolonged and complex
intensive care treatment [4]. Still, the pathogenesis and host response mechanisms in
the progress of severe COVID-19 are only partially understood. However, increasing
evidence suggests that excessive levels of reactive oxygen species (ROS), resulting from
dysfunctional energy production on the mitochondrial level, perpetuate a vicious cycle
between inflammation and oxidative stress [5]. Tumor necrosis factor (TNF-) α, interleukin
(IL-) 1β, IL-6 and IL-10 are exemplary cytokines associated with ROS production [6]
and are also hallmarks in different stages of COVID-19 [3,7]. Oxidative stress has been
identified as a pathway towards neurodegenerative [8] and chronic kidney disease [9], as
well as acute lung injury [10]. As a consequence, antioxidative co-treatment in critically ill
patients has been frequently discussed and investigated for organ protective reasons [11],
a consideration which may also apply for patients suffering from severe COVID-19 [12].
While the current evidence is sparse, the essential trace elements selenium (Se) and zinc (Zn)
have hopeful prospects [13,14]. The Se-containing amino acid selenocysteine constitutes
the active site of selenoproteins and provides oxidoreductase functions to selenoenzymes,
essentially involved in the physiological immune response. Among the Se-dependent
processes are macrophage signaling and cytotoxic activity of natural killer (NK) cells, as
well as T cell differentiation and proliferation [15]. Zn is involved in regulating cellular
pathways in innate and adaptive immunity [16] and plays a crucial role in lymphocyte
maturation and development [17]. While these effects alone might strengthen host defense
against viral pathogens, ribonucleic acid (RNA) viruses such as influenza A, hepatitis
C and human immunodeficiency virus strongly rely on ROS production, which might
even promote their viral replication and genome mutation rate [18]. Not surprisingly,
these infectious diseases were associated with decreased Se levels and reduced glutathione
peroxidase (GPx) activity, a major subgroup of the selenoprotein family with potent anti-
oxidative and anti-inflammatory properties [19]. SARS-CoV-2 is another RNA virus, and
Se as well as Zn deficiencies were detected in respective patients in recent German studies.
Low blood levels served as valid predictors for the mortality risk, supporting the rationale
to initiate Se and Zn supplementation trials in COVID-19 [20,21].

Here, we provide the first data on the feasibility and effects of Se and Zn supple-
mentation in COVID-19 intensive care unit (ICU) patients with severe ARDS. To this end,
we explored the potential relationships between different Se status biomarkers, Zn and
relevant immunological, as well as clinical parameters.

2. Materials and Methods
2.1. Study Design and Patients

This is an observational single-center study at the University Hospital Wuerzburg,
which adheres to the STROBE-Guidelines [22]. The institutional review board of the
University of Wuerzburg waived the need for ethic approval (63/20-kr, 25 March 2020
and 20200528 01, 5 June 2020) due to sole retrospective chart review in conjunction with
routine clinical and laboratory diagnostics. Informed consent was not necessary according
to local legislation (Bayerisches Krankenhausgesetz, Art. 24, Abs. 4). The study period (20
March to 31 October 2020) was chosen to cover the first wave of COVID-19 in Germany
and ICU patients with a confirmed SARS-CoV-2 infection [23] were consecutively screened
for eligibility. Patients with moderate to severe ARDS, who were allocated to the ARDS
and extracorporeal membrane oxygenation (ECMO) center of the University Hospital
Wuerzburg, were further considered for the study. To be finally included, the individual
chart review had to provide information about Se and Zn levels on admission and/or after
10 to 14 days of intensive care. Assignment to any other ICU of the University Hospital
Wuerzburg and missing nutrient status were the two exclusion criteria. The allocation of
patients was performed by an interdisciplinary committee of clinical experts.
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2.2. Micronutrient Supplementation and Nutrition

Micronutrient supplementation was based on the local COVID-19 ICU standard oper-
ating procedures at the ARDS and ECMO center of the University Hospital Wuerzburg. It
was started on the first day of intensive care and continued until discharge or death. Patients
received intravenous administration of 1.0 mg Se as selenite (Biosyn Arzneimittel GmbH,
Fellbach, Germany) daily and different combinations of artificial nutrition. Fresubin® HP
Energy (n = 21), Fresubin® Renal (n = 9), Diben® (n = 12), Survimed® OPD (n = 4; each
Fresenius Kabi Austria GmbH, Graz, Austria) and Cernevit® + ADDEL TRACE® (n = 22;
Baxter Deutschland GmbH, Unterschleißheim, Germany) provided various amounts of Zn
and Se, among other micronutrients. SmofKabiven® (n = 22; Fresenius Kabi Austria GmbH,
Graz, Austria) contained Zn. Monitoring of the nutrient status included a full assessment
of Se, selenoprotein P (SELENOP), GPx3 and Zn on admission as well as after 10 to 14 days
of intensive care. Serum samples were prepared for transport at −80 ◦C and analyzed in
the Institute of Experimental Endocrinology (Charité-Universitätsmedizin Berlin, Berlin,
Germany) as described recently [20,21]. Concentrations of Se and Zn were determined
using total reflection X-ray fluorescence (S4 T-STAR, Bruker Nano GmbH, Berlin, Germany).
SELENOP was quantified with a commercial ELISA-kit (selenOtest ELISA, selenOmed
GmbH, Berlin, Germany) according to manufacturer’s instructions. The activity of GPx3
was assessed via consumption of nicotinamide adenine dinucleotide phosphate (NADPH)
at 340 nm in a coupled enzymatic assay as initially described by Flohé and Günzler [24].
To this end, samples were incubated with reduced glutathione, NADPH, sodium acide
(NaN3) and glutathione reductase. The enzymatic reaction was started with hydrogen
peroxide. Reference ranges were adopted from the European Prospective Investigation
into Cancer and Nutrition (EPIC) study, where similar methods have been used on a large
number of samples in healthy adults [25,26].

2.3. Data Collection

Clinical data were extracted from a patient data management system (COPRA6 RM1.0,
COPRA System GmbH, Berlin, Germany). ARDS was classified according to the Berlin
definition [27]. Standard parameters were collected at the laboratory of the University
Hospital Wuerzburg, including C reactive protein (CRP), procalcitonin (PCT), IL-6, total
lymphocyte count and immunoglobulin G (IgG). IL-1β, IL-8, IL-10, IL-12, TNF-α, and
CXCL-10 were routinely analyzed by an external diagnostics provider (Ganzimmun Di-
agnostics AG, Mainz, Germany) from deep-frozen serum samples (−80 ◦C) using the BD
CBA Human Inflammatory Cytokines Kit (BD Biosciences, San Jose, CA, USA) according
to instruction. Fluorescence-activated cell sorting was conducted at a Navios cytometer
(Beckman Coulter, Krefeld, Germany) at the University Hospital Wuerzburg. A mini-
mum of 3000 events per lymphocyte gate were recorded and the following anti-human
antibodies were used: anti-CD45-Krome-Orange, anti-CD14-APCA700, anti-CD3-FITC,
anti-CD4-APC, anti-CD8-ECD, anti-CD56/CD16-APC A750, anti-CD19-PC7, anti-CD38-
PC5.5, anti-CD27-ECD, anti-CD20-APC750 (each Beckman Coulter, Krefeld, Germany) and
anti-IgD-FITC (BD Biosciences, San Jose, CA, USA). Reference values are based on the
literature [28,29].

The primary explorative endpoint was to evaluate the kinetics of trace elements under
supplementation during routine intensive care. As secondary endpoints, we evaluated
the inflammatory immune response and PaO2/FiO2 ratio, as a marker of ARDS severity.
Further exploratory outcomes included the length of ICU stay and mechanical ventilation,
sequential organ failure assessment (SOFA) score, ECMO, nosocomial infections and
mortality. PaO2/FiO2 ratio and SOFA score were calculated daily. For correlation analyses,
the respective scores on the day of blood sampling for micronutrient assessment were used.
Our study covers the whole course of intensive care. Therefore, the term “non-survivor”
refers to ICU mortality and “survivor” is defined as survival upon ICU discharge.
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2.4. Statistical Analysis

Due to small sample sizes, the normality of the data could not be assumed. Categorial
variables are presented as absolute numbers and percentages, while continuous variables
are expressed as the median ± interquartile range (IQR, 25–75%). Wilcoxon’s paired
test was used to assess longitudinal changes. The Mann–Whitney rank-sum test was
applied to compare numeric variables and Fisher’s exact test was used for categorial
data. Associations between different variables were correlated according to Spearman.
Linear regression was applied to the graphs in Figure 3, and the 95% confidence interval is
also shown. Statistical significance was considered as p < 0.05. Data were analyzed with
Microsoft Office® 365 ProPlus (Microsoft™, Redmond, WA, USA) and GraphPad Prism®

Version 9.0.2 (GraphPad Software™, San Diego, CA, USA).

3. Results
3.1. Demographics and Baseline Characteristics

In total, 22 patients were included in this study between March and October 2020
(Figure 1). Overall, 64% were male, 36% were female, and the median age was 60.5 years
(50–69). On admission to ICU, a median SOFA score of 15 (13–16) indicated high severity
of illness. In addition, 95% of the patients suffered from severe ARDS at any time during
intensive care and 64% survived upon discharge from ICU (Table 1).
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Table 1. Demographics and course of intensive care.

All Patients
n = 22

Survivors *
n = 14

Non-Survivors
n = 8 p

Female, No. patients (%) 8 (36) 4 (29) 4 (50) 0.386
Male, No. patients (%) 14 (64) 10 (71) 4 (50) 0.386

Age, years (median, IQR) 60.5 (50–69) 53 (48–68) 66 (63–68) 0.113
Charlson comorbidity index

(median, IQR) 2 (2–4) 2 (2–3) 3.5 (2–5) 0.079

SOFA score, admission (median,
IQR) 15 (13–16) 15 (13–16) 16 (15–16) 0.405

Minimal PaO2/FiO2, mmHg
(median, IQR) 60 (51–69) 65 (58–71) 56 (51–62) 0.192

Severe ARDS, No. patients (%) 21 (95) 13 (93) 8 (100) 0.999
VvECMO, No. patients (%) 15 (68) 9 (64) 6 (75) 0.999

Renal replacement therapy, No.
patients (%) 17 (77) 9 (64) 8 (100) 0.115

Intravenous corticosteroid
therapy, No. patients (%) 14 (64) 8 (57) 6 (75) 0.649

Duration of intensive care, days
(median, IQR) 24.5 (15–42) 40 (20–44) 17.5 (12–22) 0.025

* Survival upon discharge from the intensive care unit. ARDS, acute respiratory distress syndrome; IQR, interquar-
tile range; No., number of; SOFA, sequential organ failure assessment; VvECMO, veno-venous extracorporeal
membrane oxygenation.

3.2. Temporal Development of Inflammation, Immune Cell Numbers and Micronutrients
during Supplementation

Patients had significantly elevated levels of CRP, PCT and IL-6 on admission, when
compared to normal reference values. Alongside this, the median levels of IL-10, IL-12 and
CXCL-10 were also increased. Lymphocyte counts were depleted, with CD8+ T cells and
NK cells being affected the most. However, over the course of the ICU stay, inflammatory
parameters normalized and cell counts were restored (Table 2).

Table 2. Immune response.

Reference
Range

Admission
(n = 22)

10–14 Days
(n = 19) p

CRP, mg/dL 0–0.5 24 (19–32) 15 (8–21) 0.049
PCT, ng/mL 0–0.5 1.4 (0.6–4.5) 1.5 (0.6–3.1) 0.671
IL-6, pg/mL 0–7 501 (168–1211) 110 (54–306) <0.001

IL-1β, pg/mL 0–4.9 2.3 (1.8–3.2) 1.9 (1.3–3.1) 0.297
IL-8, pg/mL 0–1648 199 (87–407) 162 (111–428) 0.359
IL-10, pg/mL 0–1.8 16.6 (8.4–25.4) 15.6 (7.6–22.8) 0.652
IL-12, pg/mL 0–0.6 1.7 (1–3.5) 1.8 (1.3–2.2) 0.672

TNF-α, pg/mL 0–2.9 0.8 (0.1–1.9) 0.6 (0.1–1.2) 0.750
CXCL-10, pg/mL 0–80 759 (278–874) 583 (353–679) 0.734

Lymphocytes, × 1000/µL 1–4 0.9 (0.7–1.2) 1.4 (0.9–1.7) 0.188
CD3+ T cells, × 1000/µL 718–2494 804 (236–1100) 1259 (910–1420) 0.039
CD3+/CD4+ T cells, ×

1000/µL 456–1492 609 (188–741) 585 (558–772) 0.250

CD3+/CD8+ T cells, ×
1000/µL 272–1144 134 (61–317) 382 (324–745) 0.008

CD19+ B cells, × 1000/µL 112–622 107 (78–169) 140 (97–197) 0.547
CD3−/CD56+ NK cells, ×

1000/µL 82–760 56 (21–100) 157 (127–213) 0.195

CD38++/CD27++/IgD−

cPB, × 1000/µL 1–3 3.9 (0.5–10.9) 4.9 (3.3–12.2) 0.945

IgG, mg/dL 690–1600 785 (600–907) 1086 (817–1197) 0.193
The table shows median values and interquartile ranges. Datasets are not complete in respect to immune
cell counts and interleukin levels for all patients. CPB, circulating plasmablasts; CRP, C-reactive protein; Ig,
immunoglobulin; IL, interleukin; NK, natural killer; PCT, procalcitonin; TNF, tumor necrosis factor.
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On admission to ICU, 50% of patients with available micronutrient status (n = 8)
demonstrated a substantial Se deficiency. SELENOP levels were also reduced in 69% of
patients (n = 11). After 10 to 14 days of supplementation, Se levels significantly increased to
the normal range in all patients (p = 0.027), as well as SELENOP (p = 0.016), with only one
case remaining below reference range. Accordingly, a significant increase in GPx3 activity
over time (p = 0.021) was observed. Low levels of Zn were initially observed in 56% of
patients (n = 9), and again normalized within two weeks of supplementation (p = 0.002)
(Figure 2).
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Figure 2. Supplementation increased the (A) selenium (Se) status biomarkers and (B) zinc (Zn) levels
over the course of intensive care. Each black dot represents an individual patient. The lower end
of each reference range is indicated by a red dashed line. Ranges were adopted from the European
Prospective Investigation into Cancer and Nutrition (EPIC) study. However, glutathione peroxidase
3 (GPx3) levels have not been determined in a large patient collective so far. Therefore, a validated
and comparable reference range is not available. SELENOP, selenoprotein P. p < 0.05 (*), p < 0.01 (**).

There were significant associations between micronutrients in our patients (Figure 3).
We found correlations between Se and SELENOP (rs = 0.843, p = < 0.001), Se and Zn
(rs = 0.547, p = < 0.001), SELENOP and GPx3 (rs = 0.526, p = 0.001) and SELENOP and Zn
(rs = 0.571, p = < 0.001).
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3.3. Potential Clinical Relevance of Supplemental Micronutrients for Critically Ill
COVID-19 Patients

Sufficient Se homeostasis was furthermore associated with reduced parameters of
inflammation and restored numbers of lymphocytes (Figure 4). Se was inversely correlated
with CRP (rs = −0.482, p = 0.005) and PCT (rs = −0.371, p = 0.034) and positively associated
with the number of NK cells (rs = 0.452, p = 0.045). In addition, SELENOP was negatively
correlated with CRP (rs = −0.495, p = 0.003), PCT (rs = −0.413, p = 0.017), IL-6 (rs = −0.429,
p = 0.013), IL-1β (rs = −0.440, p = 0.012) and IL-10 (rs = −0.461, p = 0.008). SELENOP
was furthermore associated with higher numbers of CD8+ T cells (rs = 0.636, p = 0.003),
NK cells (rs = 0.772, p = < 0.001) and total IgG (rs = 0.493, p = 0.027). Alongside reduced
inflammation, PaO2/FiO2 ratios were improved as a function of Se (rs = 0.356, p = 0.042)
and SELENOP (rs = 0.504, p = 0.003). Further exploratory endpoints such as SOFA score,
time on mechanical ventilation and in the ICU, ECMO and nosocomial infections were not
related to Se biomarkers.
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Figure 4. Correlation matrix of nutritional status and inflammation. Red colors indicate a positive
and blue colors a negative correlation coefficient (rs). p < 0.05 (*), p < 0.01 (**), p < 0.001 (***). CPB,
circulating plasmablasts; CRP, C-reactive protein; Ig, immunoglobulin; IL, interleukin; GPx3, glu-
tathione peroxidase 3; NK, natural killer; PCT, procalcitonin; Se, selenium; SELENOP, selenoprotein
P; SOFA, sequential organ failure assessment score; TNF, tumor necrosis factor; Zn, zinc.

In comparison to patients with a fatal outcome (n = 8), survivors (n = 14) significantly
responded to supplementation with an increase in Se (p = 0.008), SELENOP (p = 0.004),
GPx3 (p = 0.039) and Zn levels (p = 0.020) over the course of the ICU stay (Figure 5).
Decedents had a median ICU course of 17.5 days (12–22), whereas patients with a favorable
outcome were treated for significantly longer (40 days, 20–44; p = 0.025). Despite a similar
supplementation regimen, survivors tended to have higher Se levels after 10 to 14 days
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of intensive care compared to non-survivors (p = 0.075). However, this finding might be
biased by small n-numbers.
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4. Discussion

The present pilot study highlights a potential benefit of micronutrient supply in a
highly selective study population of critically ill patients with severe COVID-19 induced
ARDS, requiring ECMO in almost 70% of the cases. On admission, Se biomarkers and
Zn concentrations were below the reference range. We observed excessive inflammatory
parameters and reduced lymphocyte counts. Intravenous Se supplementation in the form
of selenite (1.0 mg per day) in addition to fortified artificial nutrition containing Se and Zn
was feasible and effective in restoring an adequate micronutrient status within two weeks
of intensive care. This was associated with reduced inflammation, increasing lymphocyte
counts and clinical recovery. In total, 64% of the patients survived intensive care, which
compares favorably with previously published mortality rates [30–33].

The antioxidative redox system relies on selenoproteins such as SELENOP and GPx3
to catalyze the neutralization of reactive oxygen and nitrogen species. In addition to this
direct, antioxidative effect, the transporter SELENOP facilitates the distribution of Se to
target tissues, where it directly affects the expression and enzymatic activity of further
protective selenoproteins. Either a massive accumulation of ROS or a shortage in Se supply
can tip the redox equilibrium towards oxidative stress. Severe COVID-19 is characterized
by systemic inflammation [34], which is a predestined condition, where arising oxidative
stress can drive multi organ damage [35]. Low levels of Se have been associated with higher
morbidity and mortality in critically ill patients [36,37], and Se supplementation improved
inflammation and pulmonary mechanics in ARDS [38]. A trial including 249 participants
found reduced mortality rates in septic patients receiving high-dose Se compared to
placebo [39], whereas the randomized REDOXS study in 1223 critically ill patients did not
reveal any clinical benefits of Se and antioxidant supplementation [40]. As additional trials
are rather small and heterogenous with high risk of bias [41] and following meta-analyses
underlined the resulting ambiguous findings [42,43], international guidelines currently
do not recommend the general use of antioxidants in critically ill patients but consider
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supplementation in cases with proven deficiency [44]. However, respective data in the
context of severe COVID-19 induced ARDS are not yet available and it is unclear whether
previous results can be easily translated into the ongoing pandemic.

At the ARDS and ECMO center of the University Hospital Wuerzburg, standard
operating procedures during the first wave of COVID-19 included a routine micronutrient
assessment on admission and after 10 to 14 days of intensive care. The analyses of the
serum samples required an external laboratory, which involved a transportation route of
500 km, consolidated shipment for logistical reasons and a consequential delay in the re-
porting of the results. The local ICU protocol therefore inevitably implemented preliminary
nutrient supplementation, even with pending evidence of a deficiency. Retrospectively,
we found Se and SELENOP levels to be below the reference range in 50% and 69% of our
patients on admission to ICU, respectively. Our supplementation strategy was then able
to effectively remedy these deficiencies within two weeks of intensive care. Alongside,
GPx3 activity markedly increased, indicating restored systemic and cell-specific protec-
tion against oxidative stress via the reduction of hydrogen peroxide at the expense of
glutathione [45]. The three complementary biomarkers, Se, SELENOP and GPx3, showed
the expected correlations, suggesting that sodium selenite infusions are an easy, efficient
and straightforward way to improve antioxidant defense mechanisms.

This might also apply for Zn, another essential trace element with multi-layered
impacts on the immune system, ROS production and degradation [46]. Its indispensable
role, especially during infection, is broadly acknowledged [16,17,47], providing a rationale
for supplementation in COVID-19 patients [14]. While Zn was below the reference range
in 56% of the patients on admission, adjuvant and Zn-containing artificial nutrition could
normalize levels in the majority of patients up to day 10 to 14. Again, Zn was closely
associated with Se and SELENOP as described before [21]. Se biomarkers were correlated
with reduced parameters of inflammation, especially CRP, which has been identified as
a reliable predictor of disease severity and outcome in COVID-19 [48,49]. Contrary to
former beliefs, recent studies questioned the role of an excessive cytokine storm in severe
COVID-19 [50] and rather suggest a balanced elevation of pro- as well as anti-inflammatory
cytokines. Accordingly, IL-6 and IL-10 levels were both inversely associated with SELENOP
in our study. This is partially in contrast to an animal model of Se deficiency-induced renal
inflammation, where disruption of selenoproteins led to an initiation of the NF-κB pathway
with increased IL-6 and reduced IL-10 concentrations [51]. On the other hand, IL-6 can
directly suppress hepatic biosynthesis of SELENOP [52], which might result in declining
Se levels during systemic inflammation, independent of the Se baseline.

IL-6 production can be strongly amplified by IL-1β, which is another signature cy-
tokine of monocytes and macrophages during innate immune response [53]. Cytokine
release, as well as phagocytic and migratory properties of macrophages, can be modulated
by Se levels and selenoproteins [15], this being one possible explanation for the interrela-
tions observed in this study. Innate antiviral defense also relies on cytotoxic capacities of
NK and CD8+ T cells. Both lymphocyte subsets showed a distinct reduction in numbers
on admission to ICU, which is in line with studies pointing to functional exhaustion and
an impaired cytotoxic response in COVID-19 patients [54]. Excessive production of IL-6
might suppress lymphopoiesis [55] and SARS-CoV-2 can induce cell death via Fas/FasL-
dependent signaling [56]. We have previously shown that inflammation and viral loads
were drastically reduced after two weeks of intensive care in patients with COVID-19
induced ARDS and antibody titers against the spike receptor binding domain of the virus
were fully established at this point of time [57,58]. On the one hand, both mechanisms
could explain the initial lymphocytopenia and recovery of the lymphocyte subsets regard-
less of the micronutrient status. On the other hand, trace element supplementation might
well play a supportive role, as increasing levels of Se, SELENOP, and Zn were strongly
associated with the restoration of NK and CD8+ T cell subsets in our patients. These
findings complement previous observations, where Se and Zn supplementation has shown
beneficial effects on NK and T cell numbers as well as cytotoxic capacity [59]. Our data
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further suggest a relationship between SELENOP and total IgG levels, which may serve as
a surrogate parameter for B cell function.

We speculate that an improvement in cellular and humoral immune response might
promote virus clearance and, in combination with reduced systemic inflammation, sup-
port the resolving of severe ARDS [60]. The positive correlation between Se status and
PaO2/FiO2 ratios, as well as a trend towards higher Se levels in survivors compared to
non-survivors, might underline this assumption. Patients with a favorable outcome even
seemed to respond better to supplementation with a more pronounced increase, especially
in Se and SELENOP. Rising kinetics of Se biomarkers and Zn have been used as a prog-
nostic tool before, and COVID-19 survival was accompanied by higher nutrient levels
compared to fatal cases [20,21]. However, it has to be noted that our study does not provide
additional insights into potential relationships between Se biomarkers, Zn and further
clinical outcomes, such as SOFA score, duration of mechanical ventilation, length of ICU
stay, ECMO treatment and nosocomial infections. This is in line with previous studies on Se
supplementation in cardiac surgery [61,62] and septic shock [63], where no persistent effect
on the SOFA score, duration of mechanical ventilation and length of ICU stay was found.
All of these multifactorial parameters and outcomes mirror the complexity of intensive
care far beyond nutritional support and are immensely influenced by complications such
as bleeding, thromboembolic events, hemodynamic instability or other conditions.

In this light, the retrospective design and the small number of patients, especially
when divided into survivors and non-survivors, are the major limitations of our explorative
study. Datasets for micronutrients and immunologic parameters are not complete in all
cases and limit the possibility to include additional patients. However, to the best of
our knowledge, this is the first study to investigate the feasibility and potential clinical
relevance of micronutrient supplementation in patients with severe COVID-19 ARDS.
Even though this study reflects real world data from clinical practice, the observational
results remain correlative and do not necessarily show a causative relationship. Allocation,
treatment, nutrition and sampling were solely at the hands of the responsible ICU-team
and not affected by this study. Therefore, the risk of selection bias cannot be excluded
and a control group without micronutrient supplementation is not available. Individual
combinations of artificial diets may have moreover led to slightly different amounts of
supplemented micronutrients during the course of intensive care. Most patients were
referred to our tertiary care center via the German ARDS network, whereby information
about early stages of the disease cannot be provided. Although daily Se intake of 1.0 mg is
well below the toxic dose [64], our study is not sufficiently powered to evaluate safety and
side effects of the supplementation.

5. Conclusions

Taken together, the present findings strengthen the notion on a clinical significance
of adequate Se and Zn supply for critically ill patients with severe COVID-19 ARDS.
Commonly observed deficiencies can be effectively compensated by applying the outlined
supplementation strategy. Se and Zn might be involved in the reduction in inflammation
and the restoration of critical lymphocyte counts for the cytotoxic immune response,
which may further translate into clinical improvement. However, the results need to be
considered within the limits of an observational study, so that adequately designed trials
are encouraged to fully elucidate the clinical relevance of micronutrient supplementation
in patients with severe COVID-19.
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