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Abstract: Catechins are key functional components in tea and have many health benefits, including
relieving diabetes. Glucose is necessary for maintaining life. However, when the glucose in the
serum exceeds the threshold, it will lead to hyperglycemia. Hyperglycemia is mainly caused by
insufficient insulin secretion or insulin resistance. Persistent hyperglycemia can cause various
disorders, including retinopathy, nephropathy, neurodegenerative diseases, cardiovascular disease,
and diabetes. In this paper, we summarize the research on the underlying mechanisms of catechins
in regulating diabetes and elaborate on the mechanisms of catechins in alleviating hyperglycemia
by improving insulin resistance, alleviating oxidative stress, regulating mitochondrial function,
alleviating endoplasmic reticulum stress, producing anti-inflammatory effects, reducing blood sugar
source, and regulating intestinal function. This review will provide scientific direction for future
research on catechin alleviating diabetes.
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1. Introduction

Diabetes is one of the most common metabolic diseases worldwide. According to
its pathogenesis, it can be divided into diabetes mellitus (DM) type 1 (T1D) caused by
insufficient insulin secretion and DM type 2 (T2D) caused by insulin resistance; both
can lead to hyperglycemia in humans [1]. There are nearly 425 million diabetic patients
worldwide (90% T2D), which is expected to increase to 700 million by 2045 [2]. Chronic
hyperglycemia is connected to organ damage and failure, including eyes, kidneys, nerves,
heart, gastrointestinal tract, and blood vessels. Meanwhile, multiple studies have demon-
strated that diabetes, particularly T2D, can result in diabetic nephropathy, neuropathy,
and cardiovascular and cerebrovascular illness [1]. Currently, pharmacological therapies
such as insulin and metformin are primarily used to treat diabetes, but these therapies
significantly raise the risk of cardiovascular disease and all-cause mortality [3]. Therefore,
developing safe, non-toxic, and economically valuable functional food and/or nutritional
medicines for diabetes replacement therapy is essential.

Tea is a globally popular beverage with rich bioactivities and health benefits. Cate-
chins account for about 30% of the ingredients in finished tea; they possess antioxidant,
anti-obesity, anti-tumor, anti-diabetic, and anti-inflammatory properties [4]. Studies have
shown that catechins extracted from Indian medicinal plants can protect animals from
alloxan-induced diabetes, possibly due to their free radical scavenging effect [5]. Ad-
ditionally, catechins can alleviate DM via insulin resistance, alleviating oxidative stress,
regulating mitochondrial function, alleviating endoplasmic reticulum (ER) stress, gener-
ating anti-inflammatory activity, lowering blood sugar sources, and regulating intestinal
function [6–8]. In this paper, we comprehensively summarized the potential mechanisms of
catechins in regulating diabetes in order to provide scientific guidance for further research
on catechins alleviating diabetes.
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2. Material and Methods

In this paper, authoritative literature search databases PubMed, Web of Science, and
Google Scholar were used for comprehensive data collection (from the beginning of the
database to October 2022), and key words related to catechin and diabetes were used for
article searches, including “catechins”, “diabetes”, “EGCG”, “tea”, “tea and diseases”,
“catechins and diseases”, “mechanism and diabetes”, “catechins and diabetes”, “EGCG and
diabetes”, “catechins, insulin resistance and diabetes”, “catechins, endoplasmic reticulum
stress and diabetes”, “catechins, inflammation and diabetes”, “catechins, intestinal function
and diabetes”, and “catechins, oxidative stress and diabetes”. A manual article search was
conducted to ensure that as many relevant studies as possible were obtained. The following
inclusion and exclusion criteria were used in selecting articles:

Inclusion criteria:

• Articles written in English
• Cell, animal, and clinical studies
• Intervention with catechin supplementation

Exclusion criteria:

• Catechin supplementation in combination with other interventions (drugs/nutrients/exercise)
• The study does not clearly state the mechanism of diabetes relief

Data were extracted from the search results according to these standards, and the
extracted data included: title, publication year, author, study subject, study objective, and
catechin- and/or diabetes-related pathway of action. An initial search of the database
yielded 1363 records. After reducing duplication and screening by title and abstract, an
additional 354 full-text articles were analyzed. A total of 174 articles were excluded while
180 articles were used in this systematic review. A flow chart illustrating our study selection
is shown in Figure 1.
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Figure 1. Study selection flow adapted from a systematic review by Muhammad Subhan Alfaqih et al. [9].

Microsoft Office Professional Enhanced edition 2019 was used to collate and analyze
the data, and ChemDraw 20.0 was used to draw the monomer chemical structure of
catechins. Finally, all references in the paper are sorted and edited through Endnote 20.

3. Results and Discussion
3.1. Physical and Pharmacological Properties of Catechins

Catechins are natural flavonoid polyphenols abundant in tea, broad beans, and
grapes [10]. Catechins have two benzene rings (A and B rings) and a dihydropyran
heterocycle ring (C ring) with a hydroxyl group at C3 carbon. This hydroxyl group can be
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esterified with a gallate group to form gallic conjugates, including (−)-epicatechin gallate
(ECG), (+)-gallocatechin gallate (GCG), (+)-catechin gallate ester (CG), (−)-epigallocatechin
gallate (EGCG) [11–13], (−)-epicatechin (EC), (+)-gallocatechin (GC), (+)-catechin (C), and
(−)-epigallocatechin (EGC) [11,12,14] (Figure 2). Among these, EGCG accounts for 50–80%
of the total catechins in green tea and has significant antioxidant, anti-inflammatory, anti-
cancer, and anti-neurodegenerative properties [13,15].
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In recent years, research on catechins relieving diabetes has become more and more
in-depth (Table 1). Research has shown that catechins isolated from Elaeagnus umbellate
inhibit carbohydrate digestive enzymes, including α-amylase and α-glucosidase, and
decrease fasting blood glucose levels in diabetic rats [16]. Chen et al. demonstrated that
adipose-derived stem cells, incubated with EGCG in vitro, increased cell viability under
high-glucose stress, and EGCG exhibited regeneration effects on damaged pancreatic
tissues to alleviate diabetes [17]. A randomized placebo-controlled study indicated that
participants' fasting plasma glucose significantly decreased after three months of daily
enriched bread consumption [18]. In addition to their anti-diabetic pharmacological effects,
catechins also have antioxidant [19], anti-tumor [20], anti-inflammatory [21], anti-microbial,
anti-viral [22], anti-diabetic, anti-obesity, hypotensive [23], and cardiovascular disease
prevention [24] properties (Figure 3).

Table 1. Improvement of diabetes through catechins.

Model Material Main Conclusion Reference

L6 skeletal muscle
cells EGCG

EGCG inhibited α-glucosidase activity
while increasing glucose transporter

(GLUT)4 translocation to the
membrane and glucose absorption via

the Phosphatidylinositol-3 Kinase
(PI3K)/ protein kinase B (AKT)

pathway.

[7]

3T3-L1
preadipocyte cell EGCG

By reducing oxidative stress and
mitochondrial dysfunction, EGCG

reduced fat production and
accumulation, while also attenuating

the tumor necrosis factor -α
(TNF-α)-induced insulin signaling

pathway blockage.

[25]
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Table 1. Cont.

Model Material Main Conclusion Reference

HepG2 cell EGCG

By improving insulin signaling and
reducing oxidative stress, EGCG

modulated metabolic diseases related
to the biological clock.

[26]

HepG2 cell EGCG

Through the GLUT2/Peroxisome
proliferator-activated -γ coactivator

(PGC)-1β/sterol regulatory
element-binding-1c (SREBP-1c)/ fatty
acid synthase (FAS) pathway, EGCG

reduced glucose and PA-induced
inflammation, oxidative stress, and
free fatty acids, ultimately reducing

insulin resistance.

[27]

INS-1 cell line EC

Physiological concentrations of EC
promoted insulin secretion from

saturated fatty acid-impaired beta cells
by activating the

Ca2+/calmodulin-dependent protein
kinase (CaMK) II pathway.

[28]

L6 myoblasts and
ICR mice EGCG

EGCG at physiological concentrations
reduced postprandial glucose levels

via insulin- and 5’-Adenosine
monophosphate-activated protein

kinase (AMPK)-dependent pathways
in L6 cells, whereas it promoted

GLUT4 translocation via PI3K and
AMPK pathways in the ICR mouse

flounder muscle.

[29]

HepG2 cell and
high fat diet

(HFD)-induced
mice

EC and EC
metabolites

(ECM)

Palmitate induced increases in
NADPH oxidases (NOX)3/NOX4
expression, upregulation of c-Jun
N-terminal kinase (JNK) and IκB

kinase (IKK) activities, and decreased
insulin sensitivity were all inhibited by

EC and ECM.

[30]

3T3-L1 adipocytes,
RAW264.7

macrophages and
HFD-induced

macrophages and
mice

EC

Chemokine ligand 19 (CCL19)
downregulation by the EC improved

adipose tissue inflammation while
also inhibiting HFD-induced obesity

and insulin resistance.

[31]

Mice with
HFD-induced T2D EGCG

EGCG improved glucose tolerance
and alleviated Nod-like receptor

protein (NLRP)3-dependent
inflammation.

[32]

HFD and
streptozotocin

(STZ)-induced T2D
in SD rat

EGCG

In the diabetic rat model, EGCG
continued to improve glycemic control

and insulin sensitivity while
decreasing lipid profile and oxidative

stress.

[33]

HFD- and
STZ-induced T2D

in ICR rat
EGCG

EGCG inhibited α-amylase and
α-glucosidase activity, as well as

Phosphoenolpyruvate carboxy kinase
(PEPCK) and glucose-6-phosphatase

(G-6-Pase) expression and
gluconeogenesis.

[8]
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Table 1. Cont.

Model Material Main Conclusion Reference

HFD-induced
insulin resistance in

mice
EC

EC improved insulin sensitivity
induced by HFD by downregulating

JNK, IKK, protein kinase C (PKC), and
protein tyrosine phosphatase

1B(PTP1B).

[34]

Mice and 39 healthy
people

EGCG and Green
tea

Catechin consumption in the evening
was more effective at lowering

postprandial blood glucose levels.
[35]Nutrients 2022, 14, x FOR PEER REVIEW 4 of 20 
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Figure 3. Pharmacological properties of catechins.

3.2. Catechin Regulation of Diabetes
3.2.1. Catechins Regulate Diabetes by Improving Insulin Resistance

Insulin signal transduction (IST) is the primary mechanism for maintaining the body’s
blood glucose homeostasis. Normal IST involves multiple enzymes and intermediate
mediators that ultimately lead to glycogen synthesis in hepatocytes and glucose uptake by
adipocytes and muscle cells [36] (Figure 4). Insulin-like growth factor (IGF)-1, IGF-2, and
insulin can activate the insulin receptor (IR), a transmembrane tyrosine kinase [37]. Then, IR
autophosphorylates recruit the insulin receptor substrate (IRS) and the SHC-transforming
protein-1 (SHC-1), and bind to these ligands. Subsequently, downstream signaling cascades
are triggered through insulin-dependent kinases (e.g., AMPK and glycogen synthase kinase
(GSK)-3) and insulin-inducible kinases (e.g., PKC, AKT, mammalian target of rapamycin
(mTOR), and extracellular regulated protein kinase (ERK)1/2) [38,39]. AKT is activated
when IRS-1 binds to PI3K. Next, AKT stimulates the translocation of GLUT4 from vesicles
to the cell membrane, promotes glucose uptake, and suppresses GSK-3 to promote glycogen
synthesis, regulating the body's blood glucose level [40].

Insulin resistance is a reduced response of insulin-targeted tissues to high physiological
insulin levels and contributes to various diseases such as metabolic syndrome, nonalcoholic
fatty liver disease, atherosclerosis, and T2D [41]. EGCG can mediate liver kinase B1
(LKB1) to activate AMPK, inhibit IRS-1 (serine 307) phosphorylation, and improve insulin
sensitivity [42,43]. Notably, EGCG has different effects on various tissues. For example,
EGCG activates IR and AMPK in adipocytes and promotes phosphorylation of IR and
IRS-1 in hepatocytes [44]. On the other hand, EGCG activates AMPK without changing
the phosphorylation of IR or IRS-1 in humans [45]. These differences might be related
to variations in EGCG affinity for target proteins in various organs [29]. In addition,
catechins can compensate for the negative effects caused by insulin resistance by enhancing
IST, which promotes glucose transport into cells via GLUT4 and glycogen synthesis via
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glycogen synthase (GS). Interestingly, EGCG acts as an insulin-mimetic compound and
promotes the translocation of GLUT4 to the cell membrane through the PI3K/AKT signaling
pathway and enhances the cellular uptake of glucose [7]. Consistent with Zhang et al.,
EGCG-stimulated GLUT4 translocation needs to be mediated by PI3K/AKT, and EGCG
can also promote GLUT4 translocation through the AMPK signaling pathway [46]. Manabu
et al. suggested that EGCG might have a non-insulin-mimicking functional mode of action
to regulate GLUT4 translocation. Afterwards, EGCG activates PI3K, which did not activate
phosphorylate AKT, indicating that EGCG exerts its effect without AKT participation
during this process, and inhibitors of PKC can inhibit the stimulatory effect of EGCG on
GLUT4. Moreover, EGCG increases Ras-related C3 Botulinum Toxin Substrate 1 (Rac-
1) activity and actin remodeling downstream of PKC, suggesting that EGCG mediates
PI3K/PKC/Rac-1 to stimulate GLUT4 translocation to the cell membrane and promote
glucose transport 28. Additionally, a complex composed of three components—hawthorn
polyphenols, D-chiro-inositol (DCI), and EGCG—has synergistic hypoglycemic effects
mediated by PI3K/AKT/GSK-3 of activating GS in the liver of STZ- or HFD-induced
mice, and ultimately relieving insulin resistance and lower blood glucose [47]. Therefore,
catechins can significantly modulate diabetes by improving insulin resistance.
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Figure 4. The pathway by which catechins regulate diabetes: (1) Catechins activate APMK and PI3K,
and enhance insulin sensitivity, ultimately promoting uptake of glucose by the cells. (2) Catechins
attenuate the inhibitory effect of NFκB on IRS-1 by suppressing the activity of NADPH, redox-
sensitive signaling molecules IKK, JKN. (3) Catechins promote glucose-stimulated insulin secretion
by increasing mitochondrial oxidative phosphorylation and ATP production, while increasing mito-
chondrial biogenesis and reducing mitochondria-associated enzyme-induced apoptosis of β-cells.
(4) Catechins reduce ER stress by alleviating UPR, which leads to IRS-1-related decreased insulin
sensitivity and β-cell apoptosis. (5) Catechins alleviate IRS-1-related insulin sensitivity reduction
caused by inflammation by inhibiting NLRP3 and JNK. (6) Catechins decrease the source of blood
glucose by reducing the activities of related enzymes, such as GK, GP, G-6-Pase, PEPCK, α-amylase,
and α-glucosidase, and improve the activity of GS in promoting glycogen synthesis. (7) Catechins
regulate diabetes by improving the gut barrier, balancing gut microbes, and promoting the secretion
of glucose-related gut hormones.
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3.2.2. Catechins Regulate Diabetes by Alleviating Oxidative Stress

Endogenous factors, such as oxidative stress, can disrupt insulin signaling, reduce
insulin sensitivity, and lead to an increased risk of diabetes [48,49]. The IST activity is
reduced when partial sites of IRS-1 (e.g., serine 307) are phosphorylated by IKK and JNK
redox-sensitive kinases [50] (Figure 4). JNK-1 knockout (JNK1-/-) mice are resistant to
diet-induced obesity and have improved insulin sensitivity [51]. Additionally, animals
with IKK genetic abnormalities are protected from developing insulin resistance [52]. On
the other hand, oxidative stress promotes the production of PTP1B, a tyrosine phosphatase
that reverses the tyrosine residues of IRS-1 phosphorylation to prevent insulin signal-
ing [53]. PTP1B knockout mice are less likely to develop insulin resistance and obesity, and
PTP1B inhibition has been proposed as a possible therapy for insulin resistance [54,55].
Antioxidants, particularly α-lipoic acid, vitamin E, and vitamin C, greatly increase in-
sulin sensitivity [56,57].

Catechin is a natural antioxidant that relieves oxidative stress through various path-
ways, such as scavenging free radicals, chelating reducing metal ions, and enhancing
antioxidant enzyme activity [58–60]. The NADPH oxidase family is a major source of
intracellular superoxide and hydrogen peroxide, inducing oxidative stress. Meanwhile, EC
and (-)-Epicatechin metabolites (ECM) suppress NADPH oxidase activity, inhibiting IKK
and JNK activation, and ultimately improving insulin sensitivity [30]. Ahmed et al. showed
that the activation of insulin signaling members (IR, IRS-1, AKT, and ERK1/2) is impaired
in insulin-resistant rats induced by high fructose. At the same time, the negative regula-
tors of these insulin signaling members are upregulated, including IKK, JNK, and PTP1B.
However, these changes can be reversed by EC supplementation [61]. Anthocyanins,
flavonoids as catechins, significantly reduce oxidative stress and inhibit HFD-induced
obesity by suppressing the overexpression of redox-sensitive signals IKK/Nuclear factor
κ-B (NF-κB), JNK1/2 and PTP1B, and insulin resistance in mice [62]. Furthermore, oligonol,
a low molecular weight polyphenol in lychee fruit, is associated with JNK in ameliorating
STZ-induced diabetes in rats [63]. Altogether, these results indicate that catechins suppress
the reduction of insulin sensitivity via redox-sensitive signaling, which has a regulatory
influence on diabetes.

3.2.3. Catechins Regulate Diabetes by Improving Mitochondrial Function

Mitochondria are the final site of the oxidation of carbohydrates, lipids, and amino
acids in eukaryotes and the organism's energy conversion center. Mitochondrial dysfunc-
tion has been linked to metabolic disorders such as obesity and cardiovascular disease and
might cause diabetes and insulin resistance [64,65]. Mitochondria dysfunction can lead to
toxic ceramide and diacylglycerol deposition, along with oxidative stress, finally triggering
insulin resistance [66–68]. Pancreatic β-cells maintain physiological blood glucose levels by
secreting insulin. Insulin secretion of β-cells is extracellularly coupled to glucose. When
β-cells sense an increase in extracellular glucose concentration, they can absorb glucose
through GLUT2. Subsequently, triphosphate (ATP) is released after the oxidation of glucose
in mitochondria, which promotes the opening of calcium channels and ultimately leads
to insulin secretion [69]. Therefore, it is evident that oxidative phosphorylation and ATP
generation in mitochondria play essential roles in insulin secretion [70]. The uncoupling
Protein-3 (UCP-3) gene is expressed on pancreatic islets, regulates ATP synthesis, and pro-
motes insulin secretion [71,72]. In addition, studies have demonstrated that mitochondrial
dysfunction and its induced apoptosis suppress insulin secretion. The PGC-1α family,
which is involved in mitochondrial biogenesis, has been found to suppress insulin secre-
tion in both mice [73] and patients with T2D [74,75]. In addition, proteins released by
mitochondria-induced β-cell apoptosis, such as B-cell lymphoma (Bcl)-2-associated X pro-
tein (Bax) and cytochrome, can affect insulin secretion [76,77]. Interestingly, the connecting
link between insulin resistance and mitochondrial dysfunction might be the IRS/PI3K/
Forkhead box O1 (FoxO1) pathway [78].
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As mentioned above, mitochondria are essential for β-cell function and viability, and
glucose-stimulated insulin secretion (GSIS) depends on mitochondrial respiration via the
electron transport chain [79]. Treatment of β-cells with cocoa flavanols rich in EC increases
mitochondrial complex III-V, ATP, GSIS, and mitochondrial respiration, as well as upreg-
ulating nuclear factor erythroid 2-related factor (Nrf) 1, Nrf 2, and GA-binding protein
transcription factor alpha subunit (GABPA) [80]. Moreover, EC might stimulate Nrf2 to
dissociate from cytoplasmic Kelch-like ECH-associated protein 1 (KEAP1) and translocate
into the nucleus, thereby activating downstream target gene transcription, increasing the
expression of mitochondrial complex III-V, enhancing mitochondrial respiration, and ulti-
mately increasing intracellular ATP and GSIS. What is more, APT production and oxidative
phosphorylation are related to UCP-3. EGCG can also stabilize mitochondrial function by
increasing the UCP-3 expression, maintaining ATP synthesis and mitochondrial membrane
potential, reducing β-cell apoptosis, and enhancing cell activity and insulin secretion [81].
As previously mentioned, FoxO1 is the bridge connecting insulin resistance and mito-
chondrial dysfunction. Studies have shown that EGCG supplementation successfully
ameliorates diabetes-related mitochondrial deficiency and dysfunction, possibly due to the
reduction in Foxo-mediated autophagy [82]. Mitochondrial function is also inseparable
from mitochondrial biogenesis. Resveratrol, a plant polyphenol, restores STZ-induced
PGC-1, mitochondrial transcription factor A (mtTFA), and Nrf1 in diabetic mice via mito-
chondrial biogenesis-related proteins [83]. Apoptosis of β-cells is an important cause of
decreased insulin secretion. The Bcl-2 protein family regulates cytochrome c release as a
vital step of apoptosis promotion. Bcl-2 inhibits the pro-apoptotic enzyme Bax to prevent
mitochondrial cytochrome c release. EGCG increases Bcl-2 expression to protect cells
against TNF-α, Interferon-gamma (IFN-γ), and Interleukin (IL)-1β-induced apoptosis via
the mitochondrial pathway and restores GSIS [84]. Interestingly, deletion of the circadian-
rhythm-related gene in the brain and muscle, the Arnt-like protein 1 (Bmal1), results
in mitochondrial abnormalities and markedly attenuates oxidative phosphorylation [85].
EGCG can also activate PI3K/AKT and AMPK signaling pathways in a Bmal1-dependent
manner to improve glucosamine-induced ROS, abnormal mitochondrial membrane poten-
tial, and downregulation of the mitochondrial respiratory complex, and alleviate insulin
resistance [26]. Overall, catechins regulate diabetes by increasing mitochondrial function,
primarily by sustaining oxidative phosphorylation and ATP generation, mitochondrial
biogenesis, and mediating mitochondrial cell protection.

3.2.4. Catechins Modulate Diabetes by Alleviating ER Stress

The ER is essential for protein synthesis and transport, and its dysfunction easily
leads to chronic diseases such as obesity and diabetes [86]. Insulin is secreted by β-cells
as a protein hormone that regulates diabetes. A single β-cell can produce 1 million in-
sulin molecules every minute, accounting for about half of the total protein produced by
β-cells [87,88]. Thus, β-cells must have a well-developed ER function to produce insulin in
response to high blood glucose levels.

The T2D impairs ER homeostasis and leads to an accumulation of unfolded or mis-
folded proteins in the ER lumen, and activates the unfolded protein reaction (UPR) in-
tracellular signaling [89]. The UPR is conducted by three proteins on the ER membrane:
PKR-like ER-regulated kinase (PERK), inositol-requiring protein 1 (IRE1), and activating
transcription factor (ATF) [6]. When UPR is activated, PERK activates ATF4, regulating
the transcription of ER-associated protein degradation (ERAD) and autophagy genes [90].
At the same time, the activated IRE1 acts as an endonuclease to degrade mRNA around
the ER and decrease the quantity of protein entering the ER. It also acts as a kinase to
initiate JNK-mediated apoptosis [91,92]. Besides, the C/EBP-homologous protein (CHOP),
regulated by ATF6, can induce autophagy, apoptosis, and insulin resistance [93,94].

At the animal level, EC supplementation downregulates PERK and IRE1, alleviates
oxidative stress and tissue inflammation mediated by ER stress, and attenuates obesity-
associated insulin resistance in adipose tissue from HFD-induced obese mice [95]. Another
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animal study used A-type dimeric EGCG to improve insulin resistance and elevated blood
glucose in rats based on the inhibition of ER stress-induced apoptosis and G-6-Pase. Specifi-
cally, the A-type dimeric EGCG lowered the levels of ATF4, p-JNK, p-IRE1, and p-PERK [96].
Generally, binding immunoglobulin protein (BiP) is a crucial ER stress signal bound to ER
transmembrane proteins and inhibits protein aggregation around the ER [97]. At the cell
level, similar to the animal level, EGCG suppresses BiP expression and PERK phosphoryla-
tion, leading to ER stress and apoptosis and improving diabetic nephropathy [98]. Similar
to catechins, other polyphenols can also participate in alleviating ER stress, including
curcumin and tyrosol. Curcumin can diminish palmitate-induced insulin resistance, inhibit
ER stress/JNK/IRS-1 signaling in human umbilical vein endothelial cells, and maintain
ER homeostasis by inducing autophagy and promoting the degradation of damaged and
aggregated proteins [99]. Tyrosol can dose-dependently lower pancreatic β-cell apoptosis,
which is connected to its inhibition of ER stress and reduced CHOP gene expression [100].
In summary, catechins can reduce ER stress to manage diabetes, primarily by alleviating
UPR and its related apoptotic signaling.

3.2.5. Catechins Regulate Diabetes via Anti-Inflammatory Effects

Studies have demonstrated the link between inflammation and diabetes [101]. Adi-
pose tissue is a major source of inflammatory markers and a target of the inflammatory
process in diabetes [102]. Research has demonstrated that (Figure 4) sustained nutri-
tional stimulation causes adipocyte hypertrophy, followed by an increase in various pro-
inflammatory cytokines and chemokines (e.g., TNF-α, IL-6, Monocyte chemoattractant
protein (MCP)-1) [103–107], creating a chemotactic gradient that attracts more monocytes
and other immune cells to accumulate and produce more cytokines and chemokines, finally
exacerbating inflammation [108]. These pro-inflammatory factors activate intracellular sig-
naling molecules, such as JNK, leading to nuclear translocation of NF-κB and activation of
Activator protein-1 (AP-1), ultimately suppressing IRS-1 and inducing more inflammatory
mediators [107,109]. Furthermore, an additional key component of inflammatory activation
is the multimeric protein complex NLRP3, activated by cell nutrients, such as glucose
and free fatty acids. NLRP3 regulates the activation of caspase-1 that cleaves precursor
cytokines, such as Pro-IL-1β, resulting in increased IL-1β activity in tissues [110,111]. IL-1β
inhibits IRS-1 expression at the transcriptional level through an ERK-dependent mechanism
and increases the expression of Inducible Nitric Oxide Synthase (iNOS), resulting in β-cell
destruction [112,113]. Some statins used in diabetes patients have been proven to reduce
inflammatory markers by 61%. These results indicate, at least in part, that suppressing
inflammation helps alleviate diabetes.

Currently, polyphenols such as resveratrol and luteolin have been shown to alleviate
diabetes, and this effect is related to NF-κB signaling molecules [114,115]. Catechins
are natural polyphenols that can alleviate diabetes. For example, Kim et al. found that
in the β-cell line RINm5F and islets, 0.1–1 mM EC could inhibit IL-1β-induced nitrite
production (a downstream product of NO) and promote insulin release by inhibiting the
NF-κB pathway [113]. Additionally, EGCG can reduce cytokine-induced β-cell death by
inhibiting NF-κB activation, which downregulates iNOS [116]. The production of cytokines
and chemokines is crucial in developing diabetes after NF-κB activation [117]. Grape
seed extract containing catechins, epicatechin, gallic acid, and proanthocyanidins can
significantly decrease HFD-induced plasma levels of TNF-α, IL-6, and MCP-1 in obese
mice and improve macrophage infiltration in liver tissue and insulin sensitivity [118].
NLRP3, another key component of inflammatory activation in diabetes, is also involved in
regulating catechins in diabetes. Zhang et al. showed that EGCG improved HFD-induced
glucose tolerance deterioration and T2D through the direct inhibitory impact on NLRP3,
suppressing caspase-1 activation and IL-1β production [32]. These studies imply that
catechins regulate NF-κB and NLPR3-related inflammatory signal molecule activation to
ameliorate β-cell damage and insulin sensitivity caused by cytokines and chemokines.
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3.2.6. Catechins Regulate Diabetes by Inhibiting the Source of Blood Glucose

The T2D is characterized by hyperglycemia, which can lead to various diseases, includ-
ing cardiovascular disease, hypertension, and retinopathy. Therefore, regulating glucose
production is effective in controlling blood glucose levels. The digestion and absorption of
carbohydrates is the most common way of increasing blood glucose, which requires the
participation of enzymes containing α-amylase and α-glucosidase. Thus, inhibitors of these
enzymes are commonly used to treat diabetes [7]. Gluconeogenesis, another type of glucose
production, is the reverse route of glycolysis and involves several enzymes, especially
PEPCK, G-6-Pase, and Fructose 1,6-bisphosphatase (FBP) [119]. PEPCK and G-6-Pase are
regulated by FoxO1, a transcription factor suppressed by insulin/AKT signaling [120,121].
The Cyclic AMP response element binding protein (CREB) is another transcription factor
that can induce PEPCK and G-6-Pase gene expression [122–124]. Therefore, metformin,
which plays a hypoglycemic role by inhibiting gluconeogenesis, is usually used as the
first-line drug in T2D patients [125,126]. Furthermore, in the early stage of fasting, the
primary strategy to maintain glucose levels is glycogenolysis, in which the key enzyme is
glycogen phosphorylase (GP) [127].

Diabetic patients have difficulties managing postprandial blood glucose levels gener-
ated by carbohydrate digestion and absorption on their own, and supplementation with
α-glucosidase and α-amylase inhibitors is a typical way of suppressing the postprandial rise
of blood glucose [86]. EGCG is the most effective α-glucosidase inhibitor among catechins
because of its gallic acyl group and the hydroxyl structure on the B-ring [128]. Specifi-
cally, EGCG connects to α-glucosidase with hydrogen bonds and changes the secondary
structure and microenvironment of α-glucosidase in a reversible and non-competitive way,
ultimately inhibiting the activity of α-glucosidase [7]. Furthermore, EGCG also improves
T2D by binding to the active site of α-amylase, which hydrolyzes α-1,4-glycosidic bonds of
starch to produce monosaccharides [129]. Regarding the relationship between catechins,
gluconeogenesis, and glycogenolysis, EGCG inhibits CREB activation and FoxO1 nuclear
translocation, suppressing gluconeogenic gene expression [124]. Additionally, catechins
isolated from cassia seeds can restore glucokinase (GK) G-6-Pase, GS, and GP to normal lev-
els in STZ-induced diabetic rats [130]. Overall, the decrease of glucose sources by catechins
to control blood glucose levels is a key pathway for DM regulation, and its fundamental
mechanism is depicted in Figure 4.

3.2.7. Catechins Regulate Diabetes by Improving Intestinal Function

The gut is directly related to human health, particularly in the development of
metabolic diseases, such as obesity and T2D, and acts as the pathological core of metabolic
syndromes via: (1) direct mutual contact with various diets and metabolites; (2) nutrient
digestion and absorption, as well as energy homeostasis regulation; (3) an essential site for
endotoxin synthesis and a gut barrier that prevents endotoxins from entering circulation;
(4) the presence of a diverse microbial community; (5) regulation of gut hormones and
satiety promotion, as well as glycolipid homeostasis [131–133].

Generally, pathogens and toxic substances are present in the gut, but there is also a
defensive system, the gut barrier, to prevent them from accessing the organism's internal
environment. The gut barrier is based on the production of many components, including
intestinal epithelium, anti-microbial peptides, antibodies, and mucus [134]. The tight
junction (TJ) is a protein complex that operates as a paracellular gut barrier, connecting
neighboring cells and controlling paracellular substance transport. The TJ is also composed
of transmembrane proteins (e.g., claudins and occludins) and peripherin (e.g., zonula
occludens (ZO)-1, ZO-2, ZO-3) [135]. TJ opening requires phosphorylation of the myosin
light chain (MLC), regulated by the phosphorylation of myosin light chain kinase (MLCK)
and dephosphorylation of myosin light chain phosphatase (MLCP) [136]. When TJ is
impaired, the subsequent increase in intestinal permeability leads to the entry of pathogens
and endotoxins (e.g., lipopolysaccharide (LPS)) into circulation, causing tissue damage and
a systemic inflammatory response, ultimately inducing insulin resistance [137]. Obesity and
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insulin resistance are not detected in germ-free mice given an HFD but are observed when
microorganisms from HFD-induced obese animals are transplanted to germ-free mice [138].
This indicates that diabetes might be related to the microbiome. Additionally, hormones
secreted by the gut, such as glucagon-like peptide (GLP)-1, GLP-2, and cholecystokinin
(CKK), can regulate diabetes [139].

As mentioned above, increased intestinal permeability can raise the risk of diabetes,
and EC can improve intestinal permeability induced by HFD in vivo. Meanwhile, EC can
prevent Caco-2 monolayer permeabilization through ERK1/2 modulation, which can upreg-
ulate MLCP expression [136,140]. The activation of mitogen-activated protein kinase (MEK)
can activate ERK, increasing the activity of matrix metalloproteinase (MMP)-2 and MMP-9,
which degrade TJ-related proteins like ZO-1 and ocludins [141]. Wang et al. found that EC
inhibits MMP-2 activity to suppress Caco-2 monolayer permeabilization, which might be
related to ERK inhabitation. Similar to ERK, NF-κB is a key regulator of TJ structure and
dynamics and is activated by NADPH [136]. EC-rich diet supplementation helps improve
intestinal permeability because EC inhibits NADPH and NF-κB, and NF-κB and its induced
TNF-α lead to downregulation of ZO-1 [142,143]. Moreover, catechin-rich green tea extract
(GTE) is related to the hypoxia-inducible factor (HIF)-1α in downregulating TJ-related
proteins induced by HFD [144]. Indeed, HIF-1α is involved in the regulation of TJ-related
protein expression [145]. Dey et al. found a positive correlation between HIF-1α and
claudin-1 expressions, but the regulation of TJ by GTE via HIF-1α remains unknown [144].

Microbes are considered the "second genome" of humans, responsible for more than
98% of the genetic activity of the organism [146]. Intestinal microbes play an important
role in the development of diabetes [147]. According to previous reports, GTE and green
tea promote the growth of Lactobacillus and Bifidobacterium, probiotics that help glucose
levels [148–150]. At the phylum level, the ratio between Firmicutes and Bacteroidetes,
a marker of intestinal imbalance, is reduced by EGCG [151,152]. Short-chain fatty acids
(SCFAs) and catechin metabolites in the gut are beneficial for improving diabetes [153–156].
EGCG and GCG greatly enhance the production of SCFAs in vitro, improving intestinal
barrier integrity via HIF-1α [157]. Another study showed that green tea promotes the
growth of SCFA-producing microorganisms. Intestinal microorganisms are in direct contact
with catechins, which might affect their biological activities. For example, green tea rich in
catechins attenuates the function of microorganisms to metabolize amino and nucleotide
sugars, providing the skeleton for LPS synthesis and helping reduce LPS-induced damage
to the body and insulin resistance [144].

The intestine is not only the main site of digestion and absorption but also secretes
some hormones, including GLP-1, GLP-2, and CKK, to regulate diabetes [139,158]. Specifi-
cally, GLP-1 improves glucose homeostasis and can be used to treat T2D [159,160]. GLP-2
enhances intestinal barrier integrity and regulates energy balance [161,162]. However,
the deletion of the CKK gene exacerbates hyperglycemia [163]. EC can decrease DPP-IV
activity in vivo, degrading pro-glucagon, increasing the expression of pro-glucagon, and
producing GLP-1 and GLP-2 [164,165]. EC supplementation can also raise GLP-2 levels.
In addition, EGCG increases CKK production in the duodenum and GLP-1 secretion in
the ileum in vitro [166]. The major mechanisms of catechins regulate intestinal function by
improving the intestinal barrier and microbial community, and boosting intestinal peptide
production to treat diabetes (Figure 4).

4. Discussion

Catechins alleviate diabetes by improving insulin resistance, alleviating oxidative
stress, regulating mitochondrial function, alleviating ER stress, producing anti-inflammatory
effects, reducing blood sugar sources, and regulating intestinal function. Many signaling
molecules, especially stress signaling molecules, are activated in diabetic patients. Hence,
diabetes is not affected by a simple linear regulatory mechanism but by a complex reg-
ulatory network composed of many signaling molecules. As a typical stress signaling
molecule, JNK regulates oxidative stress, ER stress, and inflammation for catechin to im-
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prove diabetes [61,96]. Moreover, catechins alleviate inflammation and oxidative stress by
regulating JNK [96,167]. Thus, JNK might be the core of oxidative stress, ER stress, and
inflammation. What is more, the complex regulatory network composed of these three
elements might provide more therapeutic targets for catechins to improve diabetes.

Because of their antioxidant activity, catechins, particularly EGCG, have a role in
treating various diseases such as diabetes, obesity, and cancer [168]. The antioxidant activity
of EGCG is related to its amount and place of phenolic hydroxyl groups [11]. However,
an increasing number of in vitro and in vivo investigations have demonstrated that EGCG
has pro-oxidant activity because of its instability and autoxidation [169,170]. Under normal
physiological circumstances (pH 7.4, 37 ◦C), EGCG is autoxidized to o-quinone with the
production of superoxide anion radicals, O2- and H2O2 [171], converting the trivalent ion Fe
(III) to the divalent ion Fe (II), hastening the Fenton reaction, and producing OH- [172,173].
This pro-oxidative effect of EGCG also has benefits, such as the inhibition of Escherichia
coli and the promotion of apoptosis in cancer cells [174,175]. EGCG activates IR and might
be beneficial for alleviating diabetes by increasing hydrogen peroxide levels, a reactive
oxygen species [44]. In addition, although the improvement of free fatty acid-induced
insulin resistance by EGCG is related to the enhancement of antioxidant enzyme expression,
it has not been directly demonstrated that this improvement occurs by alleviating oxidative
stress [176]. Since the antioxidant and pro-oxidant activities of EGCG can vary with
concentration [177], its dose effect and underlying mechanisms in improving diabetes need
to be elucidated by further studies.

As mentioned above, catechins can alleviate diabetes via multiple pathways. However,
the low bioavailability of catechins has a certain impact on its health efficacy. Generally, the
low bioavailability of tea polyphenols is attributed to poor gastrointestinal absorption, with
less than 2% of the oral EGCG dosage being found in the blood of rats [178]. Therefore,
improving the bioavailability of catechins is crucial to improving their pharmacological
properties. Additionally, improving tea polyphenol stability in oxygen, acidic, and alkaline
conditions can significantly boost bioavailability. Tea polyphenols have been modified
using peracetic acid to preserve the free hydroxyl group around the molecule and increase
stability [179]. What is more, using carriers or capsules as delivery systems not only
minimizes the instability of tea components but also enhances solubility and increases
permeability in the intestine, resulting in higher plasma concentrations and improving
the bioavailability and biological activity [180]. Hence, resolving the issue of catechin
bioavailability is critical to improve its diabetes-relieving effects.

5. Conclusions

In summary, catechins modulate DM via multiple pathways: (1) improving insulin
resistance; (2) reducing oxidative stress; (3) regulating mitochondrial function; (4) reducing
ER stress; (5) having anti-inflammatory effects; (6) lowering blood glucose sources; (7) mod-
ulating intestinal function. The use of catechins in managing diabetes remains contentious
but most findings imply that catechins or catechin-rich diets, such as green tea intake, have
various beneficial effects in DM patients. Therefore, catechins are potential multi-target
treatment agents for DM, but require additional research in the future.
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