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Abstract: Obesity results from a temporary or prolonged positive energy balance due to an alteration
in the homeostatic feedback of energy balance. Food, with its discriminative and hedonic qualities, is
a key element of reward-based energy intake. An alteration in the brain reward system for highly
palatable energy-rich foods, comprised of fat and carbohydrates, could be one of the main factors
involved in the development of obesity by increasing the attractiveness and consumption of fat-rich
foods. This would induce, in turn, a decrease in the taste of fat. A better understanding of the
altered reward system in obesity may open the door to a new era for the diagnosis, management and
treatment of this disease.
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1. Introduction

Recent compelling evidence has demonstrated an association between a decrease in
the orosensory detection of fat and obesity. Some authors have put forward the hypothesis
that the alteration in the taste of fat is simply a consequence of a high intake of fatty foods
while for others, mechanisms involved in the onset of obesity are linked to a decrease
in the taste of fat. The first part of this narrative review covers the importance of fat
detection during food intake according to different theories, and the evolution of fat taste
after bariatric surgery. Then, we highlight arguments indicating that impaired fat taste
perception/sensitivity in obesity could stem from overactivation of the brain reward system,
leading to an increase in the consumption of foods rich in lipids, carbohydrates and energy,
and subsequently to overweight and obesity.

2. Teleonomy of the Taste for Fat

For a living organism, the supply of energy from carbohydrates and fats is vital.
Interestingly, energy utilisation from proteins is limited except during fasting and some
pathophysiological circumstances [1]. In humans, a deficit of carbohydrates or fats in the
body prompts the individual to seek and ingest the missing nutrient. Conversely, an excess
of either of these nutrients causes the individual to avoid them in the diet. This mechanism,
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leading to a satisfactory nutritional state, was described in the famous observations con-
ducted from 1928 to 1939 by Clara Davis [2,3]: every day for at least six months, newly
weaned children freely composed their meals by choosing 12 foods from a selection of 34.
The children’s spontaneous choice ensured satisfactory nutritional intakes. The author
concluded: “Such juggling and successful nutritional balance when more than 30 foods
are presented [ . . . ] suggest the existence of an innate and automatic mechanism that
directs food choices, of which appetite is only one part”. Similarly, in animals, numerous
studies have confirmed the reality of the glucostatic [4–6] and lipostatic [4,7] theories, i.e.,
when a nutrient is in excess or lacking in the organism, the animal avoids or seeks out
the nutrient concerned. In the same way, we have observed in human subjects that when
internal carbohydrate reserves are low (i.e., when the subjects are in lipid metabolism, the
individuals appreciate carbohydrate-rich foods and avoid fat-rich ones [8]. The body is,
therefore, able to identify the macronutrient that it needs from food, mainly through a
gustatory cue [9] and to a lesser extent through olfaction [10–12], vision, somaesthesia,
trigeminal sensations and even audition [13]. Subsequently, cognitive and environmental
factors contribute to food choices [14–16].

To ensure a satisfactory lipid intake, the body must be able to identify lipids by their
orosensory properties (discriminative component), thereby allowing the brain to recognise
the physico–chemical nature of the fat-rich food in the mouth. At the same time, these stim-
uli, like all sensory stimuli, induce a sensation of pleasure or displeasure in the consumer
(affective or hedonic component) [17]. Palatability, the hedonic component of food, is
generally associated with a high-energy content (foods rich in sugar or fat) [18–20]. Indeed,
it is food pleasure that guides the consumer towards an adapted behaviour: acceptance or
rejection of food intake [15,21]. Thus, palatability reflects the usefulness of the stimulus
at a given moment and triggers motivation to ingest or reject food [22]. The distinctions
between different components, i.e., discriminative and hedonic components, and their
functional and anatomical overlaps at the central level, have been partly described [23,24].
In keeping with these observations, in fat taste perception studies, the discriminative and
hedonic components can be analysed separately, as they complement each other in guiding
ingestion to ensure good nutritional and energy status.

Concerning the discriminative components, the mechanisms at both oral and intestinal
levels (receptors, pathways and nerve centres) have been the subject of numerous pub-
lications [12,25–27] (chapter 3 in [28]). However, there is still one question that remains
unanswered: whether “fat taste” is a “primary taste” or a “mouthfeel” of fat (alimentary
taste) [25,29–31]? There are a number of elements to consider:

1. Gustatory stimulation linked to fat is analysed by its qualitative and quantitative
components thus indicating that the taste of fat/mouthfeel of fat exists [32].

2. Fatty acids in the mouth induce gustatory evoked potentials, thus showing that fatty
acids are well perceived at the cortical level, as we have observed [33].

3. The presence of fatty acids in the mouth is perceived and processed by the central
nervous system, thereby inducing adapted behaviour and anticipatory vegetative
reactions [34].

Regarding the physiology of fat taste perception, it has been shown that lipid gustatory
cues follow the same criteria as those for other taste qualities. Indeed, fat detection is
brought about by tongue lipid receptors/sensors (CD36 and GPR120), localised in taste
bud cells. The activation of these receptors by dietary fatty acids triggers an increase in the
free intracellular calcium concentration, leading to transmission of the gustatory message
to afferent nerves that connect, via the nucleus tractus solitarius, different areas of the brain
to modulate fat eating behaviour. Clearly, the perception of the sweet taste is sharper than
that of fat, which is probably linked to a number of factors (the abundance of carbohydrates
in nature, lower energy density of sugars than fats, energy storage of carbohydrates in the
body that is 100 times smaller than fats, the impossibility of the body to convert fats into
carbohydrates and the need for a supply of glucose for the nervous system etc.). Energy
storage in the form of lipids is a common feature in living organisms [the human adult
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energetic reserve of carbohydrates (about 350 g at the most), even if consumed in its entirety,
would not cover the energy expenditure for a whole day, whereas that of lipids (about 15 kg
depending on age and gender) can meet energy requirements for more than 50 days [1]; if
an adult substituted his 15 kg of fat reserve for a carbohydrate reserve, he would have to
carry about 60 kg (energy density and low water content in the adipose tissue). Hence, we
can also cite the convincing example of mammals, which are known to stock fat to utilise it
during hibernation [35].

Regarding the hedonic component of fat taste, several studies have demonstrated
that animals and humans harbour a powerful attraction to fat-rich foods (Chapter 11
in [28]) [36,37]). However, it is difficult to assess what part of this attraction is specifi-
cally related to the aroma, flavour, texture and post-ingestion consequences of dietary
lipids (Chapter 11 in [28]), especially since the palatability of a fat meal varies among indi-
viduals and genotypes (Chapter 16 in [28]). On the other hand, it is easy to accept that the
palatability and enjoyment of foods are often related to their fat content or to the complexity
of the product. For example, consumers generally prefer a slice of dry bread with butter to
one without, a green salad with a vinaigrette sauce to one without, French fries or a gratin
Dauphinois to boiled potatoes. It should also be noted that an intense pleasure for the
taste/mouthfeel of fat seems to be acquired very early in development, since, in rodents
and non-human primates, a high-fat diet in the mother during gestation and lactation, as
well as exposure to a high-fat diet after weaning, are involved in programming the hedonic
control of food intake in the offspring. This could be due to epigenetic changes in the
promoters of specific genes within the dopaminergic reward pathways and/or the effect of
metabolic hormones, such as leptin and ghrelin, on the early development of hypothalamic
projections [38,39]. Note that the palatability of the fat taste is enhanced by sweetness and
vice versa [28,39–41]. In addition, the high hedonic value of fat-rich foods is not the only
cause of dysregulated body-weight normality as the high hedonic value of sweet foods also
has an impact [42–47]. It has also been observed that mothers and their children who prefer
a very sweet taste have a two-fold increased risk of developing obesity [48] and that those
who lose the most weight after bariatric surgery are those who had the strongest attraction
to sweet foods before surgery [49].

In summary, the taste and mouthfeel of fat (its texture and smoothness) identify fat in
the diet, and induce a strong hedonic sensation that guides individuals to food choices to
acquire energy.

3. High-Fat Diet and Fat Taste

The increased consumption of fats induces a negative regulation of the receptors,
which means a decrease in their sensitivity (Figure 1A). It is known that a high con-
sumption of high-fat foods is associated with a decrease in fat taste sensitivity [50–55].
Analyses of dietary patterns show that people who consume high fat and high-energy
foods have an impaired ability to taste fat [34] and have a low sensitivity to oleic or linoleic
acids [34,54,56–58]. Correlations between high fat intake and low fat taste sensitivity have
also been reported [34,59–62]. This desensitisation occurred over a fairly short time for
non-esterified fatty acids [54,61,62] and following exposure to a high-fat diet in a 4-week
trial [63]. However, in one study, the above desensitisation was not observed [64].

Similarly, it has been observed in mice that CD36 mRNA and CD36 receptor levels
decrease during the dark period and that this change is solely dependent on the presence
of fat in the diet [65]. Furthermore, the incubation of human and mouse taste bud cells with
linoleic acid results in the negative feedback of CD36 receptors and the positive feedback
of GPR120 receptors in the membranes. Such changes would result from the consumption
of a high-fat diet [66]. Conversely, experiments using a patch-clamp technique on rat taste
cells showed that a decrease in fat intake induced oral hypersensitivity to fatty acids [67]
and that a low-fat diet for six or eight weeks in healthy or obese subjects increased their
sensitivity to the taste of fat (upregulation of receptors) [68,69].
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Figure 1. Three hypotheses have been put forward to explain the decreased taste/mouthfeel of fat in
obesity. In the first (A), the increase in the consumption of fat-rich foods decrease the taste for fat
by a negative feedback mechanism. In the second (B), the decrease in fat taste could increase the
consumption of high-fat foods in order to activate the reward system. In the third (C), we assume
that overactivation of the reward system could induce the high consumption of high-fat foods and
consequently a decrease in fat taste. In all three situations, it is the high consumption of fat and energy
rich foods that leads to overweight and obesity. ↑ and ↓ indicate respectively, increase/activate and
decrease/inactivate.

Other mechanisms could explain the decrease in fat taste perception. Several mecha-
nisms of sensitisation, dishabituation and adaptation involving changes in transduction,
neurotransmission and central information processing, have been described [26,66,67,70–73].
This negative feedback has been linked to salivary lipase [74], salivary composition [75,76],
obesity-related inflammation [77], hormonal impregnation [78], lingual or intestinal micro-
biota [79–81] and intestinal lipid metabolites [82]. Negative feedback mechanisms affecting
taste sensations according to the nature of the usually consumed food have been described
for salty [79,83–86], sweet [55,78,79,85,87,88], bitter [79] and umami [89], although one
study did not observe this phenomenon [90]. For example, high dietary salt intake, as
assessed by 24-h urinary sodium excretion, is associated with the decreased perception of
salty taste (high detection thresholds) [91].

In summary, the high consumption of fat-rich foods could decrease fat taste sensi-
tivity through a negative feedback mechanism. [note: in this paper, a parallel between
perception/sensitivity of fat and obesity on the one hand, and auditory acuity and music
addiction on the other hand, is presented to illustrate the issue. Therefore, by analogy,
we indicate in this paragraph that regular high sound intensity can lead to a decrease in
auditory perception]. Some authors have hypothesised that decreased sensitivity to the fat
taste is simply a consequence of high fat intake (Figure 2).
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Figure 2. Schematic representation of “cross-talk” between fat taste perception, the brain reward
system and obesity. In the first hypothesis (¶), fat-rich food intake decreases the taste for fat by a
negative feedback mechanism. In a second hypothesis (·), low fat taste sensitivity could increase
the consumption of high-fat foods in order to activate the reward system. In the third hypothesis
(¸), overactivation of the reward system could induce high consumption of high-energy and high-
fat foods and consequently decrease fat taste sensitivity, thereby promoting the development of
obesity. PFC, prefrontal cortex; VTA, ventral tegmental area; NTS, nucleus tractus solitaries; Th,
ventroposteromedial nucleus of the thalamus; PTC, primary taste cortex. ↑ and ↓ indicate respectively,
increase/activate and decrease/inactivate.

4. Taste of Fat and Obesity

In 2005, Jean Pierre Montmayeur, at the Centre des Sciences du Goût et de l’Alimentation
(CSGA), identified in collaboration with Philippe Besnard, the existence of CD36 as a fatty
acid sensor in the gustatory papillae on the mouse tongue epithelium [92]. In their article,
they stated, “These findings demonstrate that CD36 is involved in oral LCFA (long chain
fatty acids) detection and raise the possibility that an alteration in the lingual fat perception
may be linked to feeding dysregulation . . . that might influence obesity risk”. To date, more
than 550 articles concerning fat taste in obesity are referenced in PubMed. Subsequently,
Besnard, Khan and Mattes et al. argued this hypothesis through several studies and
reviews [60,93,94]. A book on fat taste that repeatedly addresses obesity has also been
published [28]. They suggest that a decrease in the perception of fatty taste could foster
the attraction and consumption of fat-rich foods to induce an optimal hedonic sensation.
The increased consumption of energy-rich foods would then promote the development of
obesity (Figure 1B).

A decrease in fat taste sensitivity has been observed in animal models and humans.
Rats and mice rendered obese by a high-fat diet are unable to detect low concentrations of
fat in licking tests [95,96]. In humans, an increase in the fat (oleic acid) detection threshold is
associated with an increase in body mass index (BMI) [9,50,56,57,59,60] but this association
is inconsistently found [34] and even disputed [51,52,61–63,97–101], particularly in a meta-
analysis [102] and a review of the literature [103]. On the other hand, some authors
have observed that perceived fat taste intensity of linoleic acid [104] and the detection
threshold of oleic acid are lower in overweight people [105], and that African–Americans



Nutrients 2022, 14, 555 6 of 18

with significant abdominal adiposity do not detect the different fat contents in salad
dressings [53]. Several correlations may provide insights into the mechanisms involved
in the decreased sensitivity and/or decreased perceived intensity for lipids: firstly, a
decrease in the density of the fungiform papillae on the anterior part of the tongue and a
negative correlation between this density and the variation in neck circumference, a marker
of adiposity [106]; secondly, a mutation in the gene coding for CD36 associated with a
decrease in the detection [74] or perception [58] threshold of fat (oleic and trioleic acids) in
obese individuals; thirdly, a negative correlation between CD36 gene expression in obese
individuals and the perception of added fat in food [107] (variants of the CD36 gene are also
associated with an increase in the consumption of saturated fats in obese individuals) [108];
finally, and possibly indicating the lower sensitivity of fat receptors, studies have shown an
increase in the latency of evoked potentials after stimulation by long-chain fatty acids in
obese individuals as well as the absence of a reflex increase in plasma triglycerides after
oral stimulation with long-chain fatty acids in obese individuals [34].

On the other hand, people suffering from obesity consume a greater proportion of high-
fat foods than do normal weight people [59,109–113] and in environments with unlimited
access to high-fat foods, the fat detection threshold of individuals is increased [19,114].

A relationship between decreased fat taste sensitivity, high-fat food consumption
and obesity has thus been suggested. Some authors have hypothesised that the decrease
in fat sensitivity would induce an increase in high-fat consumption to compensate for
the decreased activation of dopamine D2 receptors in the motivational and reward cir-
cuits [115–117], which would lead to overweight and obesity.

In summary, some authors have suggested that reduced sensitivity to the taste of fat
may be involved in the development of obesity (Figure 2). [Note: by analogy, a person with
a hearing impairment tends to increase the sound level of his or her HIFI system in order
to enjoy his or her music].

5. Fat Taste and Bariatric Surgery

For most authors, weight loss induced by bariatric surgery restores taste sensitivi-
ties [18,27,118]. Thus, the thresholds for detection and identification of fat are decreased
(individuals become more sensitive). The consumption of fatty foods falls one month after
surgery [119], and this decrease persists for 1, 6 or even 8 years [119–121]. Interestingly,
the decrease is greater after gastric bypass than after sleeve gastrectomy [119,122–125]. It
should be noted that people who have lost weight on a restrictive low-fat diet have, as after
bariatric surgery, a reduced preference for fatty foods [126–128].

The mechanisms that may be involved in changes in fat taste perception after surgery
or after restrictive diets have been reviewed in several papers [27,119,129–131]. Improve-
ments in taste sensitivity (detection or identification thresholds) after weight loss are not
specific to fat tastes. Indeed, although not always found [128,132–134], improvements
in taste sensitivity have been reported for sweet tastes [124,128,129,131,135–139] and to
a lesser degree for salty, bitter, acidic and umami tastes [97,131,134,138,139]. These im-
provements then lead to a homogeneous and proportional decrease in preferences and/or
consumption of sweet, salty or protein-rich foods, but in a non-stereotyped and non-specific
way for a given macronutrient [120,133,136,140–144]. It has also been reported that the
greater the weight loss, the greater the improvement in taste sensitivity [125,145] and
that it can sometimes even lead to aversion to certain foods, particularly when they are
rich in fat and/or sugar [125,133,144,146]. Finally, it should be noted that inter-individual
differences are often reported, particularly according to gender [61,124,137,147,148], and
that changes in taste are not always observed [146,149]. On the other hand, it is recog-
nised that bariatric surgery can induce improvements in olfaction as well as changes in
taste [91,125,137,138,147].

In summary, impaired fat taste sensitivity is reversed by weight loss induced by
bariatric surgery or calorie restriction in humans. This reversal is generally associated with
a decrease in preferences for fatty foods. [Note: to continue the previous analogy, after



Nutrients 2022, 14, 555 7 of 18

hearing-impaired persons are fit with a hearing aid, their hearing ability improves and they
reduce the volume of their HIFI systems].

6. Alteration of the Reward System, High-Fat Diet and Obesity

For several authors, the increase in the consumption of palatable foods rich in fat and
the subsequent development of overweight and obesity is not explained by an alteration of
the taste/mouthfeel of fat (qualitative and quantitative components). They highlight the
importance of the hedonic component [18,95,140,144,150–152]: an altered reward system
(causal mechanism) leads to the increased consumption of palatable high-fat foods and
subsequently (i) to obesity and (ii) to the decreased taste/mouthfeel of fats via a feedback
mechanism (resulting mechanism) [21,103,153–158] (Figure 1C). Numerous studies in
animals have confirmed this hypothesis [21,95,159].

The comparison of the hedonic value of the taste/mouthfeel of fat by people suffering
from obesity with that of normal-weight subjects is delicate, as pointed out by Linda
Bartoshuk, affirming that “the hedonic properties of sweet and fat vary with body mass
index: obese people live in different orosensory and orohedonic worlds than do normal-
weight people. The former have lower sensitivity to sweet and fatty tastes but like sweet and
fat more than the latter” [160]. Furthermore, it is difficult to reach an objective evaluation
of the hedonic value of any flavour, especially in disease states [161–163]. Hedonic values
are generally studied indirectly on the basis of eating habits, choices in experimental
situations, the study of intracerebral opiates and dopamine, evoked potentials, electrical
activity and brain imaging [161]. Nevertheless, as early as 1985, it was observed that the
pleasure gained from consuming fatty foods was more intense in obese people than in
normal-weight people [109], women preferring sweet fatty foods and men preferring salty
fatty foods [164]. More recent studies have confirmed that increasing BMI was associated
with increasing pleasure from the taste/mouthfeel of fat [111,160,165] and that individuals
suffering from obesity report a high craving or preference for high-fat foods [19,127,166,167].
For example, the hedonic component of a graded presentation of progressively fattier foods
is higher in obese individuals than in normal-weight subjects [20,168]. Similarly, a study
on preferences among 10 foods with varying levels of fat showed that the preferred level
correlated with the percentage of body fat [110]. It has also been reported in a prospective
study over 5 years with 24,776 French people from the NutriNet-Santé cohort, that a strong
preference for fat-rich foods is associated with an increased risk of obesity. In 32% of men
and 52% of women, a high energy intake is explained by a strong liking for fat, whereas
liking for sweetness is associated with a decreased risk of obesity [169]. Finally, it has been
reported that a low-fat diet in individuals suffering from obesity restores sensitivity to fat
taste/mouthfeel but does not reduce liking for fatty foods [68].

Functional magnetic resonance imaging (fMRI) studies in individuals suffering from
obesity [118,136,170] have shown the overactivation of reward circuit structures during
expected consumption (anticipatory food reward), involving exposure to food or food
cues of palatable high-fat foods [116,171,172]. Furthermore, when normal weight subjects
are shown images of food, the fMRI signal in different structures of the reward circuit
(hippocampus and amygdala in the medial temporal lobe, insula, striatum, orbitofrontal
cortex and ventromedial prefrontal cortex) correlates with a preference for high-fat, highly
palatable foods, predicts calorie intake at the next meal [173,174] and weight gain in the fol-
lowing months [175,176]. Interestingly, leptin (whose plasma levels are elevated in obesity)
acts on the ventral striatum to increase the palatability of food [177,178], while PYY (a sati-
ety signal secreted by high intestinal energy and fat content and whose levels are lowered
in obesity), decreases orbitofrontal cortex activation to increase food intake [179]. Positron
emission tomography-scanography (PET-scan) studies have also shown that µ-opioid and
dopaminergic D2 receptors are decreased in the mesolimbic system and ventral striatum of
overweight and individuals suffering from obesity after food stimulation [115,117,180,181],
suggesting (although this is controversial [182]) that dopamine deficiency may disrupt the
eating behaviour of obese individuals [116,183,184], as observed for addictive substances
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in drug users [185–188]. To corroborate this hypothesis, PET-scan studies have shown that
cerebral blood flow increases in the insula, part of the primary gustatory cortex, after food
stimulation in people suffering from obesity [184].

Interestingly, following Roux-en-Y Gastric Bypass or sleeve gastrectomy and weight
loss, patients have shown decreased activity in the mechanisms contributing to hedonic
motivation for highly palatable foods, whether sweet or fatty (dopaminergic signalling
and brain activity of the reward circuit), with an increase in preferences for lower calorie
foods, which has a favourable influence on weight loss [49,129,130,148,189]. These changes
are mainly explained by peptide YY3–36, glucagon-like peptide-1, ghrelin, neurotensin
and oleoylethanolamide secretion in the ileon. However, central dopaminergic and opioid
receptor signalling are the key neural mediators driving altered eating behaviour. Brain
neuroimaging studies showed that brain connectivity and abnormalities are normalised
following bariatric surgery [130,190,191].

A parallel can be drawn between taste and olfaction: as is the case for the taste of fat,
people suffering from obesity, compared to normal-weight subjects, present lower sensi-
tivity to food odours with a reduced ability to discriminate between them, but stronger
activation of the structures of the reward circuit in fMRI. These differences are associated
with the high consumption of foods rich in fat in obese individuals [174]. Finally, overacti-
vation of the reward circuitry as well as dopaminergic alterations in response to appetitive
food cues is observed in people with obesity or compulsive eating disorders. In anorexia
nervosa, there is also overactivation of the reward circuit in relation to palatable food,
but this is repressed by the frontal cortex so as not to allow the expression of desire and
ingestive behaviour [192–195].

In summary, obesity is associated with greater brain activation of the reward circuit
during the processing of food flavours and aromas, most likely due to the reinforcing
value of palatable foods rich in energy, fat and carbohydrates. This could increase both
energy intake and the development of obesity (Figure 2). [Note: can we consider that an
overweight person who consumes food rich in sugar, fat and energy becomes a palatomane
(a term derived from Old French (a palatable food is pleasant to the palate) and mania
(madness, mania)), analogous to a lover of music].

7. Taste/Mouthfeel of Fat and Obesity, Cause or Consequence?

The data presented above show that when the food supply is varied and abundant,
the reward mechanisms associated with tastes could encourage the over-consumption
of palatable energy-rich foods and thereby compromise the regulation of energy balance.
On the other hand, it is recognised that decreased taste/mouthfeel of fat is associated
with obesity. Therefore, fat taste abnormalities may promote weight gain. However, fat
taste abnormalities could also be the consequences of obesity and overactivation of the
reward system.

The hypothesis that a decrease in the taste/mouthfeel of fat (causal mechanism) is
partly responsible for the development of obesity runs counter to certain observations.
Firstly, this association was not found in a meta-analysis [102] and is even disputed in
recent studies that finely analysed fat taste sensitivity [52,62,100]. Secondly, this association
seems to be dependent not on the BMI of the individuals but on their consumption of
high-fat foods [52,60,62,100]. Thirdly, overactivation of the reward system in imaging
studies during the presentation of high-fat foods is not specific to the taste of fat, since this
phenomenon is also observed for other flavours, particularly sweetness [42,44,196,197].

Furthermore, it should be noted that hypoguesia, whether idiopathic or secondary
to medical causes or induced by medication, does not lead to an increase in energy in-
take, but rather to its normalisation or even a decrease [198,199]. Finally, why would the
reduction in the taste of fat induce overactivation of the reward system to compensate
for the taste handicap rather than normal activation of the latter? In agreement with sev-
eral authors [21,60,103,140,154,158], we believe that it is unlikely that obesity can be fully
explained by changes in perception of the taste/mouthfeel of fat. [Note: by referring to
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the preceding anology, it is unlikely that one becomes a music lover because of a hearing
impairment, or a film buff because of a visual impairment, or a type II diabetic because of
reduced taste sensitivity for sugar].

The argument that the decrease in the taste/mouthfeel of fat in obesity stems from over-
activation of the reward system (causal mechanism) is based on several facts. Firstly, the
reward system directs food preferences and choices towards energy-rich foods, which there-
fore acquire a high hedonic value [18,37,200]. Secondly, one study reported that no change
in the sensitivity threshold and no correlation with fat intake was observed in individuals
suffering from obesity, while sensitivity thresholds fell in lean and overweight subjects
taken together [60]. Thirdly, the same phenomenon (obesity, high food consumption and
taste sensitivity reduction by negative feedback) was observed for sugar [42,160,201], and
a high hedonic value for sweet foods was associated with obesity in children aged eight
to fifteen years [135]. Fourth, imaging studies showed that bariatric surgery or restric-
tive diets decreased the reward system overactivity for palatable foods rich in fat and
carbohydrates [49,129,130,189].

Furthermore, overactivation of the reward system in obesity [202,203] is associated
with certain attitudes and personality traits (impulsivity, disinhibition, low self-control,
etc.), hypersensitivity to certain external influences (stress, health information, etc.), dietary
habits (copious meals, eating disorders etc.), the development of a sense of well-being
and eating habits (heavy meals, bulimia, increased snacking, consumption of high-fat
foods, etc.), all factors related to the reward system that have a major impact on eating
behaviour [105,204–208]. These factors explain the development of obesity much better
than the analysis of flavours and the taste/mouthfeel of fat. In line with the foregoing, we
have observed that success in weight loss, two and a half years after a gastric bypass, is
mainly linked to the psychological component of eating behaviour (emotional eating) and
only to a small degree to a decrease in attraction to salty or sweet fatty foods (D. Quilliot,
work in progress). It is therefore probable that overactivation of the reward system induces
an increase in the hedonic components.

Therefore, overactivation of the reward system for palatable foods rich in energy could
be the primum movens of all the abnormalities observed (energy imbalance and subsequently
a reduction in the taste/mouthfeel of fat or sugar) [50,87,118]. Several questions are then
raised: why is there a “pathological” overactivation of the reward circuit in obesity [209,210]
and, as a result, is it conceivable that a vicious cycle is established that leads, as with hallu-
cinogenic substances, to a real addiction to palatable energy-rich foods [200,211,212], espe-
cially as food addictions do not necessarily lead to obesity [213]? Is it a question of reduced
brain control of the reward circuit by adjacent neural structures (i.e., reduced connectiv-
ity) as suggested by several recent studies on gustation and olfaction [23,116,175,214–218]
and as observed in anorexia nervosa and eating disorders [218–221]? What influences
can the indoor environment, circulating factors (triglycerides, inflammatory factors, etc.),
hormones and the contents of the digestive tract or even the gut microbiota and genetic
factors have on the reward system, the cognitive system and the taste/mouthfeel of fat
in obesity [163,222–227]? Do endocrine disruptors (bisphenol-A) alter the reward system
in the prenatal and neonatal periods as observed in mice [228]? Why do ‘pathological’
brain responses to food sometimes persist in post-obese individuals, a group at high risk
of relapse [46,211,229,230]? Future studies should be able to provide some answers to
these questions.

To qualify the hypotheses put forward in this presentation, it is recalled that obesity is a
multifactorial disease and that obesity has numerous forms [53,163,231–233]. Nevertheless,
this paper recommends avoiding excessive consumption of highly palatable foods in order
to avoid entering a vicious cycle involving overexcitation of the reward system, as observed
in addictions of various traits. This article also highlights the interest in new preventive
strategies and treatment targets to help fight against energy imbalance and obesity.

In summary, the increased attraction for high-fat, high-sugar and high-energy foods,
through alteration of the reward system, can at least partly explain some forms of obesity.
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Decreased sensitivity to dietary fatty acids may be a consequence of consumption patterns,
eating behaviour and body composition.

8. Conclusions

The taste/mouthfeel of fat helps promote dietary fat consumption, an essential choice
for calorie intake, energy storage and survival of the species. For some, the high con-
sumption of high-fat foods by obese subjects may decrease their oral fat taste sensitivity
through a negative feedback mechanism. Conversely, for others, the decrease in orosensory
detection of dietary fatty acids in obese subjects may lead to an increase in fat consumption
to compensate for the decrease in receptor sensitivity and in activation of D2 dopamine
receptors in the motivation and reward circuits in the brain. In this paper, we hypothesised
that obesity or at least some forms of obesity result from greater brain activation of the
reward circuitry during the processing of food flavours and aromas, most likely due to the
reinforcing value of palatable foods rich in fats, carbohydrates and energy. This hypothesis
may explain, in part, both the high consumption of fatty foods and, consequently, the
decrease in taste/mouthfeel of fats by negative feedback mechanisms. Furthermore, we
point out that the alteration in the reward system in obesity (causal mechanism) seems to
be, at least partially, reversible after weight loss induced by bariatric surgery or dieting,
leading to a decrease in preferences for and consumption of fatty foods.
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