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Abstract: Objectives: To investigate eating episodes in a group of adolescents in their home-setting
using wearable electromyography (EMG) and camera, and to evaluate the agreement between the two
devices. Approach: Fifteen adolescents (15.5 ± 1.3 years) had a smartphone-assisted wearable-EMG
device attached to the jaw to assess chewing features over one evening. EMG outcomes included
chewing pace, time, episode count, and mean power. An automated wearable-camera worn on the
chest facing outwards recorded four images/minute. The agreement between the camera and the
EMG device in detecting eating episodes was evaluated by calculating specificity, sensitivity, and
accuracy. Main results: The features of eating episodes identified by EMG throughout the entire
recording time were (mean (SD)); chewing pace 1.64 (0.20) Hz, time 10.5 (10.4) minutes, episodes
count 56.8 (39.0), and power 32.1% (4.3). The EMG device identified 5.1 (1.8) eating episodes lasting
27:51 (16:14) minutes whereas the cameras indicated 2.4 (2.1) episodes totaling 14:49 (11:18) minutes,
showing that the EMG-identified chewing episodes were not all detected by the camera. However,
overall accuracy of eating episodes identified ranged from 0.8 to 0.92. Significance: The combination
of wearable EMG and camera is a promising tool to investigate eating behaviors in research and
clinical-settings.

Keywords: eating monitoring; chewing features; adolescents; body mass index; electromyography;
automated camera

1. Introduction

Electromyography (EMG) is used to assess masticatory muscle activity and is con-
sidered the gold standard method to assess chewing activity. It can accurately identify
chewing episodes and their features such as the occurrence time, amplitude, duration, and
pace, i.e., the frequency rate of chewing strokes [1]. A potential alternative or a comple-
mentary approach to investigate eating behavior is the observation of food consumed from
a photo/video recording.

Studying physiological and behavioral aspects of chewing in adolescents has a great
importance as they can affect nutritional status [2], are associated with food consumption
and may thus impact body weight and health [3–7]. Although chewing features have been
widely studied, the majority of this research has been under laboratory conditions, which
is a major limitation given the experimental setup may influence the measured masticatory
parameters [8]. Furthermore, previous studies have predominantly investigated chewing
features in adults using standardized test foods, mostly chewing gum [9–11], and have
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used visual observation or self-report to evaluate the outcome variables [12–18]. Little
information is currently available regarding chewing function in the natural environment,
especially in adolescents, and novel techniques are required to objectively evaluate chewing
as it naturally occurs outside of laboratory settings.

Automated wearable cameras with wide-angle lenses have the potential to passively
record participation in multiple lifestyle behaviors, as well as the environmental context of
these different activities, with little respondent burden. Automated cameras have been used
to examine a diverse range of health-related behaviors and exposures such as sedentary
behavior in adolescents [19,20] and adults [21], physical activity in older adults [22], and
food intake in children [23,24] and adults [25–27].

Cameras may be considered a valuable additional method to aid in evaluating eating
episodes in adolescents [28], but no research to date appears to have determined their
accuracy in relation to the gold standard EMG method. The use of objective data (EMG and
wearable camera) about chewing provides an opportunity to undertake future ecological
studies that assess both chewing function and food intake, leading to a better understand-
ing of appropriate support for behavioral treatment approaches for weight control in
children [28], and unhealthy eating habits such as a child’s picky eating behavior [29].

The aims of the current pilot study were: (1) to study the features of chewing in a
group of adolescents in their home setting utilizing a portable wireless EMG device (a pilot
study n = 15), and (2) to determine the validity of monitoring eating episodes in a home
setting using a wearable camera—in other words, the agreement between the wearable
camera and EMG device in detecting eating episodes.

2. Materials and Methods

The current study is an observational study that examined the chewing features of
a group of volunteer adolescents within their homes. The study was carried out in the
University of Otago, New Zealand. A convenience group of volunteers (fifteen adolescents,
13–17 years old) were recruited in New Zealand from Dunedin city, between October 2017
and June 2019. The group comprised 7 females and 8 males. Ethical approval was sought
from the University of Otago Human Ethics Committee and was obtained (Ref 17/017).
This study was a sub-study of the SNAP IT study (n = 160) [20].

Participants were recruited via social media, community networks, notice boards,
schools, and word of mouth. The inclusion criteria were defined as (1) age range of
13–17 years; (2) willingness to wear an EMG device and an automated time-lapse camera
for one evening. There were no ethnic or gender restrictions. The participants have no
condition that affects the chewing behavior.

On a school day, data were collected during a single home-based study session, starting
around 5 p.m. All participants and parents received an instruction booklet explaining
detailed information about the study and devices used in the study. After informed
consent was obtained, demographic information was collected, and height and weight
were measured in duplicate following standard procedures. Body mass index (BMI) z-
scores were calculated according to World Health Organization growth standards [30].

A smart phone-assisted wireless EMG device developed by our research team was
used to record chewing activity in the home setting without interfering with routine
activities or chewing behavior [28,31–33]. The EMG device was applied unilaterally on
the preferred chewing side of the participant. If no preference was indicated the EMG
device was applied on the right-hand side (Figure 1). The electrodes of the EMG device
were positioned on the skin over most prominent part of the masseter muscle during
contraction and parallel to the main muscle fibers at a center-to-center distance of 20 mm.
A third electrode acted as a right-leg drive for noise suppression and was 23.5 mm distal to
the active electrodes [33]. A smartphone application (App) was developed in Android to
enable visualization, calibration, and logging of EMG activity. The user-friendly App was
designed to allow the investigator to set threshold values for the detection of contraction
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episodes prior to each recording session. The received EMG data were stored in the internal
memory of the smartphone [28,33].
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Figure 1. (EMG) wireless device: A small wireless EMG device developed at the University of Otago can be used in natural
home-settings to recorder mastication activities connecting to a smart phone using Bluetooth.

To normalize the raw EMG activity in the time domain, the maximum voluntary con-
traction was used as the reference standard. To initiate the maximum voluntary bite effort,
a participant was asked to bite into a soft rubber cylinder (Aligner Chewies AC-25GMPP,
Dentsply Raintree Essix Glenroe, New Orleans, LA, USA). This rubber cylinder was posi-
tioned between the molars on the same side as the EMG recorder and the participant was
asked to clench down on the cylinder as hard as possible for 3 s. This process was repeated
three times, with a rest time of 30–60 s between each effort. To calibrate the EMG activity in
the time-frequency domain, a standardized food was used. The participants were asked to
consume three pieces from a small packet of rice crackers (Peckish Cheese Rice Crackers
20 g, Menora, Co., Victoria, Australia); then they were asked to chew gum (Wrigley’s Extra
Chewing Gum Spearmint, Mars Incorporated, Mars Wrigley Confectionery, New South
Wales, Australia) for one minute. This calibration is essential to calculate the chewing
maximum chewing power and to set thresholds for automated identification of chewing
activity using our previously developed algorithm [33].

After synchronizing the recording devices via network time, the participants wore the
camera secured on their lapel around their neck on a strap sitting on the upper chest and
facing outwards to document the environment. The camera (Brinno TLC120-Brinno Inc.,
Taipei, Taiwan) was worn simultaneously with the EMG device and programmed to
take a wide-angled photo every 15 s from 5 p.m. until bedtime.); the camera measured
60 × 60 × 35 mm and weighed 101 g, and could record in low light settings. The partici-
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pants were also made aware that they could remove the camera or cover it so it would not
take photos during operation (for privacy).

On collection of equipment at the second home visit the participants were able to
review the captured images and delete any photos they did not want the researcher viewing.
The photos were uploaded from the camera to a laptop, and the participants then reviewed
and deleted any images that contained sensitive material before being submitted to the
research team.

2.1. Data Analysis

After downloading the EMG data recordings from the smartphones, a quality check
of the recordings was carried out using an R™ script (R™ software. V3.3.1 R Foundation
for Statistical Computing, Vienna, Austria); the recordings were plotted and were used
in the subsequent analysis. The downloaded EMG signals were baseband-demodulated
with root mean square amplitude values calculated over 125-ms contiguous rectangular
windows using the MATLAB software (MATLAB 8.0, MathWorks, Natick, MA, USA).
Applying a previously validated algorithm, the demodulated EMG signals were analyzed
in the time-frequency domain [1,33,34]. After a quality check, the windowed short-time
fast Fourier transform was applied to 64 points with a one-point sliding Hamming window.
The resulting spectrogram (spectrum) had a frequency band ranging from 0 to 4 Hz, a
frequency resolution of 0.125 Hz, and a time resolution of 125 ms For each spectrum, the
peak values of frequency (Hz) and power (dB) were calculated. Power was expressed as
a percentage of the maximum recorded power during the standardized chewing tasks.
The onset and cessation of chewing episodes were automatically detected through the
algorithm based on two thresholds for frequency and percentage of power, set at 0.625 Hz
and 10%, respectively. If they were separated by less than two seconds, two chewing
episodes were merged into one episode. To obtain an estimate of the frequency and power
of a single chewing episode, the peak frequency and percentage of power across each
episode’s duration was averaged, and henceforth, in this report, they are simply referred
to as frequency and power, respectively. The chewing frequency averaged across a whole
recording session was regarded as an indication of an individual’s chewing pace.

EMG eating episode identification: A cluster of chewing episodes was considered
as an eating episode, where any eating episodes less than 5 min apart were merged into
one eating episode.

Image analyses: The images were coded by trained research assistants with nutrition
backgrounds using the open-source software TimeLapse2 (http://saul.cpsc.ucalgary.ca/
timelapse/, accessed on 17 August 2021). This software provides users with a customizable
interface to code images (or videos). The protocol for coding eating episodes and the
context of eating episodes was developed by three researchers. Camera images were
annotated with respect to specific foods and beverages eaten and the context of each eating
occasion (where and with whom) in two steps. First, all images with any food or eating-
related activity were identified. This could include images where the participant was in
the kitchen or sitting at a table with food. Second, images showing clear evidence of the
participant eating such as: eating utensils; movement of hand to mouth; plates, bowls, and
glasses with diminishing amounts of food were identified. These images were coded for
(i) eating occasion (meal or snack); (ii) where the participant was eating; (iii) the number
of person(s) present; and (iv) allocated food code(s). Each food visible in the image was
assigned a food code. The food codes were adapted from the 2008/09 New Zealand Adult
Nutrition Survey food coding classification. The food coding scheme contains 540 unique
codes organized into 120 sub-groups, which can be further collapsed into 35 main food
groups. This coding system was used in the wider SNAP IT and a coding manual and
protocol was developed to ensure coding decisions were consistent. The images were
coded by three researchers with nutrition backgrounds. In the current study, we used the
available data about timing and duration of consumed food to identify the eating episodes.

http://saul.cpsc.ucalgary.ca/timelapse/
http://saul.cpsc.ucalgary.ca/timelapse/
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Camera eating episode identification: An eating episode was defined as a continuous
period of eating. Any images with evidence of eating within five minutes of the last image
of a continuous series were defined within the same eating episode, to match the time
frames used in the EMG episode identification. Images of food that were identified greater
than five minutes from the last image containing food were defined as a new eating episode.

2.2. Validation Procedure and Analysis

A quality check was performed to assess the quality of the recorded EMG signal and
the camera images acquired by the participants. Time synchronization of the EMG device
and camera was then confirmed.

Start and end times of the EMG and camera recordings were derived from the camera
start/end times, since the camera was started slightly later than the EMG device and was
stopped earlier by the participants. The start/end time was used to cut the EMG recording.
This ensured that comparable EMG and camera data were obtained for each participant.

We aimed to test the agreement between the eating episodes detected by the camera
and those detected by the EMG device, we considered the EMG device to be the gold
standard, as it has been previously validated [34]. Accordingly, a true positive was defined
as when both recordings (EMG and wearable camera) detected eating activity, a true
negative when both recordings had no eating activity detected (eating-free time), a false
negative when the EMG device detected eating activity and the camera did not, and a
false positive when the camera detected eating activity and no detection was observed on
the EMG.

Accuracy, specificity, and sensitivity were defined as follows: accuracy represents the
proportion of true positive and true negatives eating episodes detected by the camera in
relation to the eating episodes detected by the EMG device; sensitivity represents the true
positive rate, which is the proportion of eating episodes that are correctly identified by the
camera in comparison to the EMG-detected eating episodes; specificity represents the true
negative rate which is the proportion of eating-free times that are correctly identified by
the camera in comparison to the EMG-identified eating-free times.

2.3. Statistical Analysis

The statistical analyses were performed using SAS (version 9, SAS Institute, Cary,
NC, USA). Firstly, conventional descriptive statistics were performed. Variability was
expressed as a standard error of the mean (±SEM); median, first and third quartile were
reported. The agreement between eating episodes detected by the camera and the EMG
was determined by calculating accuracy, specificity, and sensitivity using two different
analytical approaches: (1) episode-wise analysis, which assessed the agreement between
discrete eating episodes detected by the two methods (EMG vs. camera); and (2) timepoint-
wise analysis, which assessed the agreement between the two methods along the time line
in every one second in the EMG recording and in every 15 s in the camera data. Examples
of the timepoint-wise comparisons are illustrated in Figure 2.
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Figure 2. Examples of chewing episodes detections by the electromyography (EMG) and the camera in timeline (seconds).
Note that the EMG device generally detected more eating episodes (A–C) and a shorter eating time, even when the number
of episodes identified was the same (D). 0 represents no eating activity, 1 represents eating activity.

3. Results

Demographic information is summarized in Table 1. Most of the participants indicated
that the right side was their preferred chewing side (n = 11), with the remainder preferring
the left side (n = 4).

Table 1. Demographic and clinical data of the study participants (n = 15).

Variable Mean SD Min–Max

Age (years) 15.5 1.3 13.6–17.6
BMI (kg/m2) 23.1 4.6 17.8–33.6
BMI (z score) 0.73 1.06 −0.95–2.94

BMI distribution Normal Overweight Obese
N (%) 8 (53.3) 5 (33.3) 2 (13.3)

Sex distribution Female Male
N (%) 7 (46.7) 8 (53.3)

BMI (Body Mass Index).

Chewing features as evaluated by EMG recordings are summarized in Table 2. EMG
recording analysis showed an average chewing pace of 1.64 Hz ± 0.20 Hz, a chewing power
of 32.1 ± 4.3%, average chewing episodes count of 56.8 ± 39.0, and an average chewing
time of 10.5 min ± 10.4 min for the course of their recorded evening eating occasions. The
EMG device identified 5.1 (1.8) eating episodes lasting 27:51 (16:14) minutes, whereas the
cameras indicated 2.4 (2.1) episodes totaling 14:49 (11:18) minutes, showing that the EMG-
identified chewing episodes were not all detected by the camera. These data highlight that
the camera misses a significant portion of the eating episodes identified through the EMG
device. However, the main evening meal was correctly identified by both the camera and
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the EMG device in 14/15 participants, with an accuracy of 0.93. In one participant, the
camera was not able to detect the main dinner meal.

Table 2. Chewing features as determined by EMG analysis.

Measure Mean SD SE 25th Pctile Median 75th Pctile Min Max

Chewing pace (Hz) 1.64 0.2 0.1 1.5 1.7 1.9 1.3 2.07
Chewing power (%) 32.1 4.3 1.1 21.8 29.9 40.1 23.9 40.4

Chewing episodes count (n) 56.8 39.0 10.1 33.0 52.0 61.0 15.0 185.0
Chewing time (min) 10.5 10.4 2.7 4.0 7.3 12.8 1.6 40.1

SD (Standard Deviation), SE (Standard Error), Min (Minimum), Max (Maximum), 25th Pctile (First Quartile), 75th Pctile (Third Quartile).

Table 3 summarizes the descriptive statistics for the number of eating episodes de-
tected by the EMG device and the camera; Figure 2 shows graphs of four examples of the
comparisons between the camera- and the EMG-detected eating episodes in the timeline.

Table 3. Descriptive statistics for the number of eating episodes detected by the EMG device and the camera.

Participants
Eating Episodes (EMG) Eating Episodes (Camera)

Mean SD 25th Pctile Median 75th Pctile Min–Max Mean SD 25th Pctile Median 75th Pctile Min–Max

Number 5.4 1.8 4.75 5 6.25 2–9 2.4 2.1 1 1 3.25 1–8
Total eating
time (min: s) 27:51 16:14 16:27 23:19 40:00 4:35–67:38 14:49 11:18 01:30 12:45 23:41 00:30–34:15

EMG-detected eating episode: The algorithm allowed for the automated detection of onset and cessation of chewing episodes based
on 2 thresholds for frequency. When 2 chewing episodes were separated by less than 2 s, they were merged into 1 episode. A cluster
of chewing episodes that were considered as a single eating episode and any two eating episodes with a stand-by time less than 5 min
were merged into one eating episode. Camera detected eating episode: Start of an eating episode was identified whenever an image was
identified as an eating activity and stopped when that activity ceased. The standby time to separate between two different eating episodes
was set at 5 min. SD (Standard Deviation), SE (Standard Error), Min (Minimum), Max (Maximum), 25th Pctile (First Quartile), 75th Pctile
(Third Quartile).

In general, the accuracy of the camera in detecting the eating episodes using the
timepoint-wise analysis ranged from 0.80 to 0.98. Sensitivity was estimated to be 0.34 and
ranged from 0.00 to 0.92, whereas specificity was estimated to be 0.99 and ranged from 0.94
to 1.00.

4. Discussion

This pilot study demonstrated that a wearable camera has reasonable accuracy for
determining the number of evening eating episodes in adolescents in their natural home
setting. While the camera did record a lower number of episodes than that of the EMG
device as indicated by a relatively low sensitivity, specificity was extremely high (indicating
clearly when the participant was not eating), resulting in an overall accuracy greater
than 80%.

A wearable, wireless EMG device was used in the current study. EMG devices
are widely used to assess masticatory muscle contractions as they provide an objective,
valid, and reproducible method of recording muscle contractions [35,36]. EMG recording
devices were first introduced for stationary use, and only later adapted to be wireless and
therefore portable. In the current study, the development of a wearable, wireless EMG
device to record masticatory muscle activity and analyze oral behaviors, came after several
attempts [37]. This device has overcome many of the drawbacks of previous lab-based
work, which were only able to focus on sleep-time EMG activity, mainly aiming to study
nocturnal bruxism [38–40]. They could not provide comprehensive analyses of daytime
EMG evaluation for a long duration while carrying out routine activities. Moreover,
laboratory experiments are unlikely to represent the natural environment which may affect
oral and chewing behaviors. The development of wearable and wireless EMG [32] is timely,
given the increasing interest in recording masticatory muscle activity and oral behaviors
during the daytime and in natural settings.
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In previous studies, manual scoring of video or EMG recordings, has been widely used
for the assessment of mastication activities. The manual/visual scoring of jaw movements
relies on the subjective evaluation and skill of the examiner. This method is expensive and
time-consuming. To overcome the limitations of such methods, an automated method of
assessing rhythmic masticatory muscle activity (RMMA) using EMG recordings has been
developed and used in the current study. The algorithm automatically detects the onset
and cessation of chewing episodes. As well as the number of episodes, it also assesses
chewing pace (frequency), amplitude, and duration, without examiner interaction. The
algorithm can accurately differentiate chewing from head movements, speaking, yawning,
and clenching teeth, which reduces the chance of false positives [34]. This was clearly
demonstrated by our data, which showing a false positive rate of 1.5%.

The present research focused on indirect, continuous recordings of chewing episodes
in free-living individuals. Instead of targeting macro-nutritional composition or total
calorie intake (what and how much is eaten), our approach focused on the occurrence of
eating episodes (when, how long, what pace) indicated by EMG analysis of chewing activity.
Identifying meal timing has an increased importance when studying eating behaviors as
it may be a critical modulator of health outcomes due to complex interactions between
circadian biology, nutrition and human metabolism [41].

The reasoning is that any fully automatic classification of food content and amount
is currently very difficult and imprecise. The alternative to automatic classification of
food intake is self-report. A major problem with this method is under-reporting, which
may be due to unconscious omission of eating occasions, recording fatigue, or conscious
misreporting [42]. Furthermore, it has been found that between-meal snacks, especially
unhealthy snacks, can be frequently omitted from participants’ self-report, with more than
one third of snack consumption being unaccounted for; however, the main meals are well
reported [43,44].

An automated wearable camera with a wide-angle lens was used in the current
study. Wearable cameras are an emerging technique to passively capture multiple lifestyle
behaviors and the surrounding context of these behaviors with minimal respondent burden.
Although, a relatively new research tool, automated cameras have been used to examine a
diverse range of health-related behaviors and exposures, including: sedentary behavior in
young [18] and older adults [21], physical activity in older adults [22], diet in adults [25,26]
and children [23], food purchasing in adolescents whilst commuting [45], exposure to
advertising in children [46–49] and television viewing in adults [50].

Images taken with handheld devices or wearable cameras have been used by dieticians
when assessing diet and estimating portion size (image-assisted methods). Image-assisted
approaches can supplement either dietary records or 24 h dietary recalls [25,26,51]. In recent
years, image-based approaches integrating application technology for mobile devices have
been developed (image-based methods). Image-based approaches aim to capture all eating
occasions with images being the primary record of dietary intake. The captured images are
the main source of information and only use additional input from the user as verification.
The image capturing can be passive, meaning that at a defined time-frequency, the device
automatically takes an image, whereas active approaches require the participant to take
images manually. The current literature suggests that image-assisted methods can improve
the accuracy of conventional dietary assessment methods by adding eating occasion details
via pictures captured by an individual (dynamic images). Under-reporting is reduced
when using dynamic images compared with traditional assessment methods [52–54]. In the
current study, we used the captured images solely to identify the eating occasions (eating
episodes), rather than to estimate calorie intake, which is a significant shift from previous
diet assessment studies.

The camera showed a low sensitivity alongside its high specificity. This may have
occurred as a result of, particularly at snack times, only capturing four images every minute
which may not have been frequent enough to detect short snacking activities. However, the
camera was still able to detect the presence of an evening meal in almost all the participants.
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Through analyzing the camera data of 15 participants, the camera did not provide enough
information in one participant to detect the evening meal as that participant was not eating
the meal in a dining room, and was trying to avoid the camera when eating, which resulted
in a very few photos showing food while eating. Therefore, this meal was missed when the
images were coded.

Using a camera alone to assess the number of eating episodes may result in under-
detection of snacking episodes; this is also, the main issue observed with self-reporting.
Using an automated camera setting of capturing frequency greater than 4/min snapshots
may allow for more accuracy in detecting short snacking and eating episodes if the camera
is used alone. The combined use of both the camera and the EMG device appears to be a
promising technique for an improved assessment of eating behaviors. The EMG accurately
collects chewing information and the camera provides details about the consumed food
and the environmental context of the eating behaviors (eating alone/with group, watching
TV, etc.).

Overall, although our combined (EMG and camera) technique in the current study
ignores specific food content and amount, it captures important eating episode charac-
teristics. Both devices capture time and duration of each eating episode, additionally,
the EMG device measures the amplitude and frequency of chewing strokes. One of the
fundamental advantages of the method used in this study, is that the automation of the
devices eliminated a significant amount of participant burden. Previous studies have
demonstrated inaccuracies related to identifying eating occasions, identifying the food
type, and labelling the images, when carried out manually by participants. The key to
co-operation is to simplify the process (turning on the camera and the EMG device) and
place the burden on technology rather than the user, which we aimed to achieve in the
current study. Combined use of a camera with the EMG can provide additional information
including the type of food consumed and context of consumption. Using an EMG device
with a camera could quicken the image coding by enabling the researcher to filter images
with chewing time-points detected by the EMG.

5. Strengths of the Study

The current study used EMG as an objective method to validate the use of the camera
to detect eating episodes (EMG is considered the gold standard). Recording of mastication
in natural home-settings avoided the flaws associated with lab-observation methods.
Unlike previous studies that included self-reporting, the current study combined camera
recordings with an objective detection of eating episodes (i.e., EMG) Moreover, the EMG
device used in the study was unobtrusive as it was small in size, and wireless.

6. Study Limitations

Using cameras in home settings may pose a privacy issue. Moreover, there is a
possibility that observation may affect = eating behavior in some adolescents as they know
that what they are eating will be recorded. Considering the pilot nature of this study, the
results need to be confirmed with a larger group of participants. The current study did not
quantify the participants’ satisfaction with acceptability of wearing the EMG device and
the camera, a point that may be tested in a future qualitative study.

The sampling frequency of the automated camera was set at 4 images/min. The
current study did not test different sampling frequencies to check that an image every 15 s
is as accurate as higher capturing frequency to assess eating episodes. This can be tested in
a future study. EMG does not record dietary intake, and we did not include analysis of the
consumed food (food type, healthy/ unhealthy, etc.).

7. Future Directions

Based on the findings of the current study, the combination of an EMG device and
a wearable camera can be a useful research tool for accurately studying eating behaviors.
Moreover, a smart phone App can be developed to collect and analyze the chewing
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data in real time. The output of the chewing analysis can be shown on-screen using the
App, potentially using the system as a bio-feedback tool to support behavior therapy for
childhood obesity. Camera images can be analyzed to track the type of food consumed
during the day and other activities associated with eating behavior (who with, where eaten,
what context).

A future modification to this system could be to incorporate an EMG-based device,
capable of detecting chewing episodes, that subsequently triggers a wearable camera to turn
on and capture eating episodes. This could effectively eliminate at least the unconscious
sources of under-reporting and heavily reduce memory/recall biases. Such ‘omission free’
reporting of food intake in natural settings could advance basic eating behavior research
and inspire new awareness-based eating behavior interventions.
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