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Abstract: Beta-glucans comprise a group of polysaccharides of natural origin found in bacteria,
algae, and plants, e.g., cereal seeds, as well as microfungi and macrofungi (mushrooms), which
are characterized by diverse structures and functions. They are known for their metabolic and
immunomodulatory properties, including anticancer, antibacterial, and antiviral. Recent reports
suggest a potential of beta-glucans in the prevention and treatment of COVID-19. In contrast to
β-glucans from other sources, β-glucans from mushrooms are characterized by β-1,3-glucans with
short β-1,6-side chains. This structure is recognized by receptors located on the surface of immune
cells; thus, mushroom β-glucans have specific immunomodulatory properties and gained BRM
(biological response modifier) status. Moreover, mushroom beta-glucans also owe their properties to
the formation of triple helix conformation, which is one of the key factors influencing the bioactivity
of mushroom beta-glucans. This review summarizes the latest findings on biological and health-
promoting potential of mushroom beta-glucans for the treatment of civilization and viral diseases,
with particular emphasis on COVID-19.
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1. Introduction

Mushrooms (macrofungi) have been a subject of interest to people for centuries.
Edible mushrooms have been appreciated not only for their taste, but also for medicinal
properties. The oldest data indicating the use of fungi by humans come from archaeological
excavations dating back to about 8000 years BC. In the 1990s, two species of fungi were
found by the corpse of an “ice man”, namely, Piptoporus betulinus (Bull.) P. Karst, and the
Fomes fomentarius (L.) Fr, which may have served “Ötzi”, living 5000 years BC, as dressings
or, presumably, they could have been treated as a cure for stomach problems. Another
valued species with medicinal properties was Fomitopsis officinalis (Vill.) Bres used by the
ancient Greeks and Romans as a cure for many diseases, such as excessive sweating during
tuberculosis, dizziness, respiratory diseases, digestive problems, and even cancer. The
therapeutic properties of fungi were earliest and most often used in the Far East, i.e., in
China and Japan. In Europe, mushrooms were more frequently valued for their taste.
The oldest text reports on the therapeutic properties of fungi date back to around the 1st
century BC. They mention the Japanese shiitake (Lentinula edodes (Berk.) Pegler, Ganoderma
lucidum (M.A. Curtis) P. Karst. Other species with documented medicinal properties in
historical reports are Amanita muscaria (L.) Lam., used in the past to treat rheumatism
and to restore the function of the secretory glands, and the Lycoperdon sp., used as an
antihemorrhagic agent [1].

Apart from their nutritional value [2], mushrooms are attributed with a wide range of
health-promoting properties [3–9]. They exhibit antioxidant [3], hypotensive [4], hypoc-
holesterolemic [5], and hypoglycemic [6] as well as anticancer [7], immunomodulating [7],
antiviral [8], and bacteriostatic properties [9]. The health properties of fungi result from the
presence of biologically active substances, including phenolic compounds and vitamins (A,
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E, C), antioxidant elements, and amino acids [10–12]. In recent years, the greatest interest
has been focused on beta-glucans, especially on the possibility of their use in the treatment
of civilization diseases [13] and COVID-19 [14].

The aim of this review was to summarize the latest findings on biological and health
promoting properties of mushroom beta-glucans with a potential to support the treatment
of many disorders, including civilization and viral diseases, with particular emphasis
on COVID-19.

2. Review
2.1. Classification and Structure of Mushroom Glucans

The most common polysaccharides in fungi are chitin, hemicellulose, beta-glucans,
alpha-glucans, mannans, xylans, and galactans [15,16].

Polysaccharides are a very diverse group of macromolecules whose monomers are
linked by glycosidic bonds. Monomers in polysaccharides can be linked both linearly
and form branched chains. The basic units forming the fungal polysaccharides may be
glucose, fructose, glucuronic acid, arabinose, galactose, xylose, and mannose. Additionally,
polysaccharides can be combined with peptides and proteins [17,18].

Fungal glucans can be linear or branched. The molecules of particular monosaccha-
rides, mainly glucose, are connected by α- or β-glycosidic and also by the various types of
different glycosidic linkages present in the same molecule. Mushroom D-glucans can have
different linkage types, branching degrees, molecular weights, and solubility profiles [19,20].

Heteropolysaccharides, among them, heteropolysaccharides with a homogeneous
main chain (heterogalactans, heteroglucans, and heteromannans) and heteropolysaccha-
rides with a heterogeneous main chain, are a more diverse group of biologically active
polysaccharides [17]. Due to the structure of the basic chain of these compounds, they are
divided into mannans, xylans, galactans, and fructans. The side chains of these macro-
molecules may include arabinose, fructose, mannose, galactose, or glucose [17,19,21–24].
Figure 1 shows the classification of fungal main polysaccharides.
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Figure 1. Classification of fungal polysaccharides [17,23,24].

2.1.1. General Characteristic of β-Glucans

Beta-glucans are polymers of β-D-glucose. They constitute part of cell walls of bacteria
and plants, mainly algae and cereals, as well as microscopic fungi and macrofungi [25,26].
Beta-glucans have mainly a structure-forming role in the cell. They are divided into several
different groups according to their structure, i.e., the degree of chain branching and the type
of glycosidic bonds connecting the glucose monomers. β-1,3-glucans, without branches
(linear), occur in bacteria. β-1,3-1,4-D-glucans are mainly found in cereal grains such as
oats and barley, and marine algae such as brown algae [27], while β-1,3-1,6-D-glucans occur
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mainly in yeasts (β-1,3-glucans with long-branched chains β-1,6- (Sacharomyces cerevisiae))
and macrofungi (β-1,3-glucans with short-branched chains β-1,6-) [28].

Bioactivity of beta-glucans depends on the conformation of their molecules. Glucans,
like other polymers, can adopt different chain conformations depending on the type of
solvent, e.g., random coil, single helix, double helix, triple helix, worm-like, rod-like, and
sphere-like shapes. However, beta-1,3–glucans with beta-1,6 branches or without branches
make up a triple helix structure in its natural form and in aqueous solutions at room
temperature. The triple helix structure determines the immunomodulatory and anticancer
properties of beta-glucans [29].

β-glucans are essential components of cell walls in cereal grains, mainly oats, barley,
rye, and millet. They occur in the outermost layer of grains (aleuronic layer) mainly as un-
branched β-D-glucose chains linked by β-1-3 or β-1-4 glycosidic bonds. Their content, how-
ever, is quite low, ranging from 4–7%. The highest molecular weights among cereal grain
glucans are observed in β-glucans of oats (3,000,000 Da) and barley (2,100,000 Da) [30,31].

Cereal β-glucans show a number of health properties. They lower blood cholesterol
and glucose [32], support the treatment of obesity, inflammation of the intestine, and gastric
mucosa, and take part in the microbiota modulation [5,32,33].

Beta-glucans are also a part of the inner layer of the yeast cell walls, where their content
varies widely, ranging from 78% to 84% [33]. The content of glucans largely depends on
the method of yeast cultivation. There are several types of glucans in the yeast cell wall,
differing in the type of bonds and the branching of molecules. Among others, there are
high-molecular-weight, insoluble 1-3-β-glucans with a few side branches connected to the
main chain by a β-1-6 bond, low-molecular-weight, highly branched β-1-6-glucans with
side branches connected to the main chain by a β-1-3 bond, and low-molecular-weight,
soluble 1-3-β-glucans with side chains connected by a β-1-6 bond [33,34].

2.1.2. Mushroom Beta-Glucans

The beta-glucan content of macrofungi depends on the species, environment, and
maturity of the fruiting body, ranging between 3.1% and 46.5% [25,35,36].

Mushroom polysaccharides contain various types of glycosidic bonds and, thus, are
grouped as beta-glucans, alpha-glucans, and heteroglycans. Beta-glucan molecules in
individual species of fungi differ in the structure of the base chain and the number and
type of bonds, as well as the type and number of side chain branches and structure (e.g.,
triple helix, single helix, or random helix) and in molecular weight [37]. Macrofungal
beta-glucans are considered natural biological response modifiers (BRMs) [38]. Table 1
shows examples of the best-studied beta-glucans.

Table 1. Examples of studied beta-glucans of macrofungi.

Name of β-Glucan Abbreviation Mushroom Species Glucan Structure Reference

Krestin PSK
PSP Trametes versicolor

1,3-β-glucan
1,4-β-glucan

multi-sugar–protein complex containing
mainly 1,3-β-D-glucans

[39,40]

Tylopilan - Tylopillus felleus (Bull.) 1,3-1,6-β-glucan [41]
Lentinan LNT Lentinula edodes 1,3-1,6-β-glucan [42]
Pleuran - Pleurotus ostreatus 1,3-β- glucan with galactose and mannose [43]

Schizophyllan SPG Schizophyllum commune 1,3-1,6-β-glucan [44]
MD-fraction PDF Grifola frondosa 1,6-1,3-β-glucan [45]

Grifolan GRN 1,3-1,6-β-glucan [46]

Scleroglucan SSG Sclerotium glucanicum
Sclerotium rolfsii 1,3-1,6-β-glucan [47]
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2.2. Structural Characteristics of Selected Beta-Glucans from Macrofungi
2.2.1. Lentinan

Lentinan is a part of cell walls of Lentinula edodes (shiitake), which was first isolated
in 1970 by Chihara et al. [48]. This is 1,3-1,6-β-glucan, whose basic unit is a five-molecule
glucose core with two glucose side chains (one for every three glucose molecules in the
basic chain) attached to the main chain by β-1,6-glycosidic bonds (Figure 2). Lentinan forms
a triple helix chain in aqueous solutions. Its molecular weight varies from 300 to 800 kDa,
with the average of about 500 kDa (Daltons). Lentinan primarily possesses an immune
enhancement effect in tumor patients, as well as the immunomodulatory properties [49,50].
Polysaccharides extracted from L. edodes have not only the enhancement effect, but may also
inhibit tumor growth through various mechanisms, such as inducing tumor cell apoptosis
and directly killing tumor cells [51,52]. Lentinan is considered to be one of the most active
components in mushrooms (L. edodes). It attracts many researchers due to its low toxicity
and many medicinal and pharmacological properties. In addition to its immunostimulatory
and anticancer properties, lentinan demonstrates antioxidant and blood lipid-lowering
effects [53,54]. The latest research suggests that dietary supplementation of beta-glucans
isolated from L. edodes may be an effective nutritional support to prevent obesity-associated
cognitive decline [55].
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2.2.2. Schizophyllan

Schizophyllan is a beta-glucan isolated from the mushroom Schizophyllum commune.
Schizophyllan was first isolated by Kikumoto et al. in 1970 [56]. The monomeric unit of
this polysaccharide consists of three glucose molecules linked by β-1-3-glycosidic bonds
with one glucose side chain linked to the basic chain by a β-1-6-glycosidic bond (Figure 3).
The molecular weight of schizophyllan is 100–200 kDa. As lentinan, schizophyllan forms
a triple helix in aqueous solutions [44,57,58]. The properties of schizophyllan depend on
several factors, including the monosaccharide composition, molecular weight, and water
solubility; the extraction methods strongly influence these physicochemical properties [58].
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Recent studies have shown that schizophyllan enhances the anti-inflammatory re-
sponse in mouse macrophages, which may be useful in the formation of inferences during
inflammatory diseases such as periodontal disease [59]. Schizophyllan has the ability to acti-
vate the dectin-1 receptor, which contributes to the increased secretion of pro-inflammatory
cytokines, but at the same time strongly promotes the production of IL-10, a key anti-
inflammatory cytokine that plays an important role in controlling inflammation [59].

2.2.3. Krestin

Krestin (PSK), β-glucan of arboreal fungus, is extracted from Trametes versicolor (L.)
Lloyd. It is a protein-bound beta-glucan classified as a heteroglycan [40]. The chemi-
cal structure of the polysaccharide chain is shown in Figure 4. The molecular weight
of krestin is 100,000 Da on average. Krestin, like lentinan, is a popular drug in Japan.
Numerous clinical trials confirm its positive effect on the condition of patients under-
going chemotherapy due to breast, liver, stomach, colon, lung, and prostate cancer [60].
The antitumor activity of PSK lies in its ability to stimulate T lymphocytes and antigen-
presenting cells, which enables proper recognition and destruction of neoplastic cells [60,61].
Krestin also shows immune-boosting and antiviral properties and hypocholesterolemic
and prebiotic activity [40,62].
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2.2.4. Grifolan

Grifolan is a 1,3-1,6-β-D-glucan isolated from the edible mushroom Grifola frondosa
(Dicks.) Gray. The molecular weight of this polysaccharide is about 1,000,000 Da. The
monomer of grifolan molecule is built from three glucose units in the main chain and one
side chain attached to the main chain by β-1,6-glycosidic bond (Figure 5). Grifolan has
proven antitumor properties when administered orally, demonstrated by in vivo anti-tumor
testing and in mouse tumor models [64,65]. It is one of the most effective beta-glucans
that can be used in supporting the treatment of diabetes. One study found that the
oral administration of submerged-culture mycelia and broth of Grifola frondosa improved
hyperglycemia and diabetes-induced alterations in cell-mediated and innate immunities in
T2DM rats [66].

2.2.5. Pleuran

Pleuran is 1,3-1,6-β-glucan extracted from Pleurotus ostreatus and sold as a dietary
supplement under the commercial name Immunoglukan. The basic unit of this polysac-
charide consists of four glucose molecules connected by β-1-3-glycosidic bonds, and every
fourth glucose unit is linked by a side chain with a β-1-6-glycosidic bond (Figure 6). The
molecular weight of pleuran is between 600,000 and 700,000 Da [49].
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Pleuran’s healing properties and the ability to rebuild the epithelium have been
scientifically proven in infections of the respiratory system [68,69]. It has been also found
to have anti-viral properties against HSV (Herpes Simplex Virus) [70].

2.3. Mechanisms of Action of Beta-Glucans in the Human Body

Biological activity of fungal polysaccharides may vary depending on the type of
structural monomers, the size of the molecule, the degree of its branching, and solubility in
water, as well as on the structure that beta-glucans adopt in the presence of water. Studies
show that high-molecular-weight molecules with β-1-3-bonds in the base chain have the
best anticancer properties [71,72].

Most β-1,3-glucans show resistance to gastric juice. In an unchanged form, they
pass into the small intestine, where they bind to macrophage receptors (dectin-1) in the
intestinal wall and are then transported to the spleen, lymph nodes, and bone marrow.
In macrophages, high-molecular-weight β-glucans are degraded into smaller fragments,
which are then bound by complement receptors 3 (CR3) found on immune cells, including
granulocytes. Thus, the immune response directed against tumor cells is stimulated [73].

A large diversity in the structure of the beta-glucan chain affects their diverse biolog-
ical activity. Previous scientific reports attributed immunomodulatory, anticarcinogenic,
hypolipemic, hypoglycemic, and protective effects on the circulatory system to beta-glucans.
However, most of the properties of mushroom beta-glucans are due to their effects on
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the host immune system [74,75]. Figure 7 shows selected functions of beta-glucans in the
human body.
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2.3.1. Immunomodulatory Properties of Beta-Glucans

Among all the mushroom-derived beta-glucans tested, most showed immunomodula-
tory activity. The effect on the immune system is based on the ability of beta-glucans to
bind to receptors such as dectin-1, toll-like receptors (TLRs), complement receptors type
3 (CR3), scavenger receptors (Src), and lactosylceramide receptors (LacCer) present on
immune cells [76].

Dectin-1 is the most abundant receptor present on dendritic cells, monocytes, macrophages,
neutrophils, and T lymphocytes. The activation of dectin-1 leads to the stimulation of
phagocytosis, endocytosis, and the production of reactive oxygen species (ROS) directed
against pathogenic microorganisms [77]. Dectin-1 also stimulates the production of cy-
tokines (TNF-α, IL-2, IL-10, IL-12) [78].

TLRs (toll-like receptors) are very important receptors of the immune system. They
are essential in the early stages of infection to initiate an effective innate immune response.
At a later stage of infection, they regulate the adaptive immune response [79]. Beta-glucan
molecules, after binding to TLR 2 or TLR 4, activate the innate immune response [80]. The
stimulated TLR 2 via nuclear factor NF-κB induces the production of cytokines, among
them, TNF-α and IL-12 [81,82].

Complement Receptor Type 3 (CR3) is found mainly on neutrophils, monocytes, and
NK cells (natural killers), but not on macrophages [81,83]. Attachment of β-glucans to
CR3 increases leukocyte adhesion to microbial cells and activates the cytotoxicity pathway
directed against tumor cells [81,84,85].

Src receptors (Scavenger receptors) are located primarily on endothelial cells [86].
Receptors stimulated by beta-glucans, e.g., lentinan, trigger the activation of a number of
signaling pathways in the human immune system [87]. Among others, they are responsible
for the activation of mitogen-activated kinases (MAPK), phosphatidylinositol kinase (PI3K),
and endothelial nitric oxide synthase (eNOS) [88].
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Lactosylceramide (LacCer) receptors are located on neutrophils and endothelial cells.
The receptors on endothelial cells, stimulated by 1,3-β-glucans, contribute to the activation
of NF-κB and the synthesis of macrophage inflammatory protein (MIP-2) and TNF-α [89].
Stimulated receptors on neutrophils cause increased ROS production necessary to inactivate
pathogenic microorganisms through activation of the MAPK and PI3K cascades [90].

Figure 8 shows the possible β-glucan immunomodulatory mechanism of action in the
human body.
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Beta-glucans bind to dectin-1 receptors located on macrophages, dendritic cells, neu-
trophils, and monocytes. This combination results in the activation of many compounds
responsible for the immune response, including, among others, nuclear factor kappa-B (NF-
κB). When NF-κB is activated, it imports to nucleus and binds specific DNA sites. In the
signaling pathway, NF-κB is downstream of mitogen-activated protein kinases (MAPKs).
Additionally, T lymphocytes are stimulated. Chemokines and cytokines, including inter-
leukins, interferon-γ (IFN-γ), and tumor necrosis factor alpha (TNF-α), are released. As a
result, the cellular and humoral response of the immune system is enhanced [6,8,91].

Beta-glucans derived from Pleurotus are attributed with the strongest immunomodu-
latory properties, which include stimulation of phagocytosis directed against pathogenic
microorganisms [92,93].

2.3.2. Antitumor and Cytotoxic Properties of Beta-Glucans

The mechanisms involved in the anticancer effects of beta-glucans are not fully under-
stood. Until recently, it was believed that beta-glucans do not possess cytotoxic properties
directed against cancer cells and do not trigger apoptotic activity [37]. So far, the described
mechanisms of anti-cancer action of beta-glucans have been based on their indirect action
through activity towards cells of the immune system [94]. However, scientific reports indi-
cate the cytotoxic activity of beta-glucans isolated from Agaricus bisporus and the Lactarius
rufus, directed against liver cancer cells (HepG2) [95].

Currently, the most well-known polysaccharides with anticancer activity are lentinan,
schizophyllan, and krestin, which are proposed as complementary therapy for cancer
treatment, especially in Japan [37,96–99].

The anticancer mechanism of beta-glucans shows synergistic effects with monoclonal
antibodies used in cancer therapy [81,100]. Apart from those described above, the an-
ticancer function of polysaccharides has been observed in many types of mushrooms,
including Agaricus, Ganoderma, Pleurotus, and Lentinus. The anticancer properties of
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polysaccharides have been proven for colorectal [101–103], lung [104], gastric [37,105],
and cervical cancers [106,107].

The increasing number of cancer cases contributes to the search for substances with
anti-cancer effects. Bioactive substances of natural origin, which are safer and cheaper than
drugs commonly used in chemotherapy, are receiving increasing attention in the scientific
community. Extensive research on polysaccharides of fungal origin has been going on for
several decades. Several of them have already been officially registered as drugs [108–110].

2.3.3. Anti-Inflammatory Function of Beta-Glucans

The best-studied fungal polysaccharides with anti-inflammatory properties are het-
eroglycans (β-D-glucans with side chains of xylose, mannose, galactose, and glucuronic
acid) [111–113].

Oral administration of beta-glucans isolated from fungi produced similar effects in
animal models to those of non-steroidal anti-inflammatory drugs and glucocorticoids.
Therefore, one of the suggested mechanisms of anti-inflammatory action of beta-glucans
is inhibition of the production of pro-inflammatory cytokines (e.g., interleukin 1β) [114].
Another mechanism suggested for the anti-inflammatory properties of beta-glucans is their
ability to inhibit the enzymes cyclooxygenase-2 and nitric oxide synthase [115]. The anti-
inflammatory function of beta-glucans is also important in the prevention and treatment of
neurodegenerative diseases such as Parkinson disease and Alzheimer disease [116]. The
abovementioned polysaccharides with anti-inflammatory properties have been isolated
from Agaricus blazei and Lactarius rufus, among others [113,117].

2.3.4. Antioxidant Properties of Beta-Glucans

Pleurotus mushrooms are considered to be one of the most valuable mushrooms in
terms of health. They are an excellent source of numerous bioactive compounds including
polysaccharides. Beta-glucans isolated from fungi of the genus Pleurotus possess numer-
ous therapeutic properties, including antioxidant effects [118,119]. Mannogalactoglucan
isolated from the species Pleurotus sajor-caju exhibits free radical scavenging, reducing
and chelating properties towards iron ions [120]. Antioxidant properties of polysaccha-
rides of fungal origin were also observed in two polysaccharide fractions, PSPO-1a and
PSPO-4a [119,121]. Polysaccharides isolated from Pleurotus ostreatus show strong reducing
properties against the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical and the superoxide
anion radical [119]. Polysaccharides isolated from Armillaria mellea exhibit antioxidant
properties based on their ability to reduce the DPPH radical, chelate transition metals, and
have strong reducing properties [122]. Polysaccharides isolated from Trametes versicolor,
Agaricus spp., and L. edodes show significant antioxidant properties [123–125]. They have
chelating properties that reduce lipid oxidation. Polysaccharide extracts from G. lucidum,
Ganoderma tsugae, and Polyporus dermoporus have the ability to scavenge free radicals as
well as to counteract a respiratory burst leading to ROS formation [126–128]. Polysac-
charides from Morchella esculenta in laboratory mice showed potent antioxidant activity
directed against the most potent oxidant in living organisms, the hydroxyl radical [129].
The polysaccharide significantly reduced the production of malondialdehyde (an indicator
of the lipid peroxidation process) in serum and liver cells of laboratory animals [129].

It is worth nothing that mushroom-derived polysaccharide molecules exhibit greater
antioxidant activity than monosaccharides because the polymeric chains have a greater
ability to extract anomeric hydrogen and to inactivate free radicals [130].

2.3.5. Beta-Glucans in the Treatment of Allergies

Currently, a large increase in allergic diseases is observed among populations world-
wide. None of the civilization diseases show such a growth rate. Allergy is called an
abnormal, excessive reaction of the immune system to various substances present in
the environment, which we call allergens. Based on the route of entry of the allergen
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into the body, allergies are divided into inhalation, food, contact, venom reaction, and
drug reaction [131,132].

Numerous in vitro, laboratory animal, and clinical studies indicate the anti-allergic
function of beta-glucans [133–135]. The anti-allergic properties of beta-glucans are mainly
attributed to 1,3-1,6-β-glucans found in fungi. A study involving the administration of
beta-glucans to laboratory mice with asthma confirmed the healing effect of beta-glucans,
which was similar to treatment with dexamethasone [136]. Moreover, one study carried
out among children with recurrent respiratory infections confirmed the significant anti-
allergic function of pleuran [137]. After 6 months of administration of this polysaccharide
at 10 mg/kg, a significant reduction in peripheral eosinophilia and stabilization of total
class E immunoglobulin (IgE) was observed [137]. In the study by Sarinho et al. [138], the
administration of mushroom-derived beta-glucans to patients with asthma resulted in an
increased production of the anti-inflammatory interleukin 10 (IL-10). A Japanese clinical
trial involving oral administration of lentinan to allergy patients also confirmed a reduction
in serum levels of immunoglobulin class E (IgE) [139].

The majority of studies conducted so far have confirmed that oral administration of
polysaccharides, mainly beta-glucans isolated from Basidiomycetes, may prevent allergies
by decreasing the level of immunoglobulin class E (IgE) and increasing the production of
IFN-γ (interferon-gamma) [134,140,141].

2.3.6. Antibacterial, Antiviral, and Antifungal Properties of Mushroom Beta-Glucans

There are a number of compounds in mushrooms that can inhibit the growth of mi-
croorganisms in humans. Numerous natural antibiotics and antiviral substances have been
isolated from mushroom fruiting bodies, including triterpenes, ganodermadiol, ganoder-
mic acid, and lucidol, showing activity against herpes virus, influenza, and HIV [142–144].
Polysaccharides, mainly β-glucans, are also responsible for their microbial inhibitory
properties [145,146]. The mechanism of action of glucans against microorganisms mainly
involves the activation of several different immunomodulatory mechanisms, including
phagocytosis, in which the phagocytic cells of the immune system, neutrophils, and
macrophages participate [134,147].

The first studies on the antimicrobial activity of beta-glucans were conducted in the
1980s using yeast β-glucans [147]. They found the protective effect of β-glucans against
infections caused by Staphylococcus aureus [147,148]. An inhibitory effect of lentinan on
the development of tuberculosis was observed through stimulation of macrophages [149].
In the animal studies, the addition of beta-glucans to the food of various fish species
resulted in an increase in their resistance to pathogenic bacteria of the Aeromonas and
Vibrio genera [150,151]. A number of studies described the great antiviral potential of
beta-glucans [152–155]. The first experiments on the antiviral activity of β-glucans were
performed on tobacco plants, and antiviral effects were observed with lentinan, schizo-
phyllan, and zymosan [156,157]. In the 1990s, a positive treatment effect was observed
in HIV patients, when lentinan was administered together with the antiretroviral drug
didanosine [153]. A significant increase in the percentage of helper T lymphocytes (Th)
was observed, greater than when the drug was administered alone [153]. Similar results
were obtained by US researchers 16 years later [154]. Studies showed that lentinan also
exhibits inhibitory effects on the replication of the herpes simplex virus (HSV), mumps,
polio, measles, and viral encephalitis virus [158]. The evidence shows that β-glucans can
reduce the incidence of lower respiratory tract infections and decrease the frequency of the
flu-like diseases in children [68].

An inhibitory effect of polysaccharides isolated from Auricularia auricula-judae on
Newcastle disease virus (NDV) was observed in Chinese studies conducted on chicken
embryos [159]. Dietary lentinan supplementation maintained normal function of piglets
even when they were infected with rotavirus, as reflected by reduced growth, performance
loss, and diarrhea prevalence, and maintained gut immunity [160].
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Currently, opportunistic microscopic fungal infections are very common due to the
widely used antibiotic therapy. Candidiasis is particularly dangerous in immunocom-
promised patients, e.g., HIV-infected or cancer patients. It has been proven that edible
mushrooms, due to the presence of numerous bioactive compounds, such as agrocybin,
ganodermine, pleurostrin, or eryngin, inhibit the growth of microscopic fungi of the genera
Fusarium, Mycosphaerella, and Physalospora [152,161–163].

Beta-glucans of macrofungi also play an important role in the protection against
mycoses. The dectin-1 receptor present on immune cells plays a significant role in their
activity. It has the ability to bind to certain β-glucans. Thus, β-glucans of edible mushrooms
stimulate cell phagocytosis, increasing the non-specific cellular response of the host immune
system directed against pathogens [164]. Another receptor, toll-like receptors (TRL) located
on phagocytic cells, plays an important role in controlling fungal infections [165,166].

2.3.7. Potential Role for Beta-Glucans in Decreasing Morbidity and Mortality Due to COVID-19

Since December 2019, coronavirus disease 2019 (COVID-19) caused by the severe
acute respiratory syndrome corona virus 2 (SARS-CoV-2) has rapidly spread all over the
world. A significant proportion of patients infected with SARS-CoV-2 develops a mildly
symptomatic infection, but also a large part of patients experiences serious complications
including acute respiratory distress syndrome (ARDS). ARDS is characterized by extensive
inflammation of the lungs, which requires intensive care [167].

COVID-19 infections are characterized by pro-inflammatory status, with high levels
of different cytokines, including (IL)-1β, IL-1Rα, IL-2, and IL-10. Critically ill patients
requiring a stay in the intensive care unit were characterized by noticeably high concen-
trations of IL-2, IL-10, G-CSF, IP10, MCP1, MIP1A, TNFα, and IL-6 [168]. Uncontrolled
production of proinflammatory interleukins and cytokines that cause inflammatory or
cytokine storm (CS) in the lungs is induced by the binding of SARS-CoV-2 virus to the
Toll-Like receptors (TLR) [169,170]. A high increase in proinflammatory factors such as IL-6,
IL-8, IL-1β, and GM-CSF and chemokines such as CCl2, CCL-5, IP-10, and CCL3, along
with reactive oxygen species in patients with COVID-19, is closely correlated with ARDS,
leading to pulmonary fibrosis and death [168]. All changes in cytokine levels are related
to various changes in cellular ingredients of the immune response, which shows close
association between infection with COVID-19 and individual response from the immune
system, resulting in different clinical symptoms [170].

Zhang et al. showed that anti-inflammatory therapy (suppression of pro-inflammatory
interleukins, such as IL-1 and IL-6) can have a therapeutic effect in inflammatory diseases
including viral infections [167]. This study found that the course of infection caused
by the SARS-CoV-2 virus largely depends on the functioning of the individual immune
system [167]. The innate immune system plays a crucial role in the early recognition of
infecting pathogens and activation of a pro-inflammatory response, which is the first line
of defense in various infections [170]. Recent studies have shown that the innate immune
system may possess some form of memory called Trained Immunity (TRIM) [171]. Cells
of the innate immune system stimulated with some factors, e.g., BCG vaccine (Bacillus
Calmette–Guérin vaccine) or beta-glucans, go through metabolic, mitochondrial, and
epigenetic reprogramming, with an outcome in a memory phenotype of an enhanced
immune responses [172]. Beta-glucans can stimulate the immune responses and can act
as a training agent, which leads to increased immune response when these trained cells
are exposed to a secondary stimulus in the form of pathogens [172]. It was shown that
β-glucans used as the training factor demonstrate protective activity against secondary
fungal, bacterial, or viral infections [173,174].

Figure 9 shows a possible mechanism of action of beta-glucans during infection
with SARS-CoV-2.
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β-glucans activate macrophages and DC (Dendritic Cells) via appropriate receptors
(Dectin-1, TLR, CR3). This results in an enhanced ability to phagocytose and efficiently
present antigen on the MHC. Furthermore, β-glucan-induced macrophages can induce
an enhanced defensive response of neutrophils and NK cells. Beta-glucan-induced DC
cells present the virus more efficiently to T lymphocytes, which promotes stimulation of B
lymphocytes and antibody production. Thus, beta-glucans may favorably influence the
development of a long-term, specific, adaptive response to SARS-CoV-2 [172,175].

Geller and Yan [172] hypothesized that the use of oral administration of beta-glucan
in a prophylactic setting could be an effective way to boost immune response and abrogate
symptoms of COVID-19. Beta-glucans as TRIM inducers probably cause increased phago-
cytic capacity of macrophages and dendritic cells, which results in better processing and
presentation of viral units to MHCs [84]. The 1,3-1,6-beta-glucans are considered to be the
best biological response modifiers and have immunogenic properties [176]. Most glucans
with this chain structure are derived from macrofungi (mushrooms) or yeast [172,177]. The
hypothesis posed by Galler and Yan [172] was corroborated by other authors, who found
that β-glucans from mushrooms demonstrated the potential for the treatment of lung
injury [178]. In an in vitro study, L. edodes was shown to have potential for the treatment
of COVID-19 due to its content of beta-glucans, which, through its effect on the immune
system, reduces cytokine storm and, thus, ARDS [14]. This study demonstrated reduced
inflammation in a lung epithelial model depending on the dose [14].

Another beneficial implication of the use of beta-glucans among people suffering from
COVID-19 may be a decrease in the systolic and diastolic blood pressure [172]. In recent
years, several studies have been published on the use of glucans in the prevention and
treatment of viral diseases, especially in the context of COVID-19 (Table 2). Because of the
few scientific reports to date on the function of mushrooms, beta-glucans in COVID-19
disease studies on both macrofungi and yeast are included in Table 2 for comparison
purposes, as well as to highlight the high therapeutic potential of total fungal glucans in
the prevention and treatment of COVID-19.
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Table 2. Potential of yeast and mushroom glucans for the prevention, course, and complications of COVID-19.

No. Type of Glucan Mechanism of Action in Prevention and Treatment
of COVID-19 References

1.
AFO-202-β–glucan

(β-1,3-1,6 glucan from black yeast
Aureobasidium pullulans)

Potential as a vaccine adjuvant against COVID-19;
Prevention of COVID-19-associated coagulopathy. [179]

2.
AFO-202 -β-glucans

(β-1,3-1,6 glucan from black yeast
Aureobasidium pullulans)

Regulation of blood glucose and lipid levels by
β-Glucans as an indispensable tool of defense

against COVID-19.
[180,181]

3.
AFO-202-β–glucan

(β-1,3-1,6 glucan from black yeast
Aureobasidium pullulans)

Immune enhancement by
decreasing hyper-inflammation factors (IL-6) and

minimizing the likelihood of a cytokine storm;
increasing IFN-γ, sFAS, and factors like IL-7;

and enhancing anti-viral cytotoxic immunity, (T cells,
NK cells, macrophages, antibody production by

B cells).

[168]

4.
AFO-202-β–glucan

(β-1,3-1,6 glucan from black yeast
Aureobasidium pullulans)

Immune regulatory and enhancing immune system;
Immune stimulator that can activate macrophages and

have positive immune actions on B-lymphocytes,
natural killer cells, and suppressor T cells in the

immune system.

[168,182]

5. 1,3-β-D-glucan (from Saccharomyces cerevisiae)
Prevention and treatment of excessive microglia

activation during chronic inflammation characteristic
of COVID-19 course.

[183,184]

6.
1,3-β-D-glucan

(curdlan and fragmentated zymozan-
proteoglucan from Saccharomyces cerevisiae)

Potentials to enhance microglial function and
regeneration of CNS axons in

COVID-19 neurological sequalae.
[184,185]

7. 1,3-1,6-β-D glucans
(from shiitake mushroom Lentinula edodes)

Immunomodulatory and pulmonary
cytoprotective effects. [14]

8. β-glucans (from mushrooms as Lentinula edodes
and Pleurotus ostreatus) Immunomodulating effects. [170]

9.
β-glucan

(from white button mushroom
Agaricus bisporus)

Interrupts AR (androgen receptor)-mediated
TMPRSS2 (Transmembrane protease serine 2)

expression that is involved in viral entry, through its
AR antagonistic activity;

Attenuates serum pro-inflammatory cytokines and
reduces MDSC (myeloid-derived suppressor cells)

counts that are involved in the host response to viral
infection, through its immunoregulatory activity).

[175]

10. 1,4-α–glucan
(from Lentinula edodes)

Modulation and activation of
NK-cells, T-cells, and γδ-T (gamma delta T). [186]

11. β-glucans
(from edible and medicinal mushrooms)

Support the immune system before, during, and
after COVID-19. [187]

12. Aminated β-glucan (AβG)
Potential vaccine adjuvant, immunopotentiator for

simulation of antigen-presenting cells for
T cells’ activation.

[188–190]

13. β-glucan
(from yeast, Saccharomysces cerevisiae)

Decreasing platelet activation by increasing
TGF-β1 production.

Decreasing the concentration of pro-inflammatory
cytokines IL-6, which indirectly activates platelets and

thrombin production.
Prevention of thrombosis during the course

of COVID-19.

[169,177,191]
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The promising results of studies on mushroom β-glucan from Agaricus bisporus and
Lentinula edodes [14,175] allow us to assume a beneficial effect of these compounds in the
prevention, course, and counteracting complications of COVID-19 in the era of the pan-
demic caused by SARS-CoV-2. Still, there are only a few studies on the promising function
of mushroom β-glucans in the context of COVID-19; such research needs to be continued
due to the easy availability and significant amounts of beta-glucans in mushrooms [35], as
well as the safety and ease of administration without significant side effects, even in the
case of insufficient purification [14,186,187]. The advantage of mushroom glucans is that
they can be administered orally and have an extremely high safety profile [172].

2.3.8. Mushroom Beta-Glucans as Prebiotics and Microbiota Modulators

Mushrooms owe their prebiotic properties to polysaccharides, which are not digested
in the intestine. They create excellent conditions for the growth and activity of benefi-
cial bacteria of the digestive tract of the genera Bifidobacterium and Lactobacillus. These
polysaccharides include β-glucans, chitin, hemicelluloses, mannans, and xylans [192]. For
example, β-glucan pullulan has proven prebiotic properties. This polysaccharide admin-
istered to the test subjects induced the development of the beneficial bacterial microflora
Bifidobacterium [193].

Beta-glucans are resistant to human digestive enzymes and pass through the digestive
tract into the intestines, retaining their original structure. Therefore, most mushrooms
abundant with beta-glucans can be considered potential sources of prebiotics. Evidence
for the prebiotic properties of mushroom polysaccharides is provided in the study by
Synytsya et al. [21], who observed that extracts of cultivated mushrooms from Pleurotus
genus intensively stimulated the growth of probiotic flora. In their latest in vitro study,
Mitsou et al. [194] found that mushrooms rich in β-glucans may exert beneficial effects in
gut microbiota and are crucial in the production of short chain fatty acids (SCFAs). Other
authors emphasize that yeast glucans and mushroom glucan polymer complexes are able
to stimulate the growth and development of Lactobacillus acidophilus and Bifidobacterium
bifidum [195–197]. In their study, Mitsou et al. [194] found that all tested fungi had a positive
effect on increased propionate and butyrate production. This indicates the potential of
edible mushrooms rich in β-glucans as prebiotics. In addition, fungi from the genera
Pleurotus and Cyclocybe presented beneficial effects on microbiota composition through
the growth of Bifidobacterium spp. and populations of Faecalibacterium prausnitzii [194].
Furthermore, the available scientific evidence has shown that non-starch polysaccharides
(NSPs) from various products such as oat bran, mushroom, seaweed, pectin, etc. exhibit a
protective action in the treatment and prevention of inflammatory bowel disease (IBD) [198].
A decreased Bifidobacerium/Faecalibacterium (B/F) ratio is associated with obesity and type
2 diabetes [199]. Edible mushrooms can increase this ratio and maintain the microbial
balance in the gut altered by a high-fat diet. Extracts of Ganoderma lucidum and Antrodia
cinnamomea, polysaccharides from Sarcodon aspratus, have been shown to increase the B/F
ratio in mice fed a high-fat diet [200–202].

Beta-glucans derived from fungi, due to their diversity of structures and physico-
chemical properties, can contribute to the growth of specific groups of bacteria that are
important for human health. Unlike beta-glucans from other sources, both soluble and
insoluble mushroom-derived beta-glucans support the growth of probiotic bacteria that
are beneficial to consumer health [203,204].

3. Conclusions

β-glucans are natural molecules that have great therapeutic potential due to their
immunomodulatory, antineoplastic, anti-inflammatory, antioxidant, anti-allergic, antibacte-
rial, antifungal, and antiviral properties. Recent reports have indicated great potential for
the use of beta-glucans from fungi in the prevention and treatment of COVID-19.

Beta-glucan molecules are characterized by a large diversity not only due to the
source of origin (cereals, mushrooms, yeast), but also within a single species of fungus or
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fruiting body. Their properties can also be modified by different extraction and purification
conditions. Therefore, it is very important to develop a standardized method for extraction
and purification of beta-glucans and evaluation of their structure (number and length
of branching and presence of amino acids, proteins, or other substituents), in order to
accurately assess their mechanisms of action and potential therapeutic properties.

Previous studies indicated the potential of β-glucans in the prevention, treatment,
and complications of COVID-19 [14,169,170,179–192]. Immunomodulatory, antioxidant,
neuroprotective, and antithrombotic activities are of particular interest here. There are
still few studies on the use of β-glucans from edible mushrooms for COVID-19 [14,175].
Edible macrofungi appear to be an excellent source of β-glucans for clinical applications,
due in part to the lack of toxicological risk from fungal toxins. Because of this, edible
mushrooms can be used to produce both highly purified β-glucan preparations as well
as less purified cocktails. However, careful studies are needed to determine the desired
formulation, to determine dosages, and to determine the feasibility of their use at different
stages of COVID-19 disease.

Such data are essential to adequately support the immune system and counter COVID-
19 complications while not harming it. The growing interest in the role of β-glucans in the
prevention and treatment of COVID-19 may translate favorably into the development of
an effective formulation for the prevention and treatment of other viruses that humanity
will face in the future. Therefore, further studies on fungal β-glucans in terms of efficient
extraction, purification, their activity, and mechanisms of action are needed for their most
appropriate application.
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