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Abstract: Fasting shows great potential in preventing chronic diseases and has to be surmounted 
under some extraordinary circumstances. This study aimed to investigate the safety, time effects of 
metabolic homeostasis and health indexes during prolonged fasting. Thirteen participants were re-
cruited to conduct a 10-day complete fasting (CF) in a controlled health research building under 
medical supervision including 3-day Baseline (BL), 10-day CF, 4-day calorie restriction (CR) and 5-
day full recovery (FR). Body healthy status was assessed by surveying pulse, blood pressure, body 
weight (BW), blood glucose and ketones, body composition and nutritional and biochemistry in-
dexes at different times. BW declined about 7.28 kg (−9.8%) after 10-day CF, accompanied by in-
creased pulse and decreased systolic blood pressure, but there were no changes to the myocardial 
enzymogram. Body composition analysis showed fat mass was constantly lost, but lean mass could 
recover after CR. The energy substrate switch from glucose to ketone occurred and formed a stable 
dynamic balance between 3–6 days of CF. The lipid metabolism presented increased total choles-
terol, LDL-C, ApoA1 and almost no changes to TG and HDL-C. Prolonged CF did not influence 
liver function, but induced a slight decrease of kidney function. The interesting results came from 
the marked increase of lipid-soluble vitamins and a significant decrease of sodium and chlorine. 
Adults could well tolerate a 10-day CF. A new metabolic homeostasis was achieved. No vitamins 
but NaCl supplement should be considered. These findings provide evidence to design a new fast-
ing strategy for clinical practice. 

Keywords: prolonged fasting; water-only fasting; metabolic homeostasis; therapeutic strategy; 
chronic diseases 
 

1. Introduction 
Fasting has been practiced for millennia for religious, ethical or health reasons. Now, 

it is a popular therapeutic strategy to prevent chronic disease [1,2] and a huge problem 
during some extraordinary circumstances in which people may be unable to obtain any-
thing edible for days. To endure prolonged fasting, the body undergoes important phys-
iological adjustments to keep its function. However, whether severe fasting is safe or leads 
to a new energy metabolic homeostasis is largely unknown. 

The changes in modern lifestyles and excessive food intake increase the risk of de-
veloping chronic diseases. The first therapeutic strategy to prevent these diseases is a life-
style change such as dietary interventions and physical activity more than pharmacolog-
ical treatments [3]. In humans, fasting is characterized by consciously eating no or mini-
mal amounts of food and caloric beverages for periods that typically range from 12 h to 
weeks [4]. Emerging discoveries drive a growing public perception that fasting is 
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beneficial for many aspects of human health and shows great potential for the therapy of 
metabolic diseases [5,6]. Although the prevalent fasting models such as intermittent fast-
ing (IF), alternative day fasting (ADF) and time-restricted feeding (TRF) have been 
demonstrated to potentially prevent diseases and manage body fitness with minor side 
effects [4,7,8], the ameliorative effects of fasting show great diversities mainly due to in-
dividual differences and various short-term complete fasting (CF) models, which influ-
ence its large-scale application to an array of diseases [9–12]. Mechanistically, the fre-
quently repeated long-term fasting intervals may favor preferential reduction of ectopic 
fat, and beneficially modulate aspects of glucose and lipid metabolism [13]. Prolonged 
fasting has been investigated in various clinical conditions for chronic inflammatory, obe-
sity, hypertension and metabolic syndrome [14]. However, prolonged fasting may induce 
both favorable and harmful effects and the net benefit of pathways activated by fasting 
are context-dependent. The results of serial transcriptomics of subcutaneous adipose tis-
sue and systematically circulating inflammatory markers from 10-day fasting show an 
unexpected dominant signal of inflammation [15]. Fasting for 60 h decreased insulin-me-
diated peripheral glucose uptake, which indicated that prolonged fasting induced pro-
found peripheral insulin resistance [16,17]. Growing evidence shows the benefits of inter-
mittent energy restriction on glucose and lipid homeostasis in the short-to-medium term. 
However, there is a lack of safe prolonged fasting protocols to guide physicians in its pre-
scription [18] because there are few controlled trials of any form of fasting that gauge the 
effects [19]. More safety studies about long-term fasting are required [13,20]. 

It is well known that fasting results in ketogenesis and an energy substrate switch 
after the exhaustion of glycogen. Andriy et al. presumed that depletion of stored glycogen 
played major roles in the health benefits from IF [21]. The metabolic switch does not truly 
take effect during short-time fasting because the glycogen, free fatty acid and amino acid 
stored in the tissues is able to supply energy substrates for 24–36 h, depending on the 
physical activity and recovery intervals [22,23]. Prevalent IF and ADF refer to CF lengths 
from 16 to 48 h, and TRE is characterized by intake of food within 8 h per day, such as 
during Ramadan. Additionally, one difference caused by different fasting ways is the ef-
fect of various growth factors and metabolites. IF caused more frequent but less pro-
nounced changes than prolonged fasting [4]. The major effects of fasting relevant to aging 
and diseases are the changes to IGF-1, glucose and insulin. Five days of fasting caused an 
over 60% decrease of IGF-1[24], but chronic calorie restriction (CR) does not lead to a de-
cline of IGF-I [25]. Ramadan fasting for 28 d had no major effects on body composition, or 
glucose metabolism in healthy lean males [26]. It is important to identify the lasting period 
and frequency of CF of the change of specific growth factors, and metabolic and nutri-
tional markers in controlled trials [19]. 

Taken together, although ketone bodies, deposited fat and gluconeogenesis allow 
most human beings to survive 30 or more days in the absence of any food, there are still 
few human being experiments that explore the systematic changes of prolonged fasting 
on a healthy body. We proposed that the short time of CF is the main cause of different or 
individual benefits from fasting. Then, a 10-day CF human experiment was conducted 
under controlled conditions to systematically estimate its safety, tolerance and time effects 
on health, psychological mood and brain functions. Our previous reports have presented 
that 10-day CF affected subjective sensations but not cognitive abilities, which was asso-
ciated with the energy substance switch in the middle of CF [27], and previous fasting 
experience was important to prevent negative feelings during prolonged fasting [28]. In 
the present, we minutely depicted the time effects of 10-day CF followed by refeeding on 
body health, physiological and nutritional status assessed by pulse, blood pressure, body 
weight (BW), blood glucose and ketones, body composition and nutritional and biochem-
istry indexes to evaluate health risks and the application advantage of long-term CF. 

2. Materials and Methods 
2.1. Participants 
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We performed a 10-day water-only fasting in male adults under medical supervision 
conditions with detailed descriptions in our previous publications [27,28]. In brief, 60 in-
terested Chinese participants were invited for further screening and 44 participants 
dropped out due to age, weight, BMI, underlying health conditions or religious beliefs. 
Three dropped out for personal reasons before the start of the experiment. Finally, 13 male 
participants undertook water only ad libitum drinking during the fasting period in a con-
trolled laboratory building, accompanied with a mild-intensity lifestyle program. The ex-
clusion criteria included: history of eating disorders or any chronic illnesses, including 
diabetes mellitus, cancer, cardiovascular disease, metabolic diseases and tobacco or alco-
hol dependence, which were reviewed during a complete medical examination before the 
experiment. 

2.2. Study Design 
The study was approved by the Ethics Committee of the Space Science and Technol-

ogy Institute (Shenzhen) (SISCJK201805001) and followed the ethical standards of the 1964 
Declaration of Helsinki and its later amendments. All participants signed their written 
informed consent form and were informed by detailed experimental design and process 
of this study before the start of the experiment. A 22-day experiment was divided into 
four phases (3-day Baseline (BL), 10-day CF, 4-day CR and 5-day Full Recovery (FR). Dur-
ing the second phase, the participants were only permitted to drink Nongfu Spring water 
(including Ca ≥ 400, Mg ≥ 50, Na ≥ 80, K ≥ 35, metasilicate ≥ 180 µg/100 mL) ad libitum 
and performed normal ambulatory activities in a health research building. In the third 
phase, the participants were gradually given increased amounts of food to protect their 
digestive system after CF. During the final phase, the participants were allowed to return 
to their normal eating habit. 

2.3. Physiological Parameters and Blood Chemistry 
Resting blood pressure and pulse were measured immediately after getting up 

(about 6:30–7:30 am) without any eating, drinking and exercise every day using a blood 
pressure examination (OMRON HEM-7121, Liaoning, China). Blood samples were col-
lected at 7 am at the BF1 (1 day before fasting), CF3 (3rd day of CF), CF6, CF9, CR3 (3rd 
day of CR) and FR5 (5th day of FR), and urine samples were collected before 9 am at the 
same time point. Some samples were promptly sent to a certified hospital (Grade III Level 
A hospital), Longgang Central Hospital in Shenzhen, using the standard protocol to test 
the regular indexes. The others were centrifuged at 3000 g for 10 min and stored at −70 ℃ 
until assay. Some special indicators were measured by Beijing Zhongtong Lanbo Medical 
Laboratory Co., Ltd. (Beijing, China) with the most authoritative third-party testing in-
spection agency certification. 

Blood glucose and β-hydroxybutyrate (BHB), the main form of ketone bodies, were 
measured with the test strip (FreeStyle Optium, Abbott, Alameda, CA, USA) everyday 
morning during CF and CR period until FR. A Homeostatic Model Assessment of Insulin 
Resistance (HOMA-IR) was calculated by the formulae: (fasting insulin in mIU/L × fasting 
glucose in mmol/L)/22.5. Glomerular filtration rate was estimated by CDK-EPI2009src equa-
tion: 141 × (Scr/0.9)α × 0.993Age, where α is −0.411 if Scr less than 0.9 mg/dl or is −1.209 if Scr 
more than 0.9 mg/dL.  

2.4. Anthropometric and Body Composition Measures 
BW was measured using an electric balance (Mi Smart scales, Hefei, Anhui, China) 

with an accuracy of 0.05 everyday morning. Height was metered with a stadiometer 
(HNH-219, OMRON, Shenzhen, Guangdong, China) during the physical examinations at 
Longgang Central Hospital in Shenzhen, China. BMI was determined according to the 
formula of BW/height2. The whole-body composition was assessed at the BF2, CF6 and 
FR5 by a dual X-ray absorptiometry (DEXA) scan (Discovery W, Hologic, Marlborough, 
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MA, USA) and a BIO-impedance analyzer (SFB7, Impedimed Brisbane, Brisbane, Aus-
tralia) according to the standard operational procedure. Participants wore lightweight 
clothing during this measurement. Fat mass index (FMI) and lean mass index (LMI) were 
calculated as fat mass or lean body mass (kg) divided by the square of height (m2). 

2.5. Circumference and Skinfold Thickness Measurements 
The circumference of the mid-upper arm (MUA), chest, waist and hip were manually 

gauged with the subject relaxed standing using a nonstrectable measuring tape after the 
DEXA scan and recorded in centimeters to the nearest millimeter. The MUA circumfer-
ence was at the midpoint of the upper arm between the olecranon and acromion. The chest 
circumference was just below the level of the nipples in the expiratory stage, the waist 
circumference at the level of the umbilicus, and the hip circumference at the trochanter 
level, respectively. All measurements were repeated 4 times to obtain the average value. 

The skinfold thickness (SFT) measurements were taken from the triceps, subscapu-
laris and abdomen with a digital skinfold caliper (Zhengtai, China) at the same time point 
of the DEXA scan. All measurements were taken on the same side of the body before, 
during and after CF and repeated 4 times for each test. The triceps SFT was measured on 
the midline of the posterior aspect of the upper arm. The subscapular SFT was measured 
as a diagonal fold 1–2 cm from the inferior angle of the scapula. The abdomen SFT was 
measured at 5 cm on the right side of the umbilicus. 

2.6. Resting Metabolic Rate Analysis 
Resting metabolic rate (RMR) and respiratory quotient (RQ) were assessed by an in-

direct calorimetry (Cortex MetaMax 3B, Leipzig, German) for 20 min on the BF1/2, CF3/4, 
CF9/10, CR3/4 and FR4/5 during the prolonged fasting experiment. Prior to the test, the 
system was turned on for at least 20 min, then calibrated according to the manufacturer’s 
recommendations by a calibration kit (Cortex, Leipzig, German). The weight and height 
of participants were recorded as input information in the Metasoft system (Version 3.0, 
Cortex, Leipzig, Germany). On the examined morning, the participant imperturbably laid 
on a check bed immediately after getting up at room temperature (25.0 ± 1.0 °C). The mask 
covered the subject’s nose and mouth to perform breath-by-breath analyses of volume, O2 

concentration, CO2 concentration by the volume meter, temperature and O2 and CO2 sen-
sor. The oxygen volume consumed in liters per minute (VO2), and carbon dioxide volume 
expired in liters per minute (VCO2) were automatically and continuously calculated dur-
ing the testing period by Metasoft and used to artificially reckon RMR with the Weir equa-
tion [29] (RMR = (3.9 × VO2 + 1.1 × VCO2) × 1.44 × 1000 (VO2: mL/min); VCO2: mL/min)) 
and RQ = VO2/VCO2 by Excel software. 

2.7. Statistical Analysis 
All statistical analysis was performed using GraphPad Prism(version 8.0 San Diego, 

CA, USA). To assess the overtime fasting effects on the physiological parameters, a re-
peated-measures one-way ANOVA was conducted after Shapiro–Wilk normality and 
lognormality tests. Data was presented as mean ± SD. The significance for all the statistical 
analyses was set at p < 0.05. 

3. Results 
In total, 13 male participants had a mean age of 39.6 ± 7.9 (range 28–55) years, mean 

weight of 72.1 ± 11.9 (range 54.2–92.2) kg, a mean body mass index of 24.6 ± 3.5 (range 
19.2–31.9) and all finished the complete prolonged fasting experiment. 
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3.1. Body Weight 
The BW of each participant presented a similar change trend (Figure 1). The average 

BW significantly decreased (7. 28 ± 1.46 kg, −9.8%± 0.01%, p < 0.001) after 10-day CF. BW 
was speedily lost in the initial 3 days with an average of −1. 20 ± 0.63 kg per day compared 
with the previous day. Since then, BW descent speed progressively slowed down to 0. 28 
± 0.42 kg on the CF10. The downtrend of BW lasted to the CR2. A significant increase 
occurred on the FR2, when compared with the CF10. The BW was still less 3. 45 ± 2.10 kg 
than the BF after 4-day FR refeeding. 

 
Figure 1. The alterations of body weight during 10-day CF and refeeding period. ** p < 0.01 vs. BF; 
# p < 0.05, ## p < 0.01, vs. CF10, n = 13. BF: before fasting, CF: complete fasting, CR: calorie restriction, 
FR: full recovery; the number depicts days. 

3.2. Blood Pressure, Pulse and Myocardial Enzymograms 
As shown in Figure 2a, pulses gradually rose during CF, reached their highest level 

on the CF8 with an increase (36.4%), began to markedly descend on the CR3 (vs. CR2) and 
recovered to baseline level on the FR3. Nevertheless, systolic blood pressure (SBP) showed 
a decreasing trend with significant decline on the CF7 (−6.44%) and reached the lowest 
level on the FR1 (−14.68%), then recovered to normal on the FR3 compared with the BF 
(Figure 2b). Furthermore, the myocardial enzymograms of creatine kinase (CK), CK-MB, 
lactate dehydrogenase (LDH) and α-hydroxybutyric dehydrogenase (HBDH) showed no 
significant changes during CF and diet recovery (Figure 2c–f). However, a slight increase 
of CK and CK-MB was observed on the CF3, about 30% and 25%, respectively, but there 
were no significant differences. 
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Figure 2. The changes of pulse (a), systolic pressure (b) and Myocardial Enzymograms (c–f) during 
10-day CF and refeeding period. Every line in a and b present its change of one participant. * p < 
0.05, ** p < 0.01 vs. BF; # p < 0.05, vs. CF10, n = 13. BF: before fasting, CF: complete fasting, CR: calorie 
restriction, FR: full recovery; the number depicts days. CK: creatine kinase, LDH: lactate dehydro-
genase, HBDH: α-hydroxybutyric dehydrogenase. 

3.3. Blood Routine Index and Nutrition Indicator 
The blood routine indexes were examined during the fasting experiment. When com-

pared with the BF, the MONO markedly increased about 27.88% (p = 0.038) on the CF3; 
and NEUT and NEUT% significantly decreased 25.52% (p = 0.045) and 10.86% (p = 0.049) 
on the CR3. There was a significant increase of RBC (13.19%, p = 0.0139), MONO% (21.30, 
p = 0.0421), HGB (8.48%, p = 0.0373) and HCT (9.45%, p = 0.006) on the CF9, as shown in 
Table 1. Moreover, the other 17 indexes did not show significant alterations at the six ex-
amined time points (Table S1). 

As shown in Figure 3a, the blood concentration of nutritional protein indicators, as 
total protein (TP), albumin (ALB) and globin (GLB) was always stable during the whole 
experiment, except for a decrease of TP on the FR5. However, when compared with the 
BF, the prealbumin showed a significant decline (−13.8%) on the CF3 and reached its min-
imal concentration on the CF9 (181. 0 ± 26.34 mg/L, −39.6%). They remained at this low 
level until the FR5 with a decrease of 17.9% (Figure 3b). The change tendency of retinol 
binding protein (RBP) during the CF and CR period was the same as prealbumin with a 
difference of decreasing degree (Figure 3c). The transferrin also markedly decreased by 
15.1% on the CF3 and subsequently remained at this level during the CR and FR period 
(Figure 3d). These short-life proteins were still lower on the FR5 than the BF. 
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Table 1. The changes of blood routine parameters. 

 BF CF3 CF6 CF9 CR3 FR5 
MONO% 8.16 ± 1.67 9.53 ± 2.38 9.85 ± 2.86 9.90 ± 2.39 * 8.88 ± 1.54 9.37 ± 1.70 

MONO (109/L) 0.47 ± 0.10 0.61 ± 0.19 * 0.58 ± 0.19 0.57 ± 0.19 0.45 ± 0.12 0.49 ± 0.12 
NEUT (109/L) 3.27 ± 1.20 3.85 ± 1.73 3.33 ± 1.12 3.24 ± 1.65 * 2.44 ± 0.82 * 2.70 ± 1.02 

NEUT% 53.60 ± 5.92 57.15 ± 6.78 54.83 ± 6.22 51.54 ± 9.25 * 47.78 ± 7.97 * 50.21 ± 7.28 
RBC (1012/L) 4.77 ± 0.57 4.78 ± 0.58 5.03 ± 0.61 5.39 ± 0.63 * 5.08 ± 0.60 4.61 ± 0.49 
HGB (g/L) 147.92 ± 14.36 148.69 ± 15.30 156.62 ± 15.60 160.46 ± 14.65 * 153.08 ± 12.66 137.77 ± 13.75 
HCT (%) 43.22 ± 3.51 43.35 ± 3.56 45.28 ± 3.49 47.30 ± 3.40 ** 44.10 ± 2.67 42.25 ± 3.39 

* p < 0.05, ** p <0.01, vs. BF n = 13. BF: before fasting, CF: complete fasting, CR: calorie restriction, FR: 
full recovery; the number depicts days. 

 
Figure 3. The changes of nutrition protein indicators during 10-day CF and refeeding period. (a) the 
blood concentration of nutritional protein indicators; (b) prealbumin (c) transferrin; retinol binding 
protein (d) transferrin. * p < 0.05, ** p < 0.01, vs. BF; n = 13. BF: before fasting, CF: complete fasting, 
CR: calorie restriction, FR: full recovery; the number depicts days. TP: total protein, ALB: albumin, 
GLB: globin. 

3.4. Body Composition 
For radiation safety protection, human body composition was only examined on the 

BF3 (3 days before fasting), CF6 and FR5 by DEXA. Fat mass (FM), lean mass (LM) and 
their percentage were analyzed as total or regional body. Compared with the BF3, total 
FM significantly decreased by about 10.7% and 17.2% on the CF6 and FR5, respectively 
(Figure 4a). However, total LM markedly decreased by 9.2% on the CF6 and recovered to 
the baseline level on the FR5 (Figure 4b). The percentage of total FM of the whole body 
only declined 2.0% on the CF6, but sustainedly decreased to 85.7% on the FR5 (Figure 4c). 
In contrast, the percentage of total LM to the whole body showed no change on the CF6, 
but markedly increased by 5.5% on the FR5 (Figure 4d). The ratio of LM/FM significantly 
increased by 4.2% and 23.9% on the CF6 and FR5, respectively. FMI markedly declined 
from 6. 76 ± 2.28 on the BF3 to 6. 03 ± 2.21 on the CF6 and 5. 64 ± 2.01 on the FR5 (p < 0.001), 
but the LMI decreased from 16. 70 ± 1.51 (BF3) to 15. 15 ± 1.26 (CF6, p < 0.001), and recov-
ered to 16. 95 ± 1.19 on the FR5. 

To understand the distribution shift of body composition, FM and LM or their per-
centage of different body compartments were also analyzed. Compared with the BF3, fat 
content in the limbs, trunk and head significantly decreased on the CF6 with an average 
decline of 10.9%, 11.1% and 5.4%, respectively. On the FR5, fat content in the limbs and 
trunk remained significant, with a decrease of 16.2% and 19.7%, respectively. Fat content 
in the head on the FR5 was lower than the BF3, but there was no significant difference 
(Figure 4e). There were distinct alterations of fat percentage in the limbs on the CF6 and 
FR5, in the trunk on the FR5 and in the head on the CF6. No changes of fat percentage 
occurred in the trunk on the CF6 and in the head on the FR5 (Figure 4c). LM in the limbs, 
trunk and head significantly declined on the CF6 with an average of 7.4%, 11.5% and 4.9%, 
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respectively, which all recovered to baseline level on the FR5 (Figure 4f). The percentage 
of LM showed significant elevation in the limbs and a decrease in the head on the CF6. 
There was a significant rise of LM percentage in the limbs and trunk, but not in the head 
on the FR5 (Figure 4d). The FM ratio of trunk to whole body showed a sustained decrease 
from 0. 530 ± 0.04 on the BF3, 0. 527 ± 0.03 on the CF6 to 0. 515 ± 0.03 (p < 0.001) on the FR5, 
which did not happen in the limbs (Figure 4g). 

Using the standard protocol of the manufacturer, we analyzed FM and its percentage 
of android and gynoid compartments. After a 6-day CF, fat content in android and gynoid 
markedly declined by 14.7% and 7.9% (p < 0.001) respectively, which constantly decreased 
by 20.1% and 15.8% on the FR5 by comparing with the BF3. Compared with the CF6, FM 
of these two compartments also significantly decreased by 6.4% and 8.6% on the FR5 (Fig-
ure 4h). FM percentage of android and gynoid showed no significant alteration on the 
CF6, but notedly changed on the FR5 with a 15.4% and 12.1% decrease, respectively (Fig-
ure 4i). The android/gynoid FM ratio significantly decreased from 7.8% (0. 63 ± 0.14 vs. 0. 
58 ± 0.13, p = 0.021) on the CF6, but no marked difference was noted on the FR5 (0. 61 ± 
0.12, p = 0.156). Fat free mass (lean + bone) of android and gynoid also significantly de-
creased by 13.1% and 6.5%, respectively, on the CF6, but no marked changes on occurred 
the FR5 compared with the BF3 (Figure 4j). Estimated visceral adipose tissue (Est.VAT) 
mass showed more decrease degree with 20.7% and 18.1% (p < 0.001) on the CF6 and FR5, 
respectively, as did the EST. VAT volume with a decrease of −20.0% and −17.3% (Figure 
4k). EST.VAT mass and volume on the FR5 showed no difference with the CF6. 

Total body water (TBW), extracellular fluid (ECF), intracellular fluid (ICF) and their 
percentage were examined by Bio-impedance analyzer SFB7 at the same time point of the 
DEXA scan. On the CF6, TBW significantly decreased by 11.4% and was associated with 
no significant change to TBW percentage (TBW%). On the FR5, TBW substantially recov-
ered to prefasting levels and TBW% significantly increased by 3.7% (Figure 4i). In addi-
tion, ECF, ICF and their percentage on the CF6 markedly declined by 15.1%, 8.7%, 4.2% 
and 3.1%, respectively. After 5 days of FR, ECF and ICF substantially recovered to prefast-
ing levels. ECF% showed a significant increase of 4.1%, but ICF% remained a significant 
decrease of 3.1%, compared with the BF3 (Figure 4l,m). 

SFT is widely used to evaluate body composition too. On the CF6, SFT of three ex-
amined sites significantly decreased by 20.4% (triceps), 15.3% (subscapularis) and 17.1% 
(abdomen), respectively, and was continuously lower (17.1%, 11.1% and 17.0%) on the 
FR5 than that on the BF3 (Figure 4n). The circumferences of MUA, chest, waist and hips 
was measured at the same time. As expected, significant decreases of all four circumfer-
ences were observed on the CF6 at 3.7%, 2.8%, 6.4% and 2.7%, respectively. No recovery 
occurred in chest and MUA sites on the FR5, but circumferences of the waist and hips 
almost returned to baseline levels (Figure 4o). 
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Figure 4. The body composition alterations of the whole and compartments were estimated by 
DEXA (a–k) or sfb7 (l,m) during 10-day CF and refeeding period. Skinfold thickness (n) and circum-
ference (0). * p < 0.05, ** p < 0.01 vs. BF; # p < 0.05, ## p < 0.01, vs. CF6, n = 13. BF: before fasting, CF: 
complete fasting, CR: calorie restriction, FR: full recovery; the number depict days. T/W: 
Trunk/Whole, L/W: Limbs/Whole, EVM: estimated visceral adipose tissue (EST.VAT) mass, EVV: 
estimated visceral adipose tissue volume, TBW: total body water, ECF: extracellular fluid, ICF: in-
tracellular fluid, MUA: mid-upper arm. 

3.5. Glycometabolism and Lipometabolism 
The concentration of blood glucose and BHB was recorded everyday by a strip test 

until the CR4, when their levels fully recovered to the baseline. As expected, glucose 
showed a sustained significant decrease from 4. 96 ± 0.44 mmol/L of the BF to 4. 18 ± 0.54 
mmol/L of the CF1 and reached its lowest at 3. 508 ± 0.397 mmol/L on the CF4. From CF8, 
blood glucose showed a slight increase and was maintained at this level in the following 
fasting days and refeeding period. Contrarily, BHB continuously rose from the CF1 (1.308 
± 1.053 vs. 0. 177 ± 0.044 mmol/L of the BF) and ran up to its highest on the CF5 and main-
tained at this level until the CF9. Then, a slight decrease occurred on the CF10. During the 
CR period, BHB significantly linearly declined and was restored to baseline on the CR3 
(Figure 5a). At the same time, urine ketone also rose up to three “+” on the CF3 and top 
four “+” on the CF6 and CF9 in the routine urine test and recovered to a baseline of nega-
tive on the FR5 (data not shown). These results implied that an energy metabolic substrate 
shift from glucose to ketone occurred and a new balance formed during the middle of 10-
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day CF. As glucose oxidation finally generates 32 ATP and BHB to 22.5 ATP [30], the the-
oretically generated ATP was calculated with the formula ATP = 32 × Cglucose + 22.5 × CBHB. 
The results showed an increase of ATP from the CF6 and recovered to the BF on the FR5 
(shown in Figure S1). Unexpectedly, HbA1c, an important index of average blood glucose, 
significantly declined on the CF3 and did not recover to baseline until the FR5 (Figure 5b). 
As a pivotal glucose sensor and regulator, insulin presented an immediate decline, 
achieved its lowest at 18. 64 ± 11.67 pmol/L (Mean diff. −36.09 pmol/L, 95% CI (−55.28 to 
−16.90) on the CF3 and maintained at this low level during the fasting period. During the 
refeeding, insulin gradually rose and recovered to baseline on the FR5 (Figure 5c). From 
the calculated HOMA-IR, three participants were >2.0 and did not take any diabetes med-
ication and with normal fasting glucose level, and most of the participants ranged from 
0.9–2.0. All of them showed a rapid decrease on the CF3 and maintained their low level 
during the fasting period with the same trend as with insulin (Figure 5d). On the contrary, 
glucagon markedly increased by 13.56% (Mean diff. 16.21 pg/mL, 95% CI (0.98 to 33.39) 
on the CF3, 15.96% (Mean diff. 20.08 pg/mL, 95% CI (2.89 to 37.26) on the CF6 and 14.51% 
(Mean diff. 17.60 pg/mL, 95% CI (0.14 to 34.79) on the CF9, and fell to baseline in the fol-
lowing refeeding period (Figure 5e). However, there was no change occurring in gluca-
gon-like peptide-1(GLP-1) during the whole experiment (Figure 5f). 

 
Figure 5. The alteration of glucose (a,b) and glycoregulators (c–f) during 10-day CF and refeeding 
period. * p < 0.05, ** p < 0.01 vs. BF; n = 13. BF: before fasting, CF: complete fasting, CR: calorie 
restriction, FR: full recovery; the number depicts days. HbA1c: Hemoglobin A1c, HOMA-IR: Ho-
meostatic Model Assessment of Insulin Resistance; GLP-1: glucagon-like peptide-1. 

The changes of lipometabolic indexes, including triglycerides (TG), cholesterol 
(CHOL), Low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cho-
lesterol (HDL-C) and leptin were ordinarily depicted in our previous reports [27]. In de-
tail, there was a slight but not significant decrease of TG and HDL-C during the 10-day 
fasting period (Figure 6a,c). CF induced a significant increase of CHOL with 13.26% (Mean 
diff. 0.64 mmol/L, 95% CI [0.14 to 1.14] on the CF3, 29.33% (Mean diff. 1.42 mmol/L, 95% 
CI [0.79 to 2.05] on the CF6 and 33.17% (Mean diff. 1.61 mmol/L, 95% CI (0.99 to 2.24) on 
the CF9, respectively, then recovered to baseline after refeeding (Figure 6b). Moreover, 
the LDL-C showed an increase of 23.53% (Mean diff. 0.78 mmol/L, 95% CI (0.23 to 1.33), 
45.39% (Mean diff. 1.55 mmol/L, 95% CI (1.05 to 2.06) and 43.63% (Mean diff. 1.48 mmol/L, 
95% CI (0.87 to 2.08), respectively during the fasting period, and presented a gradual re-
covery to the baseline during eating resumption (Figure 6d). There was a marked eleva-
tion of leptin from 1. 67 ± 0.55 ng/mL of the BF to 2. 27 ± 0.86 ng/mL of the CF3 and the 
highest 2.48 ± 0.60 ng/mL of the CF9. Leptin showed a slight decrease after calorie 
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restriction resumption to 2. 06 ± 0.58 ng/mL and fully recovered to the baseline until the 
FR5 (Figure 6g). As the main carrier of HDL-C, ApoA1 declined by 11.43% (Mean diff. 
−13.19 mg/dL, 95% CI(−26.67 to 0.29)on the CF3, 14.97% (Mean diff. −17.18 mg/dL, 95% CI 
(−34.00 to −0.35) on the CF6 and 22.11% (Mean diff. −24.64 mg/dL, 95% CI (−39.28 to 10.00) 
on the CR3, then recovered to BF baseline on the FR5 (Figure 6e). On the contrary, ApoB, 
the main structural protein of LDL-C, significantly increased by 23.15% (Mean diff. 24.40 
mg/dL, 95% CI (10.62 to 38.18) on the CF6 and 41.94% (Mean diff. 45.66 mg/dL, 95% CI 
(34.64 to 56.69) on the CF9, then recovered to the baseline on the CR3 (Figure 6f). Lipopro-
tein (a) presented a gradual increase from initial fasting (10. 50 ± 8.59 mg/dL of the BF, 14. 
55 ± 8.96 mg/dL of the CF3, 16. 78 ± 7.59 mg/dL of the CF6, 20. 75 ± 10.55 mg/dL of theCF9 
respectively) to CR3 (20. 48 ± 12.31 mg/dL) and fell back to the baseline on the FR5 (9. 56 
± 7.22 mg/dL) (Figure 6h). Nevertheless, no alterations of the adiponectin (Figure 6i) and 
lipoprotein lipase (LPL) (Figure 6j) occurred during the whole fasting experiment. It was 
noteworthy that lipase showed a gradual increase during the fasting period, but there was 
a significant elevation of 131.49% on the CR3 and 112.92% on the FR5 (Figure 6k). Carbon-
dioxide-combining power (CO2-CP) measured by the PEPC enzyme method showed a 
significant gradual decline during the fasting period and quickly recovered to the baseline 
on the CR3 (Figure 6l). 

 
Figure 6. The changes of lipometabolic indices during 10-day CF and refeeding period. * p < 0.05, ** 
p < 0.01 vs. BF; n = 13. BF: before fasting, CF: complete fasting, CR: calorie restriction, FR: full recov-
ery; the number depicts days.TG: triglycerides, CHOL: cholesterol, LDL-C: Low-density lipoprotein 
cholesterol, HDL-C: high-density lipoprotein cholesterol, ApoA1: apolipoprotein A1, ApoB: 
apolipoprotein B, CO2-CP: carbondioxide combining power. 

3.6. Liver and Kidney Functions 
Most of the liver function biochemical biomarkers did not change during the fasting 

and diet restoration, such as alanine aminotransferase (ALT), Aspartate aminotransferase 
(AST), alkaline phosphatase (ALP), Gamma-Glutamyl transferase (GGT) and total bile 
acid (TBA) (Figure 7a–e). There was a slight increase trend of TBA during the whole ex-
periment and a notable decline of ALP on the FR5. It was worth noting that the ALT level 
of three participants and AST of one participant fleetly increased on the FR5, which were 
slightly higher than the upper threshold of the clinical standard, as was the TBA level. 
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As shown in Figure 7f, serum creatinine mildly increased during the fasting time 
until the CR3 (82. 82 ± 13.92 µmol/L of the BF vs. 94. 71 ± 17.01 µmol/L of the CR3). How-
ever, there was no significant change in urine creatinine during the whole experiment 
time, although a decrease of 38.08% was observed on the FR5 (Figure 7g). The estimated 
glomerular filtration rate (eGFR) showed a contrary change trend to the creatinine with a 
decrease of 7.52% on the CF6 and 12.05% on the CR3, respectively (Figure 7h). Most im-
portantly, the level of cystatin C (Cys-C) markedly declined on the CF6 (23.99%) and CF9 
(29.65%) when compared with that of the BF (Figure 7i). A slight increase (17.06%) of 
blood urea was observed on the CF3, which was smoothly recovered to the baseline fol-
lowing that time (Figure 7j). As a sensitive indicator of premature renal failure, a gradual 
increase of urine microalbumin (UMALB) was detected, especially on the CF9 (297.43%± 
264.79%, p = 0.014) and the CR3 (409.91%± 636.71%, p = 0.042), but there was great indi-
vidual difference (Figure 7k). The ratio of UMALB to urine creatinine almost did not 
markedly change with a stepped increase until the CR3 (Figure 7l). All the kidney function 
indexes were restored to the baseline level on the FR5. 

 
Figure 7. The alteration of liver (a–e) and kidney (f–l) function indexes during 10-day complete fast-
ing experiment. * p < 0.05, ** p < 0.01 vs. BF; n = 13. BF: before fasting, CF: complete fasting, CR: 
calorie restriction, FR: fully recovery, the number presents days. ALT: alanine aminotransferase, 
AST: aspartate aminotransferase, ALP: alkaline phosphatase, GGT: Gamma-Glutamyl transferase, 
TBA: total bile acid, Cys-C: cystatin C, UMALB: Urine microalbumin, CRE: creatinine, eGFR: esti-
mated glomerular filtration rate. 

3.7. Vitamins and Electrolyte Ions 
Vitamins were required for various biochemical functions and should be supplied by 

diet. During the prolonged fasting, blood lipid-soluble vitamin (LSV) of vitamin A, E and 
D3 was significantly increased on the CF3 of 87.15% (Mean diff. 0.97 µmol/L, 95% CI (0.37 
to 1.56), 17.77% (Mean diff. 1.94 µg/mL, 95% CI (0.44 to 3.44)and 233.09% (Mean diff. 93.31 
µmol/L, 95% CI (62.53 to 124.10), respectively, and then maintained at their higher level 
during the fasting period and then recovered to prefasting level after diet (Figure 8a–c). 
No marked changes were observed in the water-soluble vitamins (WSV) as shown in Fig-
ure 8d–i. As expected, the level of sodium ion (Na) markedly reduced 2.88% (Mean diff.- 
0.18 mmol/L, 95% CI (−1.92 to 1.57)) from the CF6, then under the lower limit of 137 
mmol/L on the CF9 and restored to the baseline level on the FR5 (Figure 8j). The chlorine 
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ion (Cl) level presented the same change trend as Na (Figure 8k). There were volatility 
changes in the potassium (K), calcium (Ca) and phosphorus (p) levels. Magnesium de-
creased about 7% from the CF6 to CR3 (Figure 8l–o). 

 
Figure 8. The alteration of main vitamin (a–i) and electrolyte ions (j–o) during 10-day CF and refeed-
ing period. * p < 0.05, ** p < 0.01 vs. BF; n = 13. BF: before fasting, CF: complete fasting, CR: calorie 
restriction, FR: ful recovery; the number depicts days. Vit: vitamin. 

3.8. Resting Metabolic Rate and Respiratory Quotient 
To explore the energy metabolism during prolonged fasting, the resting metabolic 

rate (RMR) and respiratory quotient (RQ) were measured using the method of indirect 
calorimetry. As shown in Figure 9, RQ value grew closer to 0.7 with a fasting time exten-
sion from 0. 833 ± 0.073 (BF1/2) to 0. 716 ± 0.041 (CF9/10), then gradually increased to 0. 
765 ± 0.060 (CR3/4) and 0. 868 ± 0.091 (FR4/5). These data implied that the energy metab-
olism switched to fat oxygenolysis as a prepotent pattern during the prolonged fasting. 
The calculated RMR showed an increase of 8.2% (Mean diff. 138.2 Kcal/day, 95% CI (44.25 
to 320.6) on the CF3, and decreased about 5.3% (Mean diff. −110.4 Kcal/day, 95% CI 
(−304.80 to 84.04) on the CF9, 8.2% (Mean diff. −166.8 Kcal/day, 95% CI (−410.9 to 77.25) 
on the CR3 and 5.4% (Mean diff. −119.8 Kcal/day, 95% CI (−315.6 to 75.94) on the FR4. The 
maximum decrease could reach 25.5% on the CF9, 37% on the CR3 and 22.8% on the FR4. 
When compared with CF3, the RMR showed a marked decrease. Fasting assuredly re-
duced the resting energy metabolism and had strong individual differences. 
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Figure 9. The effect of 10-day CF on the respiratory quotient (a) and resting metabolic rate (b). * p < 
0.05, ** p < 0.01 vs. BF; # p < 0.05, ## p < 0.01 vs. BF; n = 13.BF: before fasting, CF: complete fasting, 
CR: calorie restriction, FR: full recovery; the number depicts days. 

4. Discussion 
Increasing data from human and animal experiments demonstrated CR and fasting 

were associated with deceleration or prevention of most chronic metabolic illnesses and 
inflammatory diseases. The different and individual benefits implied that a suitable fast-
ing regimen with a modulating diet and meal frequency as well as fasting period and 
interval time could represent a new paradigm for alleviating metabolic dysfunction, 
which should be further evaluated in controlled clinical trials and observational studies 
[19,31]. Most studies supported that fasting or CR improved systemic metabolic function, 
but whether prolonged fasting led to a new and stable metabolic homeostasis was largely 
unknown. The primary objective of this study was to examine the metabolic response and 
the potential changes in body composition, circulating hormones and metabolism regu-
lating molecules to a prolonged water-only fasting in male adults. 

Tolerance and safety of prolonged fasting. Because of the habit, physiology and 
mentality, long-term fasting for more than 36 h does not come easy for most people. In 
contrast, prevention and therapy of chronic metabolic disorders should take a long time. 
A suitable pattern with an appreciative interval time of fasting and repeated times is im-
portant, especially the tolerance from physiology and psychology. From our results, all 
participants completed the whole fasting experiment without any complaints and major 
side effects, which indicated that adults could well tolerate 10-day water-only deliberate 
fasting. Toledo reported that Buchinger periodic fasting lasting from 4 to 21 days was safe 
and well-tolerated [32], as did some other prolonged fasting human experiments from 5 
days to 2 weeks to prevent obesity, hypertension [33], DM, insulin resistance [34] and ar-
thritis [35]. Ketoacidosis is another pivotal problem during prolonged fasting. Our results 
showed the mean highest concentration of BHB was 5. 616 ± 0.911 mmol/L on the CF8 and 
only two values were more than 7 mmol/L. Although there was a continuous decline of 
CO2-cp, the mean concentration was more than the lower limit threshold of 20 mmol/L. In 
total, 4 or 6 out of 13 participants showed lower than this threshold on the CF6 and CF9, 
which means there was a potential slight ketoacidosis risk. By the way, almost all blood 
routine indexes, TP, ALB and GLB were steady and there were no significant clinical 
changes. The increased tendency of blood and urine creatinine suggested that limited 
muscle protein was catabolized during the CF. Previous reports and present data sug-
gested that an initiative long-term fasting for more than 5 days was a safe feasible model 
and could be endured by human beings for health or therapy goals. 
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The metabolic switch and homeostatic models during complete fasting. Except for 
the safety concern, another focus on prolonged fasting was the metabolic homeostasis and 
energy substrate shift. We measured blood glucose and BHB every day during 10-day CF. 
A new homeostasis of energy source formed between 3–6 days of CF, as the lowest level 
of glucose on the CF4 and the highest level of BHB on the CF5 in the present experiment 
(Figure 5a). This new dynamic balance kept steadily in the subsequent fasting time, doc-
umenting the metabolic switch. These results were consistent with previous reports that 
ketosis had been shown to reach a plateau after 4–5 days of prolonged CF [36,37]. The 
increased ATP calculated from glucose and BHB suggested fasting did not lead to energy 
deficiency even during the complete food deprivation. Additionally, blood glucose stabi-
lized at the lower normal level, which implied a systemic homeostasis of gluconeogenesis. 
Moreover, there was no alteration of TG (Figure 6a) during fasting and refeeding, which 
meant most of TG released from accelerated lipolysis contributed to gluconeogenesis as a 
previous report [38]. The individual difference of TG level showed by SD value become 
smaller during fasting, which predicted a necessary level of TG to body. A slight increase 
of serum urea (Figure 7j) suggested the gluconeogenesis contributed by amino acid was 
minor or tightly regulated to avoid protein excessive catabolism [39], as consistent with 
previous reports [40,41]. The hypoglycemic insulin (Figure 5c) and the hyperglycemic glu-
cagon (Figure 5e) reached their lower (18. 64 ± 11.67 pmol/L, −65.45%) or highest (155. 78 
± 25.32 pg/mL, +15.95%) platform on the CF3 or CF6, respectively, and maintained their 
level in the subsequent fasting period. These two antagonistic glucose-regulating hor-
mones also reached new homeostasis. Following the decrease of blood glucose, a signifi-
cant decline of HbA1c and HOMA-IR was observed throughout the fasting experiment 
(Figure 5b,d), whereas one-week Buchinger fasting did not significantly decrease HbA1c 
and HOMA-index in a pilot study of type 2 diabetes patient [42]. Moreover, the multifac-
eted GLP-1 was unaffected during the fasting experiment. The new homeostasis was also 
supported by the similar declined degree of RMR with the BW decrease except for the first 
3 days. From an evolutionary point, animals instinctively consumed more energy to find 
food in the initial stage of food deprivation. These data implied a new and stable energy 
balance after 3-day fasting between BW, an alternate energy substrate and physiological 
energy consummation [41]. 

The complex alterations of lipid metabolism. Lipolysis plays a pivotal role as an 
energy source and is precisely regulated to survive longer during food deprivation. From 
the anthropometric analysis, the BW speedily declined in the initial days of fasting to sup-
port the increased RMR. RQ closed to 0.7 from the CF3 to CF9 indicated the depletion of 
glycogen and major expenditure of fat after 3-day fasting. Body composition analysis 
showed that the fat mass continuously lost in the whole experimental period which 
mainly occurred in limbs and trunk, especially in subcutaneous and visceral fat supported 
by the more decrease of SFT and EVM (Figure 4n,k). Additionally, the declined lean mass 
or fat-free mass recovered after 4-day CR and 5-day FR. These results implied that the 
body was mainly a nutritional supplement, not gained weight in the initial refeeding days. 
In the lipid metabolic indexes, it was reported that IF decreased the total cholesterol by 
about 10%–21%, TG by about 14%–42% and LDL-C [20], but not all [43]. In the present 
study, total cholesterol and LDL-C increased during fasting and recovered to lower after 
refeeding. The early report showed that fasting for 1 week resulted in a significant eleva-
tion of serum cholesterol and TG by 25% and continued fasting for up to 21 days resulted 
in lowering of both cholesterol and TG to pre-fast levels [44]. There are complicated alter-
ations of these lipid metabolic indexes observed after long-term Buchinger fasting 
[42,45,46] in which participants were allowed to intake 200–250 Kcal daily such as tea or 
honey. CF resulted in an increase of TC, LDL-C and Apo-B [47]. It is well known that LDL 
with ApoB mainly brings cholesterol from the liver to peripheral tissues and HDL plays 
a reverse role in cholesterol transport with ApoA1. They presented the same tendency 
during this prolonged fasting, and so did the lipoprotein, which was dependent on the 
degree of fasting [48]. Most reports showed fasting decreased the leptin level which 
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played important roles in the regulation of thyroid and metabolism [49]. However, our 
results showed an increase of leptin during CF, which should be investigated later. These 
results indicated the main energy source of lipid was tightly regulated for extending the 
living period during prolonged food deprivation. Taken together, lipid metabolism pre-
sents different changes model between IF and prolonged CF, which may result from the 
initial state or fasting degree. Blood lipids play a causal role in the etiology of metabolic 
diseases. The distinct changes from different fasting regimens increase the clinical appli-
cation difficulty of fasting for therapeutic purpose. 

The interesting changes in physiological and nutritional status. First, fasting had a 
positive effect on blood SBP as in previous reports, but almost no change of DBP [50,51]. 
SBP did not decrease in the short fasting group (<7 days), but occurred in the prolonged 
fasting (>7–30 days) [50], the same as our observation. Ramadan intermittent fasting had 
no effects on their hypertensive state [52] or decreased SBP and DBP [53]. On the contrary, 
pulse rate significantly increased from the CF2 and throughout the whole fasting and CR 
period [41], whereas Pratap observed a decrease of pulse in the prolonged fasting group 
[50]. Fasting could also prolong QTc intervals [51]. However, there were no alterations in 
the myocardial enzymogram (CK, CK-MB, LDH, HBDH, AST), which indicated pro-
longed CF caused no damage to cardiac tissue and the increased pulse may come from 
the energy metabolic shift in heart. A deep and systematic analysis should be done in the 
future on the cardiovascular system during prolonged fasting. Second, protein synthesis 
was inhibited during water-only prolonged fasting as shown by the marked decrease of 
short-life protein including prealbumin, RBP and transferrin, but not the key long-life pro-
tein that maintained the homeostasis of the humoral system such as TP, ALB and GLB. 
These results indicated that the body selectively synthesizes some vital proteins and liver 
function was not affected. Third, surprising results came from the changes of vitamins 
and electrolyte ions. In addition to the untested vitamin K, all other LSV were significantly 
elevated, whereas there were almost no changes in the WSV (Figure 8a–i). In regular 
views, fasting leads to nutritional deficiency, especially vitamins. Multivitamin was sup-
plied daily in the early fasting experiments [54,55]. Recent evidence was consistent with 
our observation. Eight days of fasting induced statistically significant changes in the levels 
of three vitamin D metabolites with an increase of 24,25(OH)2D3 and 3-epi-25(OH)D3 and 
a decrease of 25(OH)D2 [56]. Aksungar reported Vitamin B12 and B9 showed a marked 
rise in the Ramadan fasting group [57], but only an increasing trend of vitamin B2 and a 
decrease trend of vitamin B6 occurred in our fasting experiment. It was worth noting a 
sharp decrease of vitamin B1 and B9 on the CF9. The LSV reached their highest plateau 
on the CF3 or CF6, which was still lower than their toxic level. These data implied the 
vitamins were released from stored tissues to maintain vitamin nutrition of blood and 
other tissues, especially the massive LSV following lipolysis. The changes of Na and Cl 
deserved the most attention in the aspect of electrolyte ions, because most participants’ 
blood Cl was closed to the lower threshold from the CF6 to CR3 and Na on the CF9. The 
changed degree was higher than the report from Toledo [32]. The concentration of other 
detected ions was within the normal ranges. It also should be considered in the decrease 
of TBW, ICF and ECF (Figure 4l) to maintain the electrolyte homeostasis. By the way, renal 
function showed some decline from the changes of eGFP, Cyc-C and UMALB, which were 
maintained within the reference values and returned to baseline after dieting as in previ-
ous reports [40]. 

5. Conclusions 
Taken together, our results demonstrated that adults can well tolerate a 10-day CF in 

physiology and psychology with no major side-effects. The energy metabolic supply 
reached a new and stable dynamic balance between 3–6 days and body homeostasis could 
be maintained by accelerated fat decomposition, accompanied with reduced resting en-
ergy expenditure. Vitamin supplementation was not needed, but the NaCl should be con-
sidered. These findings could contribute to the development of a prolonged fasting 
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therapeutic strategy with at least 3–6 days of CF to form new metabolic homeostasis. The 
limitations of the present study were the small number and only male participants, be-
cause of the risk control and condition constraints. 

Supplementary Materials: The following supporting information can be downloaded at: 
https://www.mdpi.com/article/10.3390/nu14183860/s1, Figure S1: the calculated ATP level during 
the experiment; Table S1: the results of 17 blood routine parameters. 
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