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Abstract: Background: Previous studies have indicated the limitations of body mass index for
defining disease phenotypes. The description of asthma phenotypes based on body composition
(BC) has not been largely reported. Objective: To identify and characterize phenotypes based on
BC parameters in patients with asthma. Methods: A study with two prospective observational
cohorts analyzing adult patients with stable asthma (n = 541 for training and n = 179 for validation)
was conducted. A body composition analysis was performed for the included patients. A cluster
analysis was conducted by applying a 2-step process with stepwise discriminant analysis. Logistic
regression models were used to evaluate the association between identified phenotypes and asthma
exacerbations (AEs). The same algorithm for cluster analysis in the independent validation set
was used to perform an external validation. Results: Three clusters had significantly different
characteristics associated with asthma outcomes. An external validation identified the similarity of
the participants in training and the validation set. In the training set, cluster Training (T) 1 (29.4%)
was “patients with undernutrition”, cluster T2 (18.9%) was “intermediate level of nutrition with
psychological dysfunction”, and cluster T3 (51.8%) was “patients with good nutrition”. Cluster T3
had a decreased risk of moderate-to-severe and severe AEs in the following year compared with
the other two clusters. The most important BC-specific factors contributing to being accurately
assigned to one of these three clusters were skeletal muscle mass and visceral fat area. Conclusion:
We defined three distinct clusters of asthma patients, which had distinct clinical features and asthma
outcomes. Our data reinforced the importance of evaluating BC to determining nutritional status in
clinical practice.

Keywords: asthma; phenotype; body composition; nutritional status; skeletal muscle mass

1. Introduction

In recent years, the importance of body composition in the development and progres-
sion of asthma has become increasingly recognized. In particular, obesity has gained focus,
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as a common asthma-related comorbidity, which increases the prevalence and incidence of
asthma [1–3]. Obese patients tend to have more severe asthma than lean patients, with a 4-
to 6-fold higher risk of being hospitalized compared with lean patients with asthma [4]. In
the United States, nearly 60% of adults with severe asthma are obese [5]. The progression
of asthma and obesity are closely linked [6,7]. There is evidence that obese asthmatics have
worse asthma control, lower quality of life [8], and do not respond as well to standard
controller medications for asthma [9]. The comorbidity of obesity in certain patients with
asthma has recently been identified as a unique asthma phenotype “obese asthma” [10].

One of the main limitations in studying the role of obesity and body composition
emerges from the use of body mass index (BMI, weight relative to height, expressed as
kg/m2). As a simple measurement, BMI is widely used to categorize nutritional status.
Although there is an association between BMI and fat mass or percentage of body fat
(PBF), BMI cannot be considered as a good proxy of fat mass [11]. Studies have indicated
the possible limitations of using BMI, which cannot distinguish between muscle and fat
tissue [12]. Additionally, the sensitivity and specificity of BMI for detecting people with
excess PBF are poor [13,14].

To overcome these limitations within the use of BMI, body composition analysis
(BCA) has been used to further explore metabolic and nutritional status. The wide use of
BCA has enabled the improvement of nutritional evaluation and increased the recognition
of impaired nutritional status by clinicians. BC evaluation has been studied in various
populations and diseases [2,12]. Our previous studies found that compared to BCA, BMI
was of limited importance for assessing asthma [2]. Recent studies have highlighted the
relationship between BC parameters (fat mass (FM), PBF, and skeletal muscle mass (SMM))
with poorer nutritional status [15]. By allowing for the early detection of undernutrition,
BC evaluation has been shown to improve the clinical outcomes for some diseases [15].

In recent years, there has been an increasing interest in the heterogeneity and pheno-
typing of asthma using cluster analysis in different asthma populations [16–20]. However,
despite these well-conducted cluster analyses, the identification of phenotypes based on
measurements of BC and nutritional status has not been previously reported. By using
BCA, we can define asthmatic phenotypes characterized by differences in the nutritional
status of BC parameters: FM, PBF, visceral fat area (VFA), and SMM. Moreover, evaluating
nutritional status by BCA and further exploring asthma phenotypes can help uncover
the significance of nutritional status in the assessment, management, and progression of
asthma. Thus, this study aimed to identify and characterize phenotypes based on anthro-
pometric, clinical, and BC parameters in people with asthma. We hypothesized that BC
parameters can guide the classification of clinical asthma phenotypes and provide valuable
information to improve asthma management.

2. Materials and Methods
2.1. Study Design and Participants

The ASAN (https://www.severeasthma.org.au, accessed on 13 June 2022) is a mul-
ticenter clinical research network (Australia, Singapore, China, and New Zealand) in a
real-world setting. This study included two prospective observational cohort studies which
were conducted from March 2014 to October 2018 (541 patients; cohort 1 as training set)
and November 2018 to September 2020 (179 patients; cohort 2 as validation set) (Figure 1).
The sample size ratio of training set and validation set was 3:1. Adults (≥18 years old)
with a diagnosis of stable asthma according to the Global Initiative for Asthma (GINA) (21)
criteria were consecutively recruited at the clinic of West China hospital, China (ASAN
China Center, Chengdu, China). Stable asthma was defined as no respiratory tract infection
and no exacerbation or systemic corticosteroid use in the previous 4 weeks. The inability
to understand the questionnaires, perform spirometry or sputum induction, pregnancy,
and breastfeeding were also listed as exclusions. Cohort 1 was used for performing cluster
analysis (training set) and cohort 2 for validating the clusters identified in training set. Data
from training set were used to identify clinical asthma phenotypes by cluster analysis. The
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patients in training set were followed-up for 12 months to monitor asthma exacerbations
(AEs) and to validate the effect of the identified clusters on AEs. To assess whether the
cluster analysis in training set had reproducibility, the same algorithm of cluster analysis in
training set was used for the validation set. As a real-world study, indications for patient
treatment were based on the GINA recommendations [21]. Step-up or step-down treat-
ments were adjusted in a continuous cycle of assessment, treatment, and review. This study
was approved by the Institutional Review Board (IRB) at West China Hospital, Sichuan
University (Chengdu, China) (No. 2014–30) and registered at Chinese Clinical Trial Reg-
istry (ChiCTR-OOC-16009529; https://www.chictr.org.cn, accessed on 13 June 2022). All
participants provided written informed consent.
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Figure 1. Flowchart for patient inclusion in the training and validation set. Cluster T, clusters
identified in the training set; Cluster V, clusters identified in the validation set; PCA, principal
component analysis.

2.2. Multidimensional Assessment and Data Collection

Data on demographics and clinical characteristics were collected using standard-
ized case report form. Detailed further assessments including anthropometrics and body
composition, spirometry and fractional exhaled nitric oxide, atopy and skin prick tests,
sputum induction and peripheral blood collection and detection, asthma exacerbation,
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and psychological dysfunction (anxiety and depression), were defined and shown in the
Supplementary Materials.

Measurements of Body Composition

The body composition, including the VFA (cm2), FM (kg), PBF (%), and SMM (kg), was
measured by a multifrequency bioimpedance analysis (BIA) with the InBody S10 analyzer
(Body Composition Analyzer; Biospace Co., Ltd., Seoul, Korea). InBody S10 provides
6 different frequency impedance measurements (1, 5, 50, 250, 500, and 1000 kHz) and
3 different frequencies of phase angle measurement (5, 50, and 250 kHz) at each 5 segments
(right arm, left arm, trunk, right leg, and left leg). The BIA measurements were performed
by a nutritionist in our research group (Gaiping Cheng) that was trained according to the
InBody S10 user’s manual and the recommendations for clinical application of bioelectrical
impedance analysis [22]. After height and weight were measured, four electrodes were
attached to both upper and lower extremities in the supine position. The patients had an
overnight fasting, emptied the bladder by urinating, wore light indoor clothing, and as-
sumed a standing posture during the measurement, during which the ambient temperature
remained at 25 ◦C. Standard ranges for FM, PBF, VFA, and SMM were based on Asian
standards in InBody S10 user’s manual. Although dual-energy X-ray (DXA) is considered
the gold standard for body composition measurement, BIA and DXA have been reported
as strongly correlated [23–25].

2.3. Statistical Analysis

A total of 366 variables including measurements of body composition were collected
and recorded. Variables with missing data (5–40%) were imputed using multiple imputation
method (MI). Data below 5% are negligible and more than 40% missing data did not use
MI [20,26]. Variable selection process was performed as mentioned in our study [26] and
previous studies [27–31] with detailed information in Supplementary Materials. Finally,
10 variables were selected for principal component analysis (PCA) based on the pattern
of loading, correlation coefficient, and clinical perspective, including sex (female = 1), age
(years), pre-FEV1 (%), Hospital Anxiety and Depression scale-anxiety (HADS)-A (scores),
HADS-D (scores), BMI (kg/m2), FM (kg), PBF (%), VFA (cm2), and SMM (kg).

2.3.1. Principal Component Analysis (PCA)

Reducing the dimensionality of the data prior to clustering algorithms reduces the
risk of overfitting. Thus, a principal component analysis (PCA) with varimax rotation was
performed to merge the variables of interest into a multivariate component. The selection
process regarding the appropriate number of PCs [32–35], the variables restructured for
PCs in the training and validation sets, and the findings of PCA [17,36] were shown in
Supplementary Materials.

2.3.2. Cluster Analysis

Cluster analysis was conducted by applying a 2-step process using the four PCs iden-
tified in the PCA as described in our studies and previous published studies [20,26,37–42].
Detailed information about cluster analysis were shown in Supplementary Materials.

2.3.3. Other Analyses

Other statistical analyses were shown in the Supplementary Materials, including the
differences of demographic and clinical data between clusters, Pearson or Spearman’s
coefficients for assessing correlations, and multiple logistic regression modeling between
the uncontrolled asthma and AEs in the following year. Statistical analyses were carried out
using SPSS version 23.0 (IBM, Armonk, NY, USA). p-value less than 0.05 was considered
statistically significant. p-values may be adjusted for multiple comparisons of the clusters.
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3. Results
3.1. Training Cohort and Characteristics

A total of 541 patients with asthma were included in the training set and 479 patients
(88.5%) completed the one-year follow-up. The characteristics of the training cohort are
presented in Table 1. A total of 350 patients (64.7%) were females, with a median age
of 49.0 (IQR: 39.0, 58.0) years, and a median BMI of 22.73 (IQR: 20.69, 24.77) kg/m2. The
prevalence of a family history of asthma and atopy were 35.3% and 44.2%, respectively.
The median HADS-D and HADS-A were 1.0 (IQR: 0, 3) and 1.0 (IQR: 0, 4), respectively.
There were 248 patients (45.8%) with uncontrolled asthma and 158 patients (29.2%) had
experienced at least one severe exacerbation in the past 12 months. The frequency of
comorbidities ranged from 1.1% to 56.7%. Rhinitis (56.7%) and eczema (16.8%) were the
most prevalent comorbidities. Commonly, undernutrition is characterized by a reduction
of the fat-free mass (FFM, mainly SMM) and fat mass (FM) [12,15]. The mean FM, SMM,
PBF, and VFA were 16.83 (SD: 6.13) kg, 22.69 (SD: 4.73) kg and 28.36 (SD:7.41) %, and
75.64 (SD:31.73) cm2, respectively (Table 1).

Table 1. Demographic and clinical characteristics of the included participants with asthma grouped
by cluster analysis in the training set.

Variables Cluster T1 Cluster T2 Cluster T3 Total F/χ2/H p-Value

n (%) 159
(29.4)

102
(18.9)

280
(51.8) 541 - -

Anthropometric/asthma data

Age, years, median (Q1, Q3) 59.0 (51.0, 68.0) 48.0 (40.0, 58.0) * 46.0 (36.0, 53.0) * 49.0 (39.0, 58.0) 67.620 <0.001

Female, n (%) 89 (56.0) 68 (66.7) 193 (68.9) † 350 (64.7) 7.664 0.022

BMI, kg/m2

Median (Q1, Q3) 22.36 (19.97, 24.15) 22.83 (20.59, 25.01) 23.15 (20.95, 25.33) * 22.73 (20.69, 24.77) 8.196 0.017

<25, n (%) 133 (83.6) 76 (74.5) 205 (73.2) 414 (76.5) 7.675 0.104

25 ≤ BMI < 30, n (%) 23 (14.5) 21 (20.6) 58 (20.7) 102 (18.9)

≥30, n (%) 3 (1.9) 5 (4.9) 17 (6.1) 25 (4.6)

WHR, median (Q1, Q3) 0.89 (0.83, 0.93) 0.87 (0.82, 0.92) 0.87 (0.82, 0.92) 0.87 (0.82, 0.92) 4.251 0.119

Atopy, n (%) 52 (32.7) 32 (31.4) 155(55.4) ††† 239 (44.2) 29.459 <0.001

Asthma duration, years, median (Q1, Q3) 7.0 (3.0, 16.0) 8.0 (4.0, 15.0) 6.0 (3.0 13.0) 6.0 (3.0, 15.0) 1.254 0.534

Early-onset asthma, n (%) 22 (13.8) 17 (16.7) 57 (20.4) 96 (17.7) 3.054 0.217

History of family asthma, n (%) 72 (45.3) 30 (29.4) † 89 (31.8) † 191 (35.3) 12.084 0.017

Eosinophilic asthma, n (%) 86 (54.1) 70 (68.6) 197 (70.4) †† 353 (65.2) 12.471 0.002

Medications

ICS (BDP equivalent) dose, µg/day,
median (Q1, Q3) 400.0 (400.0, 1000.0) 400.0 (400.0, 1000.0) 400.0 (400.0, 1000.0) 400.0 (400.0, 1000.0) 2.404 0.301

ICS/LABA, n (%) 91 (57.2) 58 (56.9) 161 (57.5) 310 (57.3) 0.013 0.994

Theophylline, n (%) 28 (17.6) 18 (17.6) 35 (12.5) 81 (15.0) 2.787 0.248

Leukotriene, n (%) 48 (30.2) 39 (38.2) 103 (36.8) 190 (35.1) 2.472 0.291

OCS, n (%) 6 (3.8) 2 (2.0) 9 (3.2) 17 (3.1) 0.739 0.691

Asthma control

Uncontrolled asthma (ACQ scores ≥ 0.75) 88 (55.3) 54 (52.9) 106 (37.9) †††§ 248 (45.8) 15.046 0.001

Health status

AQLQ scores, median (Q1, Q3) 6.16 (5.58, 6.69) 5.40 (5.00, 6.16) * 6.25 (5.50, 6.61) ** 5.96 (5.35, 6.47) 13.069 0.001

HADS-D

Median (Q1, Q3) 1.0 (0, 1.5) 6.0 (5.0, 9.0) * 0.5 (0, 2.0) ** 1.0 (0.0, 3.0) 228.027 <0.001

≥8, n (%) 0 (0) 37 (36.3) ††† 0 (0) §§§ 37 (6.8) 170.936 <0.001

HADS-A
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Table 1. Cont.

Variables Cluster T1 Cluster T2 Cluster T3 Total F/χ2/H p-Value

Median (Q1, Q3) 1.0 (0, 2.0) 6.0 (5.0, 8.0) * 1.0 (0, 2.0) ** 1.0 (0.0, 4.0) 218.796 <0.001

≥8, n (%) 0 (0) 35 (34.3) ††† 0 (0.0) §§§ 35 (6.5) 161.057 <0.001

Both HADS-D and HADS-A ≥ 8, n (%) 0 (0) 18 (17.6) ††† 0 (0.0) §§§ 18 (3.3) 80.137 <0.001

SAEs in the past 12 months, n (%) 55 (34.6) 35 (34.3) 68 (24.3) 158 (29.2) 6.796 0.033

Spirometry

Pre-FEV1, L, median (Q1, Q3) 1.43 (1.15, 1.71) 2.01 (1.62, 2.43) * 2.49 (2.12, 2.95) *,** 2.09 (1.56, 2.65) 225.536 <0.001

Pre-FEV1 % predicted, median (Q1, Q3) 56.0 (44.5, 68.0) 72.0 (58.0, 86.0) * 84.0 (72.0, 94.0) *,** 74.0 (59.0, 88.0) 182.736 <0.001

Pre-FEV1/FVC, %, median (Q1, Q3) 55.91 (47.18, 62.97) 66.02 (56.99, 75.07) * 72.98 (65.97, 80.53) *,** 67.19 (57.49, 76.03) 161.758 <0.001

∆FEV1, %, median (Q1, Q3) 16.15 (9.10, 30.80) ** 11.38 (6.30, 19.46) 10.10 (4.58, 16.13) * 11.90 (5.95, 19.39) 39.457 <0.001

∆FEV1/FVC, %, median (Q1, Q3) 6.79 (1.23, 13.60) 6.90 (1.00, 12.00) 6.58 (3.57, 10.49) 6.65 (2.52, 11.61) 1.236 0.539

FeNO, ppb, median (Q1, Q3) 26.00 (16.00, 46.41) 37.50 (22.00, 71.00) * 52.50 (25.00, 96.50) *, ** 40.0 (21.0, 75.00) 53.732 <0.001

Comorbidities, n (%)

Rhinitis 69 (43.4) 63 (61.8) †† 175 (62.5) ††† 307 (56.7) 16.368 <0.001

Nasal polyps 15 (9.4) 15 (14.7) 20 (7.1) 50 (9.2) 5.108 0.078

Bronchiectasis 11 (6.9) 8 (7.8) 6 (2.1) †,§§ 25 (4.6) 8.500 0.014

Sleep apnea 2 (1.3) 0 (0.0) 4 (1.4) 6 (1.1) 2.545 0.280

GERD 9 (5.7) 6 (5.9) 11 (3.9) 26 (4.8) 0.984 0.612

Diabetes 8 (5.0) 2 (2.0) 3 (1.1) † 13 (2.4) 6.331 0.042

Eczema 20 (12.6) 22 (21.6) 49 (17.5) 91 (16.8) 3.781 0.151

Body composition, mean (SD)

FM, kg 15.24 (5.41) 16.52 (6.25) 17.84 (6.27) # 16.83 (6.13) 9.591 <0.001

PBF, % 27.24 (7.50) 27.97 (8.19) 29.15 (6.98) # 28.36 (7.41) 3.573 0.029

VFA, cm2 70.66 (29.84) 75.50 (34.13) 78.52 (31.63) # 75.64 (31.73) 3.139 0.044

SMM, kg 21.57 (4.07) 22.75 (4.71) 23.29 (4.99) #,## 22.69 (4.73) 6.868 0.001

Abbreviations: BMI, body mass index; WHR, waist-to-hip ratio; ICS, inhaled corticosteroid; BDP, Beclomethasone
dipropionate; LABA, long-acting beta-agonist; OCS, oral corticosteroid; ACQ, asthma control questionnaire;
AQLQ, asthma quality of life questionnaire; HADS-D, Hospital Anxiety and Depression scale-depression; HADS-
A, Hospital Anxiety and Depression scale-anxiety; FEV1, forced expiratory volume in 1 s; FVC, forced vital
capacity; FeNO, fractional exhaled nitric oxide; GERD, gastroesophageal reflux disease; FM, fat mass; PBF,
percentage body fat; VFA, visceral fat area; SMM, skeletal muscle mass; SD, standard deviation; Q1, first quartile;
Q3, third quartile. Pack years: the number of cigarettes smoked per day × years of smoking. Eosinophilic asthma:
sputum eosinophil level ≥ 3% or blood eosinophil level ≥ 300 cells/mL. Uncontrolled asthma was defined as
ACQ score ≥ 0.75. Kruskal–Willis Test: * p < 0.05 vs. cluster 1; ** p < 0.05 vs. cluster 2. The significance level
is 0.05. Significance values have been adjusted by the Bonferroni correction for multiple tests. ANOVA Test:
# p < 0.05 vs. cluster 1; ## p < 0.05 vs. cluster 2. The significance level is 0.05. Significance values have been
adjusted by the LSD for multiple tests. Chi-Square Test: † p < 0.017; †† p < 0.005; ††† p < 0.001 vs. cluster 1, with
the Bonferroni correction; § p < 0.017; §§ p < 0.005; §§§ p < 0.001 vs. cluster 2, with the Bonferroni correction.

3.2. Cluster Analysis and Description

According to the PCA, the Kaiser–Meyer–Olkin (0.648) and the Bartlett’s Test of
Sphericity (p < 0.001) confirmed that the cluster analysis was appropriate. The PCA
identified four components: component 1 encompassed the variables of BMI, FM, PBF,
and VFA; component 2 encompassed sex and SMM; component 3 encompassed HADS-D
and HADS-A; and component 4 encompassed age and pre-FEV1% (Table S1). Cluster
analysis: Ward’s cluster analysis was based on the significant components identified
by the PCA. Using the hierarchical cluster analysis described in the Methods, based on
the pseudo-F statistic and Pseudo-T2 statistic (Table S2), three clusters were identified. A
silhouette plot indicated a reasonable structure of our cluster analysis (Silhouette Coefficient
(SC) = 0.58) [37] (Figure S1).

3.2.1. Cluster T1 (Cluster 1 in the Training Set): Patients with Undernutrition

Cluster Training (T) 1 (n = 159, 29.4%) contained older patients (59.0 (51.0, 68.0, p < 0.05)
years and a greater history of family asthma (n = 72, 45.3%, p < 0.017) compared with cluster
T2 and T3, but less eosinophilic asthma (n = 86, 54.1%, p < 0.005) (Table 1) compared with T3.
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In our study, patients in cluster T1 presented with lower BMI (22.36 (19.97, 24.15)
kg/m2), FM (15.24 (5.41) kg), PBF (27.24 (7.50) %), VFA (70.66 (29.84) cm2) (p < 0.05)
(Table 1), and lower SMM (21.57 (4.07) kg) and proportion of patients in the low level
of SMM (44.7%, p < 0.001) (Figure 2) compared with those in cluster T3. Undernutrition
is characterized by a reduction of the fat-free mass (FFM, mainly SMM) and fat mass
(FM) [43]. Therefore, compared with cluster T2 and T3, cluster T1 was defined as “patients
with undernutrition”.
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Figure 2. Body composition of the included patients with asthma grouped by cluster analysis. (A) FM;
(B) PBF; (C) VFA; (D) SMM. FM, fat mass; PBF, percentage body fat; SMM, skeletal muscle mass;
VFA, visceral fat area. Standard ranges for FM, PBF, VFA, and SMM were based on Asian standards
in InBody S10 user’s manual.

Cluster T1 presented worse airway obstruction (FEV1% predicted: 56.0 (44.5, 68.0) %;
Pre-FEV1/FVC: 55.91 (47.18, 62.97) %) than those patients in Clusters T2 and T3 (p < 0.05).
Further, patients in cluster T1 had higher bronchodilator reversibility (BDR) (∆FEV1: 16.15
(9.10, 30.80) %, p < 0.05) (Table 1).

The patients in this cluster had fewer blood eosinophils (0.19 (0.11, 0.34) × 109/L,
p < 0.05) compared with those in cluster T3. Cluster T1 had lower IgE (75.65 (33.6, 205.0)
IU/mL) and sputum macrophages (34.88 (11.50, 61.25) %), but more sputum neutrophils
(56.5 (31.00, 81.62) %) than those in clusters T2 and T3 (p < 0.05) (Table 2). Almost half of
the patients (n = 88, 55.3%) presented with uncontrolled asthma (p < 0.017) (Table 1).
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Table 2. Inflammatory characteristics of the included patients with asthma grouped by cluster
analysis in the training set.

Variables Cluster T1 Cluster T2 Cluster T3 Total H p-Value

n (%) 159
(29.4)

102
(18.9)

280
(51.8) 541 - -

Peripheral blood, median (Q1, Q3)

Eosinophils, × 109/L 0.19 (0.11, 0.34) 0.24 (0.13, 0.38) 0.27 (0.15, 0.42) * 0.21 (0.12, 0.33) 11.581 0.003

Neutrophils, × 109/L 3.37 (2.57, 4.36) 3.02 (2.46, 4.21) 3.32 (2.67, 4.13) 3.27 (2.63, 3.92) 0.854 0.653

Lymphocytes, × 109/L 1.68 (1.39, 2.06) 1.58 (1.31, 1.88) 1.67 (1.40, 1.92) 1.71 (1.40, 2.07) 4.094 0.129

Monocytes, × 109/L 0.36 (0.27, 0.48) 0.31 (0.24, 0.42) 0.33 (0.27, 0.41) 0.33 (0.27, 0.42) 4.977 0.083

Basophils, × 109/L, median (Q1, Q3) 0.03 (0.02, 0.05) 0.04 (0.02, 0.05) 0.04 (0.02, 0.05) 0.03 (0.02, 0.05) 0.168 0.920

IgE, IU/mL 75.65 (33.60, 205.00) 126.00 (41.97, 304.95) * 164.50 (65.20, 359.00) * 92.85 (36.67, 302.45) 18.264 <0.001

Sputum, median (Q1, Q3)

Eosinophils, % 0.25 (0, 1.75) 0.25 (0, 1.50) 0.50 (0.25, 1.50) 0.25 (0, 3.00) 2.212 0.331

Neutrophils, % 56.5 (31.00, 81.62) 35.00 (13.25, 68.00) * 32.88 (15.13, 62.25) * 42.63 (17.00, 71.88) 14.869 0.001

Lymphocytes, % 0.50 (0, 1.00) 0.50 (0.25, 1.50) 0.50 (0.25, 1.50) 0.50 (0.25, 1.25) 4.272 0.118

Macrophages, % 34.88 (11.50, 61.25) 47.88 (17.00, 81.50) * 58.13 (28.63, 78.99) * 46.25 (19.38, 73.88) 15.745 <0.001

Abbreviations: Ig, immunoglobulin; Q1, first quartile; Q3, third quartile. Kruskal–Willis Test: * p < 0.05 vs.
cluster 1. The significance level is 0.05. Significance values have been adjusted by the Bonferroni correction for
multiple tests.

3.2.2. Cluster T2 (Cluster 2 in the Training Set): Intermediate Level of Nutrition with
Psychological Dysfunction

This cluster comprised 102 patients (18.9%) who were mostly female (n = 68, 66.7%).
Compared with clusters T1 and cluster T3, patients in cluster T2 had an intermediate
level of SMM (Figure 2). Patients in cluster T2 had higher depression (HADS-D: 6.0 (5.0,
9.0), p < 0.05) and anxiety scores (HADS-A: 6.0 (5.0, 8.0), p < 0.05) than Cluster T1 and
T3 (Table 1). Cluster T2 also presented a higher prevalence of depression (HADS-D ≥ 8;
n = 37 (36.3%), p < 0.001), anxiety (HADS-A ≥ 8; n = 35 (34.3%), p < 0.001), and depression
and anxiety (both HADS-D and HADS-D ≥ 8; n = 18 (17.6%), p < 0.001) compared with
clusters T1 and T3. About half of the patients in clusters T2 (n = 54, 52.9%) presented as
uncontrolled asthma. These things considered, these patients had a poorer quality of life
(AQLQ scores: 5.40 (5.00, 6.16), p < 0.05) than those in clusters T1 and T3 (Table 1).

3.2.3. Cluster T3 (Cluster 3 in the Training Set): Patients with Good Nutrition

Cluster T3 included 280 (51.8%) patients. This cluster not only had a significantly
higher level of BMI (23.15 (20.95, 25.33) kg/m2), FM (17.84 (6.27) kg, p < 0.05), and PBF
(29.15 (6.98) %, p < 0.05), but also had a higher mean SMM (23.29 (4.99) kg, p < 0.05) and
proportion of patients with higher level of SMM (76.1%, p < 0.001) compared with clusters
T1 and T2 (Figure 2).

Cluster T3 was characterized by less airway obstruction (FEV1% predicted: 84.0 (72.0,
94.0) %; Pre-FEV1/FVC: 72.98 (65.97, 80.53) %) than those patients in clusters T1 and T2
(p < 0.05). Further, a lower BDR (∆FEV1: 10.10 (4.58, 16.13) %, p < 0.05) was identified in
cluster T3. Cluster T3 presented a higher prevalence of rhinitis (n = 175, 62.5%, p < 0.005)
compared with the other two clusters (Table 1).

In addition, patients in cluster T3 had elevated blood eosinophils (0.27 (0.15, 0.42) × 109/L,
p < 0.05) and IgE (164.50 (65.20, 359.00) IU/mL, p < 0.05) (Table 2). More than half of the
patients (n = 174, 62.1%) presented with controlled asthma (ACQ < 0.75). Furthermore,
patients in Cluster T3 had a higher (the highest) asthma quality of life questionnaire score
(AQLQ; 6.25 (5.50, 6.61)) than clusters T1 and T2 (p < 0.05).

3.3. Asthma Exacerbations in the Following Year

A prospective one-year study was conducted to follow these patients in the training
cohort, and a total of 479 patients (88.5%) who completed the one-year follow-up in a
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real-world setting were analyzed (Table 3). Compared with cluster T3, patients in cluster
T2 had a higher proportion of experiencing severe exacerbation (cluster T3: 8.8% vs. cluster
T2 19.0%, p < 0.017), hospitalization (cluster T3: 4.8% vs. cluster T2: 12.7%, p < 0.017), and
emergency visit (cluster T3:1.6% vs. cluster T2: 7.6%, p < 0.017). Patients in cluster T2 also
experienced a higher frequency of severe exacerbations (cluster T3: 1.38 (0.88) vs. cluster
T2: 2.37 (1.64), p < 0.05), systemic corticosteroid bursts (cluster T3: 1.38 (1.02) vs. cluster
T2: 2.17 [1.4], p < 0.05), hospitalizations (cluster T3: 1.08 (0.51) vs. cluster T2: 1.92 (0.79),
p < 0.05) and emergency visits (cluster T3: 1 (0.1) vs. cluster T2: 2.5 (1.93), p < 0.05).

Table 3. Asthma exacerbation within the 12-month follow-up period in the training set.

Outcomes Cluster T1 Cluster T2 Cluster T3 Total χ2/H p-Value

n (%) 149
(31.1)

79
(16.5)

251
(52.4) 479

Moderate-to-severe asthma
exacerbation

n (%) 39 (26.2) 24 (30.4) 61 (24.3) 124 (25.9) 1.166 0.558

Mean (SD) 2.53 (3.01) 2.39 (1.84) 2.03 (1.64) 2.29 (2.23) 1.467 0.480

Severe asthma exacerbation

n (%) 23 (15.4) 15 (19.0) 22 (8.8) § 60 (12.6) 7.230 0.027

Mean (SD) 1.92 (1.67) 2.37 (1.64) 1.38 (0.88) ** 1.85 (1.46) 9.178 0.010

Systemic corticosteroid burst

n (%) 13 (8.7) 10 (12.7) 16 (6.4) 39 (8.1) 3.271 0.195

Mean (SD) 1.58 (0.79) 2.17 (1.4) 1.38 (1.02) ** 1.68 (1.12) 6.025 0.049

Hospitalization

n (%) 16 (10.7) 10 (12.7) 12 (4.8) § 38 (7.9) 7.435 0.024

Mean (SD) 1.24 (0.56) 1.92 (0.79) * 1.08 (0.51) ** 1.39 (0.7) 9.981 0.007

Emergency department visit

n (%) 9 (6.0) 6 (7.6) 4 (1.6) †,§ 19 (4.0) 8.123 0.017

Mean (SD) 2.11 (2.62) 2.5 (1.93) 1 (0.1) ** 2 (2.05) 6.461 0.040

Unscheduled visit

n (%) 24 (16.1) 15 (19.0) 46 (18.3) 85 (17.7) 0.415 0.812

Mean (SD) 2.43 (2.26) 2.15 (1.53) 2.02 (1.58) 2.18 (1.8) 0.780 0.677

Chi-Square Test: † p < 0.017 vs. cluster 1, with the Bonferroni correction; § p < 0.017 vs. cluster 2, with the
Bonferroni correction. Kruskal–Willis Test: * p < 0.05 vs. cluster 1; ** p < 0.05 vs. cluster 2. The significance level is
0.05. Significance values have been adjusted by the Bonferroni correction for multiple tests.

We further established logistic regression models to analyze the future risk of asthma
exacerbation across the pre-specified clusters (Figure 3). These analyses indicated that
cluster T3 had a decreased risk of asthma exacerbation in the following year. When cluster
T3 was taken as the reference, cluster T2 had a significantly increased risk of moderate-to-
severe exacerbation (relative risk (RR) (95% confidence interval (CI)), 2.021 (1.22, 3.337)),
severe exacerbations (2.443 (1.273, 5.685)), hospitalization (3.285 (1.400, 7.705)), emergency
visit (5.361 (1.752, 16.405)), and unscheduled visit (1.805 (1.035, 3.150)). Furthermore, cluster
T1 had a higher risk of severe exacerbation (RR (95% CI), 1.902 (1.040, 3.478)), hospitalization
(2.937 (1.339, 6.442)), and emergency visit (3.310 (1.089, 10.057)) than cluster T3.

3.4. Factors Associated with Current Asthma Control and Further Exacerbation

We further explored the factors associated with current asthma control and further
exacerbation in the following year (Tables S3 and S4).
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Figure 3. Correlations of 3 identified clusters with (A) moderate-to-severe exacerbation, (B) severe
exacerbation, (C) systemic corticosteroid burst, (D) hospitalization, (E) emergency department visit,
and (F) unscheduled visit; logistic regression analysis, with cluster 3 as the reference. CI, confidence
interval; RR relative ratio. Blue, cluster T1; Red, cluster T2; Black, cluster T3.

3.5. Internal and External Validation
3.5.1. Discriminant Analysis

By using a stepwise method of discriminant analysis, 6 of 10 variables (age, pre-FEV1%,
SMM, VFA, HADS-D, and HADS-A) were found to be statistically significant discriminants
(Table 4). In addition, by applying the Fisher discriminant method, 2 canonical discriminant
functions were generated to form a scatter plot. The clusters were well separated from
each other, as shown in Figure 4A. Finally, 97.8% of patients in training set were correctly
classified (Table S5).

3.5.2. Cluster Analysis in Validation Set

The validation set consisted of 179 patients. We compared the clinical characteristics
and body compositions (Table S6) and no significant difference was identified. Using the
same algorithm to perform PCA and cluster analysis in the independent validation set also
resulted in four components and three significantly different clusters, respectively (Table S7).
The Kaiser–Meyer–Olkin (0.602) and the Bartlett´s Test of Sphericity (p < 0.001) confirmed
that the cluster analysis in the validation set was appropriate. In the validation set, the PCA
also identified four components: component 1 encompassed the variables BMI, FM, PBF,
and VFA; component 2 encompassed sex and SMM; component 3 encompassed HADS-
D and HADS-A; and component 4 encompassed age and pre-FEV1% (Tables S5 and S6).
Figure 4 shows similar positions of the clusters between the training and validation set.
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Table 4. Canonical discriminant function analysis in the training set.

Step Variables Tolerance Sig. of F to Remove Wilks’ Lambda

1 HADS-D 1.000 <0.001

2 HADS-D 0.993 <0.001 0.659

Pre-FEV1% 0.993 <0.001 0.423

3 HADS-D 0.991 <0.001 0.498

Pre-FEV1% 0.984 <0.001 0.302

Age 0.991 <0.001 0.277

4 HADS-D 0.880 <0.001 0.222

Pre-FEV1% 0.976 <0.001 0.240

Age 0.989 <0.001 0.222

HADS-A 0.883 <0.001 0.209

5 HADS-D 0.880 <0.001 0.204

Pre-FEV1% 0.960 <0.001 0.226

Age 0.907 <0.001 0.217

HADS-A 0.877 <0.001 0.194

VFA 0.902 <0.001 0.168

6 HADS-D 0.878 <0.001 0.200

Pre-FEV1% 0.957 <0.001 0.222

Age 0.906 <0.001 0.212

HADS-A 0.876 <0.001 0.190

VFA 0.895 <0.001 0.163

SMM 0.984 <0.001 0.155

Abbreviations: FEV1, forced expiratory volume in 1 s; HADS-A, Hospital Anxiety and Depression scale-anxiety;
HADS-D, Hospital Anxiety and Depression scale-depression; VFA, visceral fat area; SMM, skeletal muscle mass.
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Figure 4. Canonical discriminant function analysis of the patient in (A) the training set and (B) the
validation set. By using a stepwise method of discriminant analysis, three clusters were separated
in the two sets. Cluster T, clusters identified in the training set; Cluster V, clusters identified in the
validation set.

4. Discussion

To the best of our knowledge, this is the first study to explore asthma phenotypes
by cluster analysis of BC parameters, which indicates that nutritional status evaluated by
BCA can identify asthma phenotypes. As a result, we identified three asthma phenotypes
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in a real-world setting: “patients with undernutrition”, “intermediate level of nutrition
with psychological dysfunction”, and “patients with good nutrition”. Further, our study
described the clinical characteristics associated with these phenotypes, and validated the
identified phenotypes associated with disease progression. Of these three phenotypes, the
“patients with good nutrition” phenotype was significantly associated with a decreased
risk of moderate-to-severe and severe AE compared with the other two clusters. Our study
identified “BC-specific” phenotypes and highlights the importance of evaluating nutritional
status in the multidimensional assessment and management of asthma, which would be of
great relevance to clinical practice.

Clinical practice’s use of BMI for defining nutritional status in asthma may be
limited [11,15,44,45]. To overcome the shortcomings of the BMI and to gain more in-
formation on phenotypes of asthma, BCA was necessary [46–51]. In our study, phenotypes
identified by BCA had different airway and systemic inflammatory profiles. Cluster T3
comprised patients with higher blood eosinophil counts, more patients with eosinophilic
asthma, and had a better prognosis. Higher peripheral blood and airway eosinophil
counts suggested that these patients may have a favorable response to corticosteroids [52],
hence this information is useful in guiding asthma management. Our study also provided
evidence that the BMI-based categories cannot be treated as entities. Although our dis-
criminant analysis showed that both SMM and VFA (discriminating fat-free mass and
body fat distribution, respectively) were statistically significant discriminants (Table 4),
the influences of SMM and VFA were different (Tables S3 and S4). Thus, BCA subdivided
the crude BMI-based phenotype into more sharply divided phenotypes for asthma. The
BC-specific asthma phenotypes identified in our study suggested that subtyping the asthma
phenotype by using BCA may improve research, clinical practice, and potential treatment.

Previous cluster analyses using BMI to define obesity have established that the obese–
asthma phenotype represents a unique set of observable characteristics [18,19,53,54]. How-
ever, these studies did not consider other important variables related to nutritional status,
such as FM and SMM. Our study highlights the value of collecting more detailed additional
information on body composition. In routine clinical practice, nutritional status is inade-
quately evaluated in asthmatics, especially in those at high risk of AE. This study identified
the relationships between nutritional status evaluated by BCA with asthma control and AE.
In our study, compared with the patients with undernutrition in cluster T1, those in cluster
T3 were identified as having a significantly better nutritional status (higher levels of BMI,
FM, PBF, and VFA) and a lower risk of uncontrolled asthma and AE in the following year.
Compared with cluster T1 and T2, the proportion of patients with higher level of SMM in
the cluster T3 increased significantly, which can be considered as a possible explanation for
the decreased risk of uncontrolled asthma and asthma exacerbation in patients in cluster
T3. That is, these findings suggested that an increased level of SMM as fat-free mass can
improve the prognosis for asthma. We further explored the factors associated with current
asthma control and further AE in our sample. Interestingly, significant associations of
higher SMM with a decreased risk of uncontrolled asthma as well as moderate-to-severe
and severe AE were identified. These findings may be explained by a previous study
showing that skeletal muscle produces and releases myokines exerting metabolic and
anti-inflammatory effects on the muscle itself, adipose tissue, cells of the immune system,
and pancreatic islets with positive effects on insulin-induced glucose disposal [49]. These
findings may suggest that the better prognosis in cluster T3 patients is due to their high
level of SMM.

In addition to SMM, psychological characteristics were an important differentiating
factor between clusters identified by discriminant analysis in our study. As shown in
Table 1, HADS (-D and -A) values and the prevalence of depression and anxiety varied
widely between the clusters: the patients in cluster T2 had more patients with depression
and anxiety than the other two clusters. The importance of this finding regarding the
psychological characteristic as a differentiating factor for identifying clusters in our study
was similar to another cluster analysis in moderate-to-severe asthmatic populations [17].
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Cluster T2 showed a significantly increased risk of moderate-to-severe and severe AE, and
higher HADS-D values were associated with an increased risk of uncontrolled asthma
and AE. Depression and anxiety assessed by HADS have been identified as important
extra-pulmonary treatable traits of asthma [55]. Our study further indicates the importance
of placing more emphasis on the assessment of psychiatric characteristics when assessing
severity, therapy, and prognosis.

The main strength of our study was the use of an independent validation set to confirm
the results from the training set. In addition, we quantified the phenotypes using objective
measures of BC in our cluster analysis. We also recognized that this study had limitations.
Firstly, our study has showed that BC-based phenotypes can lead to better or worse future
AEs. However, we have only demonstrated an association—not a causation. It is possible
that higher body fat causes more severe asthma (e.g., clusters with higher PBF (T1 and T2)
compared to T3 have more SAE, etc.,). However, it may also be true that more severe AEs
may lead to more corticosteroid treatment leading to a higher PBF. Our current analysis
failed to determine the direction of the association. Therefore, we acknowledged the
potential bidirectionality of the association. Secondly, only Chinese patients were enrolled,
so the patients evaluated may have different BC distribution than other populations.
Thirdly, although the validation of the clusters identified in this study was performed in an
independent cohort, further validation in prospective cohorts including a wider variety
of ethnicities is needed. Fourthly, the sample size was relatively small; multicenter and
large sample studies are needed. We did not explore the distribution of those lost to follow
up because of missing data resulting in a selection bias. Finally, this study did not explore
the mechanism involved and further studies are required to elucidate the molecular and
inflammatory mechanisms based on our study findings.

5. Conclusions

In conclusion, our study is the first to apply cluster analysis to identify BC-specific
asthma phenotypes. We defined three distinct nutritional status-related phenotypes with
distinct clinical characteristics and asthma outcomes. Our data reinforced the importance
of evaluating nutritional status rather than simple BMI measurement in clinical practice
to recognize asthma phenotypes and further individualize treatments with the goal of
improving clinical outcomes. Evaluating nutritional status may further progress phenotype-
guided management approaches. Further studies are necessary to assess the usefulness of
suggesting BC-phenotypic interventions for the prevention of uncontrolled asthma and
recurrent AEs.
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asthma (ACQ ≥ 0.75) in the training set; Table S5. Classification results in discriminant analysis in
the training set; Figure S1. Average silhouette width (A) and silhouette plot (B) in the training set
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