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Abstract: In recent years, people have tended to consume phytonutrients and nutrients in their daily
diets. Isorhamnetin glycosides (IGs) are an essential class of flavonoids derived from dietary and
medicinal plants such as Opuntia ficus-indica, Hippophae rhamnoides, and Ginkgo biloba. This review
summarizes the structures, sources, quantitative and qualitative analysis technologies, health benefits,
bioaccessibility, and marketed products of IGs. Routine and innovative assay methods, such as IR,
TLC, NMR, UV, MS, HPLC, UPLC, and HSCCC, have been widely used for the characterization
and quantification of IGs. All of the therapeutic effects of IGs discovered to date are collected and
discussed in this study, with an emphasis on the relevant mechanisms of their health-promoting
effects. IGs exhibit diverse biological activities against cancer, diabetes, hepatic diseases, obesity,
and thrombosis. They exert therapeutic effects through multiple networks of underlying molecular
signaling pathways. Owing to these benefits, IGs could be utilized to make foods and functional
foods. IGs exhibit higher bioaccessibility and plasma concentrations and longer average residence
time in blood than aglycones. Overall, IGs as phytonutrients are very promising and have excellent
application potential.

Keywords: isorhamnetin glycosides; phytonutrients; health-promoting effects; sources

1. Introduction

Phytonutrients are chemical compounds that are only present in natural plants and
are beneficial to the human body [1]. They are widely used in food and nutraceuticals due
to their health-promoting benefits [2]. Flavonoids are a class of polyphenolic compound
distributed in many fruits, vegetables, and plants [3]. The six major subclasses of flavonoids,
which include flavones (e.g., luteolin), flavonols (quercetin), flavanones (hesperidin), cat-
echins or flavanols (epicatechin), anthocyanidins (cyanidin), and isoflavones (daidzein),
have been reported to represent various families of phytonutrients [4]. Accumulating
evidence based on observational and clinical studies shows that a plant-based dietary
pattern rich in fruits, vegetables, and whole grains has a clear effect on the prevention
of various chronic diseases [5], and people also tend to consume dietary flavonoids from
fruits and vegetables. Flavonoids are widely found in food, and most of them exist in their
glycosidic forms [6,7].

Isorhamnetin glycosides (IGs), as natural flavonol compounds, are primarily extracted
from various plant-based foods or medicinal plants such as Opuntia ficus-indica, Hippophae
rhamnoides, and Ginkgo biloba [8–10]. IGs are biologically important flavonols with proven
beneficial properties that give them medicinal value [11,12]. They possess diverse biologi-
cal and pharmacological properties, such as antioxidant, anti-inflammatory, anti-cancer,
antidiabetic, anti-obesity, and hepatoprotective properties [13–17]. Due to their beneficial
biological activities, IGs have been considered a significant potential class of phytonutrients,
and an increasing number of products containing IGs are circulating on the market in many
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countries, including the United States, Canada, Mexico, China, India, and some European
countries [18,19].

Here, for the first time, a review of all studies that describe the biological activity of
IGs is presented, with particular emphasis on molecular signaling pathways and mech-
anistic explanations for their health-promoting potential. This review also introduces
the structure of IGs and the primary sources of IGs. Moreover, current methods for the
analysis and quantification of IGs are summarized. Furthermore, this paper also focuses
on the main bioaccessibility of IGs. Overall, this article strongly supports the use of IGs
as phytonutrients.

2. Structure of IGs

IGs are a type of glycosylated flavonol composed of an isorhamnetin skeleton and
sugar groups. Their aglycone isorhamnetin, i.e., 3,4′,5,7-tetrahydroxy-3′-methoxyflavone,
is an O-methylated flavonol (Figure 1). Generally, D-glucose, D-galactose, L-rhamnose,
D-xylose, L-arabinose, sophorose, and rutinose are the most common sugar groups of
IGs. They are linked to the aglycone by an O-glycosidic bond. According to the number
of sugar groups, IGs are classified as mono-, di-, tri-, or tetra-glycosides. Position sub-
stitutions mostly happen at C-3 and C-7, for example, isorhamnentin-3-O-β-D-glucoside
(4) and isorhamnetin-3-O-β-D-glucoside-7-O-α-L-rhamnoside (20) from Hippophae rham-
noids [20]; isorhamnetin-3-O-α-L-rhamnoside (3) from Laportea bulbifera Wedd. [21]; and
isorhamnetin-7-O-β-D-glucoside (1) and isorhamnetin-7-O-α-L-rhamnoside (2) from Ni-
traria tangutorum Bolor [22]. Of course, sometimes, substitution occurs at C-4′, for instance,
isorhamnetin-4′-O-β-D glucoside (9) from Allium cepa L. [23]; isorhamnetin-3,4′-O-β-D-
diglucoside (17) from Allium ascalonicum [24]; isorhamnetin-3-O-β-D -glucoside-4′-O-β-
D-xyloside (21) [25]; and isorhammetin-3-O-α-L-rhamnoside-(1→6)-β-D-glucoside-4′-O-β-
D-glucoside (35) [26]. In addition, some sugar group derivatives, such as isorhamnetin-3-
O-[2′ ′ ′-O-acetyl−β-D-xyloside-(1→6)-β-D-glucoside] (10) [27] and isorhamnetin-3-O-β-D

(6-acetyl-glucoside) (7) [28], have also been obtained.
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In the present review, we systematically summarize the 49 compounds of IGs reported
thus far (Table 1 and Figure 2).

Table 1. Isorhamnetin glycoside (IG) compounds (1–49). According to the number of sugar groups,
IGs are divided into monoglycosides (1–9), diglycosides (10–34), triglycosides (35–48), and tetragly-
cosides (49).

No. Name Trivial Name Source Ref.

Monoglycosides

1 Isorhamnetin-7-O-β-D-glucoside Brassicin

Centaurea cyanus
Centaurea kotschyi var. kotschyi

Cnicus wallichi
Russowia Sogdiana

Tagetes lucida (Asteraceae)
Sedum sarmentosum Bunge
Nitraria tangutorum Bolor

[29]
[30]
[31]
[32]
[33]
[34]
[22]
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Table 1. Cont.

No. Name Trivial Name Source Ref.

2 Isorhamnetin-7-O-α-L-
rhamnoside

Carduncellus eriocephalus
Nitraria tangutorum Bolor

Atriplex centralasiatica
Laportea bulbifera Wedd.

V. galamensis ssp. galamensis var.
petitiana (A. Rich) M. Gilbert

Raphanus raphanistrum L.
Caragana intermedia

[35]
[22]
[36]
[21]
[37]
[38]
[39]

3 Isorhamnetin-3-O-α-L-
rhamnoside Laportea bulbifera Wedd. [21]

4 Isorhamnentin-3-O-β-D-glucoside

Astragalus centralpinus
Solidago canadensis L.
Hippophae rhamnoids

Sambucus nigra L.
Calendula officinalis

[40]
[28]
[20]
[41]
[42]

5 Isorhamnetin-3-O-β-D-
glucuronide

Arnica montana
Persicaria thunbergii

Senecio giganteus
Polygonum aviculare L.

Senecio argunensis Turcz.

[43]
[44]
[45]
[46]
[47]

6 Isorhamnetin-3-O-β-D-(2-acetyl-
glucuronide) Polygonum aviculare L. [46]

7 Isorhamnetin-3-O-β-D
(6-acetyl-glucoside) Solidago canadensis L. [28]

8 Isorhamnetin-3-O-β-D-galactoside Senecio argunensis Turcz. [47]

9 Isorhamnetin-4′-O-β-D glucoside Allium cepa L. [23]

Diglycosides

10
Isorhamnetin-3-O-[2′ ′ ′-O-

acetyl−β-D-xyloside-(1→6)-β-D-
glucoside]

Gymnocarpos decander [27]

11

Isorhamnetin-3-O-[2′ ′ ′,3′ ′ ′-O-
isopropylidene-α-L-

rhamnoside]—(1→6)-β-D-
glucoside

Tetraena aegyptia [48]

12 Isorhamnetin-7-O-α-L-
rhamnoside-(1→2)-β-D-glucoside

Isorhamnetin-7-O-β-
neohesperidoside Cleome droserifolia [12]

13 Isorhamnetin-7-O-β-D-glucoside-
(1→6)-β-D-glucoside

Astragaloside or
Isorhamnetin-7-O-

gentiobioside
Astragalus altaicus [49]

14
Isorhamnetin-3-O-β-(4′ ′ ′-p-

coumaroyl-α-rhamnosy]—(1→6)-
galactoside)

Aerva javanica [50]

15 Isorhamnetin-3-O-α-L-
rhamnoside-(1→2)-β-D-glucoside

Isorhamnetin-3-O-β-
neohesperidoside

Hippophae rhamnoids
Typha augustifolia L.
Calendula officinalis

[20]
[51]
[42]

16 Isorhamnetin-3-O-β-D-xylosidel-
(1→2)-β-D-galactoside Prunus padus L. [52]

17 Isorhamnetin-3,4′-O-β-D-
diglucoside

Allium ascalonicum
Lepidium apetalum willd

[24]
[53]
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Table 1. Cont.

No. Name Trivial Name Source Ref.

18 Isorhamnetin-3,7-O-β-D-
diglucoside

Sedum sarmentosum Bunge
Carduncellus eriocephalus

[34]
[35]

19 Isorhamnetin-3,7-O-α-L-
dirhamnoside Laportea bulbifera Wedd. [21]

20 Isorhamnetin-3-O-β-D-glucoside-
7-O-α-L-rhamnoside Brassidine

Sinapis arvensis
Atriplex centralasiatica
Hippophae rhamnoids

[54]
[36]
[20]

21 Isorhamnetin-3-O-β-D-glucoside-
4′-O-β-D-xyloside Diplotaxis harra (Forssk.) Boiss [26]

22
Isorhamnetin-3-O-α-L-

rhamnoside-(1→6)-β-D-
galactoside

Isorhamnetin-3-O-
robinobioside Nitraria retusa [55]

23 Isorhamnetin-3-O-α-rhamnoside-
(1→2)-rhamnoside Laportea bulbifera Wedd. [21]

24 Isorhamnetin-3-O-α-L-
rhamnoside-(1→6)-β-D-glucoside

Narcissin
Isorhamnetin-3-O-

rutinoside

V. galamensis ssp. galamensis var.
petitiana (A. Rich) M. Gilbert

opuntia ficus-indica
Hippophae rhamnoids

Ginkgo biloba
Sambucus nigra L.

Calendula officinalis

[37]
[18]
[20]

[9,56]
[41]
[42]

25 Isorhamnetin-3-O-β-D-apioide
(1→2)-β-D-galactoside

V. galamensis ssp. galamensis var.
petitiana (A. Rich) M. Gilbert [37]

26 Isorhamnetin-3-O-α-L-
arabinoside-7-O-β-D-glucoside

Callianthemum taipaicum
Narcissus pseudonarcissus

[57]
[58]

27
Isorhamnetin-3-O-β-D-

(6′ ′ ′-p-coumaroyl-α-glucoside-
(1→2)-rhamnoside)

Ginkgo biloba [56]

28 Isorhamnetin-3-O-β-D-glucoside-
(1→2)-α-L-rhamnoside Ginkgo biloba [56]

29
Isorhamnetin-3-O-[2′ ′ ′-O-

acetyl−α-L-arabinoside-(1→6)-β-
D-galactoside]

Trillium tschonoskii Maxim.
Trillium apetalon Makino. and T.

kamtschaticum Pallas.

[59]
[60]

30
Isorhamnetin-3-O−α-L-
arabinoside-(1→6)-β-D-

galactoside

Trillium apetalon Makino. and T.
kamtschaticum Pallas. [60]

31 Isorhamnetin-3-O-α-(4′ ′-acetyl-
rhamnoside)-7-O-α-rhamnoside Cleome droserifolia [12]

32 Isorhamnetin-3-O-β-D-glucoside-
7-O-α-L-arabinoside Eschscholtzia mexicana Greene [61]

33
Isorhamnetin-3-O-α-L-

rhamnoside(1→2)]-β-D-
galactoside

Glycine max (L.) Merr. [62]

34 Isorhamnetin-3-O-β-glucoside-7-
O-α-(3′ ′ ′-isovaleryl)-rhamnoside Lepidium apetalum [53]

Triglycosides

35
Isorhamnetin-3-O-α-L-

rhamnoside-(1→6)-β-D-glucoside-
4′-O-β-D-glucoside

Isorhamnetin-3-
rutinoside-4′-glucoside Mercurialis annua [26]
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Table 1. Cont.

No. Name Trivial Name Source Ref.

36

Isorhamnetin-3-O-(2G-β-D-
apiofuranosyl)

[2′ ′ ′-O-acetyl−β-D-xyloside-
(1→6)-β-D-glucoside]

Gymnocarpos decander [27]

37 Isorhamnetin-3-O-(2′ ′,6′ ′-O-α-L-
dirhamnoside)-β-D-galactoside

Alangium premnifolium
Lysimachia fortunei

[63]
[64]

38
Isorhamnetin-3-O-(4Rham-β-D-
galactosyl)-α-L-rhamnoside-

(1→6)-β-D-galactoside]

Isorhamnetin-3-O-4Rham-
galactosyl-robinobioside

Nitraria retusa [55,65]

39
Isorhamnetin-3-O-α-L-

rhamnoside-(1→2)-β-D-
galactoside-7-O-β-D-glucoside

Blackstonia perfoliata [66]

40
Isorhamnetin-3-O-α-L-

rhamnoside-(1→6)-β-D-glucoside-
7-O-α-L-rhamnoside

Isorhamnetin-3-
rutinoside-7-rhamnoside

Cassia italica
Hippophae rhamnoides

[67]
[68]

41
Isorhamnetin-3-O-β-glucoside-

(1→2)-β-D-glucoside-7-β-D-
glucoside

Brassicoside or
Isorhamnetin-3-O-

sophoroside-7-O-β-D-
glucoside

Brassica napus [54]

42
Isorhamnetin-3-O-β-D-xyloside-

(1→3Rham)-α-L-rhamnoside-
(1→6)-β-D-galactoside

Isorhamnetin
3-xylosyl-robinobioside Nitraria retusa [55]

43
Isorhamnetin-3-O-β-glucoside-
(1→2)-β-D-glucoside-7-O-α-L-

rhamnoside

Isorhamnetin-3-O-
sophoroside-7-O-

rhamnoside
Hippophae rhamnoids [20]

44

Isorhamnetin-3-O-[(6-O-E-
sinapoyl)-β-D-glucoside-(1→

2)]-β-D-glucoside-7-O-α-L-
rhamnoside

Hippophae rhamnoids [20]

45
Isorhamnetin-3-O-(2G-α-L-

rhamnoside)-α-L-rhamnoside-
(1→6)-β-D-glucoside

Typhaneoside Typha augustifolia L.
Calendula officinalis

[51]
[42]

46
Isorhamnetin-3-O-(2G-β-D-
glucoside)-α-L-rhamnoside-

(1→6)-β-D-glucoside
Boldo Folium [69]

47
Isorhammetin-3-O-α-L-

rhamnoside-(1→6)-β-D-glucoside-
7-O-β-D-glucoside

Isorhammetin-3-
rutinoside-7-glucoside

Hippophae rhamnoids
Mercurialis annua

[20]
[26]

48
Isorhamnetin-3-O-β-D-glucoside-

7-O-β-D-glucoside-(1→6)-β-D-
glucoside

Isorhamnetin-3-O-
glucoside-7-O-
gentiobioside

Lepidium apetalum willd [53]

Tetraglycosides

49

Isorhamnetin-3-O-[2G-α-L-
rhamnoside-(1→6)-β-D-

glucoside]-α-L-rhamnoside-
(1→6)-β-D-glucoside

Boldo Folium [69]
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 Figure 2. Chemical structures of IGs (compounds 1–49). Monoglycosides (1–9), diglycosides (10–34),
triglycosides (35–48), and tetraglycosides (49). Abbreviations: Glc: D-glucose, Rha: L-rhamnose,
Glccur: D-glucuronic, Gal: D-galactose, Xyl: D-xylose, Ara: L-arabinose. Abbreviations: Glc: D-
glucose, Rha: L-rhamnose, Glccur: D-glucuronic, Gal: D-galactose, Xyl: D-xylose, Ara: L-arabinose.

3. Sources of IGs

IGs as nutritional supplements can be obtained from some foods and medicinal plants.
Commonly consumed foods containing IGs include Hippophae rhamnoides, Opuntia ficus-
indica, Vaccinium corymbosum, Vaccinium myrtillus, Brassica juncea, rice, and onions. The
main medicinal sources of Igs are Ginkgo biloba, pollen Typhae, Microctis folium, Sambucus
nigra, and Calendula officinalis (Figure 3).
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3.1. Opuntia ficus-indica

Opuntia ficus-indica, otherwise known as the prickly pear or nopal cactus, is a multi-
purpose crop that grows wild in the arid and semi-arid regions of the world [70]. It is used
not only in the diet to provide food and feed, but also for healthcare due to its antioxidant,
anti-inflammatory, and anxiolytic properties [71,72].

IGs have already been described to be the most abundant flavonoid in Opuntia ficus-
indica [8, 73–74] and in different Opuntia species [73]. Variable amounts of IG distributed in
the cladode, pulp, and peel of the Tunisian Opuntia ficus-indica have been investigated [74].
Isorhamnetin-3-O-rutinoside (24) was found at very high and significant levels in the clado-
des (703.33 ± 28.45 mg/100 g, DW (dry weight)), pulps (271.39 ± 25.59 mg/100 g, DW),
and peels (254.51 ± 31.03 mg/100 g, DW). Moreover, isorhamnetin-3-O-glucoside (4) was
also found in the cladodes (149.71± 10.13 mg/100 g, DW), pulps (184.14 ± 14.91 mg/100 g,
DW) and peels (223.66 ± 14.44 mg/100 g, DW).

3.2. Hippophae rhamnoides

Hippophae rhamnoides (also named sea buckthorn) [20] constitutes a rich source of
IGs [10]. Its berries have been categorized as a “medicine food homology” fruit by China’s
National Health Commission for both nutritional and medicinal purposes [19]. Hippophae
rhamnoides has a wide range of positive biological, physiological, and medicinal effects,
such as antioxidative, anti-inflammatory, antidiabetic, anticarcinogenic, hepatoprotective,
and dermatological effects [75].

IGs have been found in all parts of the sea buckthorn plant, including the berries,
leaves, and seeds [76]. An investigation of six cultivated Hippophae rhamnoides varieties re-
vealed that the berries contained an average of 917 mg/100 g DW of flavonol glycosides [77],
whereas the content of flavonol glycosides in leaves was higher than that in berries,
with an average of 1118 mg/100 g DW. Isorhamnetin-3-hexoside (75.0~406.1 mg/100 g,
DW), isorhamnetin-3-rhamnosylglucoside (24) (52.5~190.0 mg/100 g DW), isorhamnetin-
3-neohesperidoside (15) (110.1~323.8 mg/100 g, DW), and free isorhamnetin were pre-
dominant in the berries. Isorhamnetin-3-rhamnoside (3) (41.8~159.1 mg/100 g, DW),
isorhamnetin-3-glucoside-7-rhamnoside (20) (67.6~129.3 mg/100 g, DW), isorhamnetin-3-
rhamnosylglucoside (24) (66.7~253.0 mg/100 g, DW), isorhamnetin-3-neohesperidoside (15)
(60.6~172.1 mg/100 g, DW), and isorhamnetin-3-rutinoside-7-glucoside (47) (36.0~117.3 mg/
100 g, DW) were predominant in the leaves. Another study determined the content of
IG from the berries of different cultivars of sea buckthorn. It was found that isorham-
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netin derivatives represented over 65% of the total flavonols in sea buckthorn berries [78].
Isorhamnetin-3-O-rutinoside (24) had the highest content, in the range of 96.4~228 mg/100 g
dry matter (DW). The study also confirmed that high concentrations of isorhamnetin-3-O-
glucoside (4) (62.0~217.0 mg/100 g, DW) and isorhamnetin-3-O-glucoside-7-O-rhamnoside
(20) (37.8~90.8 mg/100 g, DW) were detected in sea buckthorn berries.

3.3. Ginkgo biloba

Ginkgo biloba is one of the most commonly used herbal supplements in the world [79],
and is also a crucial source of IGs [80]. It has been demonstrated that Ginkgo biloba has
various remarkable biological properties, including neuroprotective, anticancer, cardio-
protective, and stress-alleviating properties, and could affect tinnitus, geriatric conditions,
and psychiatric disorders [81]. The major compounds of Ginkgo biloba are terpene lac-
tones and flavone glycosides [82]. Flavonol glycosides are most prevalent in Ginkgo biloba
leaves, and have been identified as derivatives of the aglycones quercetin, kaempferol, and
isorhamnetin, which are, by themselves, present in only small amounts in the leaves. The
dominant flavonol glycosides of Ginkgo biloba leaves were found to be kaempferol-3-O-
rutinoside and isorhamnetin-3-O-rutinoside (24), and content of the latter ranged from 30
to 80 mg/100 g [9].

3.4. Pollen Typhae

Pollen Typhae, also known as Pu huang in Chinese, is the dried pollen of Typha angus-
tifolia, Typha orientalis Presl, or plants of the same genus [83]. Pu huang was acknowledged
as a functional food by the National Health Commission of the People’s Republic of China
in 2002 [84]. Pollen Typhae has been used as a traditional remedy for analgesia, hemostasis,
stranguria, hematuria, and injuries in China. Isorhamnetin-3-O-neohesperidoside (15)
and typhaneoside (45), together with other minor flavonoid glycoside congeners, are the
main active constituents of pollen Typhae [85]. Isorhamnetin-3-O-rhamnosylglucoside
(24), isorhamnetin-3-O-neohesperidoside (15) (0.2546~0.3674%), and typhaneoside (45)
(0.3361~0.5229%) were identified in different pollen Typhae sources [86–88].

3.5. Calendula officinalis

Calendula officinalis is an ornamental, culinary, and valuable herbaceous medicinal
plant used medicinally worldwide [89]. It has been widely used as an anti-inflammatory,
anticancer, sedative, and antipyretic drug [90]. Calendula officinalis is rich in nutrients
and contains many terpenes, flavonoids, carotenoids, and lipids [91]. Typhaneoside (45)
(2.22~5.01 mg/g, DW), narcissin (24) (2.10~8.52 mg/g, DW), isorhamnetin-3-O-glycoside (4)
(0.42 ± 0.98 mg/g, DW), and isorhamnetin-3-O-(6”-acetyl)-glycoside (7) (0.69 ± 3.27 mg/g,
DW) were identified in the florets of different varieties of Calendula officinalis [42,92].
Isorhamnetin glycosides are considered one of the anti-inflammatory material bases of
Calendula officinalis [93].

3.6. Other Sources

IGs are found in many vegetables, fruits, and medicinal plants. Isorhamnetin-3-O-
glucoside (4) is one of the most abundant flavonoids and is widely distributed in rice
varieties [94]. Isorhamnetin-3,7-diglucoside (18) is a major flavonoid compound in Brassica
juncea leaves [95]. IGs have also been detected in Vaccinium corymbosum and Vaccinium
myrtillus [96,97]. Narcissin (24) (1.72–5.17 mg/g, DW) was extracted from Microctis folium,
which is a commonly used herbal tea material [98,99]. IGs have also been found in different
varieties of onion [100,101]. Isorhamnetin-4’-glucoside (9) has been reported as a minor
flavonoid in onion [23]. Sambucus nigra, known as the “elderberry”, has a long history as a
medicinal plant [102]. Its extract contains narcissin (24) and isorhamnetin-3-O-glucoside
(4), which are capable of regulating glucose and lipid metabolism [103].
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4. IG Identification and Quantification Methods

Different techniques have been used for the characterization, identification, and quan-
tification of IGs, including spectral techniques and chromatographic techniques. The
following review addresses the applicability of the ultraviolet–visible spectrum (UV), in-
frared spectroscopy (IR), nuclear magnetic resonance (NMR), mass spectrometry (MS),
thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), ultra-
performance liquid chromatography (UPLC), and high-speed counter-current chromatog-
raphy (HSCCC) methods developed for the determination of IGs.

4.1. Spectral Techniques and Mass Spectrometry

Various spectral methods have been employed for the identification and quantification
of IGs. UV, IR, MS, and NMR have been used to determine the structure of IGs.

4.1.1. UV

The UV absorption spectra of flavonoids mainly have two absorption bands in MeOH,
i.e., band I, which is caused by the electron transition of the cinnamoyl group, and band II,
which is caused by the electron transition of the benzoyl group. Regarding UV in flavonols,
band II absorption usually occurs in the region of 240–280 nm, and is relatively affected
by increased hydroxylation of the A-ring; meanwhile, band I absorption occurs in the
region of 328–385 nm and is relatively affected by increased hydroxylation of the B-ring and
C-ring. The addition of diagnostic reagents (NaOMe, NaOAc, NaOAc/H3BO3, AlCl3, and
AlCl3/HCl) has a certain impact on the UV spectrum [104]. For example, the UV spectrum
of isorhamnetin-3-O-β-D-galactoside-(1→4)-α-L-rhamnoside-(1→6)-β-D-galactoside (38)
showed two absorption maxima: 359 nm for band I, and 258 nm for band II. A large
bathochromic shift (up to 56 nm) in band I with NaOMe was observed, and was attributed
to the presence of free 4′-OH. A free 7-OH group occurred with small bathochromic shift
(16 nm) in band II upon the addition of a NaOAc reagent. Additionally, a 5, 7-dihydroxy
A-ring was expected to result from the AlCl3 and AlCl3/HCl UV spectra (λmax nm: 359,
258 (MeOH); 415 (+56), 271 (NaOCH3); 403 (+46), 270 (A1Cl3); 403 (+46), 268 (AlCl3/HCl);
402, 274 (+16) (NaOAc); 364 (+5), 255 (NaOAc/H3BO4)) [55,105].

4.1.2. IR

IR can be used to determine the characteristic functional groups of IGs. For exam-
ple, the characteristic functional groups of isorhamnetin-3-O-α-L-arabinoside-7-O-β-D-
glucoside (26) isolated from the Callianthemum genus were determined using IR. Its spec-
trum showed the characteristic absorption bands of a hydroxyl (3444.87 and 3429.43 cm−1),
a carbonyl (1653.00 cm−1), and a phenyl group (1600.92 and 1490.97 cm−1) [57]. If the IR
spectrum contained a band of 1725 cm−1 for ester carbonyl, it indicated that a hydroxyl
was acylated [92]. For example, the IR spectrum of isorhamnetin-3-O-(6-acetyl-glucoside)
(7) showed a band at 1725 cm−1, which indicated the presence of an ester carbonyl [106].

4.1.3. NMR

NMR is a widely used spectroscopic technique for structure identification. The 1H
NMR and 13C NMR spectra were used to determine chemical shifts in the functional groups
and carbon skeleton of IGs.

Strong regularity in the 1H NMR spectrum of IGs can be found. The chemistry shifts of
H-6 and H-8 of the A-ring are in the ranges 6.00~6.20 and 6.30~6.50 ppm, respectively, and
appear as doublets, with a coupling constant of 2.5 Hz, because of two aromatic protons in
the meta position. In the B-ring, H-2′, in the range of 7.20~7.90 ppm, appears as a doublet
with a coupling constant of 2.5 Hz; H-5′, in the range of 6.70~7.10 ppm, appears as a doublet
with a coupling constant of 8.5 Hz; H-6′, in the range of 7.20~7.90 ppm, appears as a doublet
of doublets, with coupling constants of 2.5 and 8.5 Hz; and a singlet at 3.80 ppm belongs to
3′-OMe [23,57,107].
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Some information on sugar linkage can also be obtained from the 1H NMR spec-
trum. The chemical shift in the H-1 (anomeric) proton varies according to the glyco-
sylation pattern, e.g., 7-O-glucosides occurred at 4.8~5.2 ppm, while 7-O-rhamnosides
occurred at 5.1~5.3 ppm; moreover, 3-O-glucosides occurred at 5.7~6.0 ppm, while 3-O-
rhamnosidesoccurred at 5.0~5.1 ppm [105].

The A 13C NMR spectra of IGs can determine the number and environment of each
carbon [57]. Moreover, the 1H and 13C-NMR signals and the linkages of each saccharide
can easily be assigned using 2D-NMR, including COSY, HSQC, and HMBC technology. For
example, an analysis of the HMQC spectrum of isorhamnetin-3-O-α-L-arabinopyranose-
7-β-D-glucopyranoside (26) can enable all the protons and corresponding carbons in the
structure to be assigned. In the HMBC spectrum, correlations between H-1” of arabinose
and C-3, and between H-1′ ′ ′ of glucose and C-7, indicated that arabinose was attached
to the C-3 of the aglycone, and glucose was attached to the C-7 of the aglycone, respec-
tively. Thus, they were combined to form isorhamnetin-3-O-α-L-arabinopyranose-7-β-D-
glucopyranoside (26) [107].

4.1.4. MS

MS analysis is based on the mass-to-nucleus ratio and is used to determine molecular
structure and weight. The loss of some ion fragments from a molecular or pseudomolecular
ion is very characteristic of the mass spectra of IGs.

Electrospray ionization (ESI), an ionization technique, is often used for the MS analysis
of IGs. The collision-induced dissociation of a pseudomolecular ion caused a character-
istic fragment ion of isorhamnetin glycoside at m/z 315, which was assigned to isorham-
netin [108]. MS is also used in the determination of the attachment of sugars in IGs.
In the mass spectrometry of isorhamnetin-glucoside-di-rhamnoside, a precursor ion at
m/z 769 originated from the product ion at m/z 315, which is the characteristic ion of
isorhamnetin aglycone, and the loss of 454 Da corresponded exactly to two rhamnose units
(2 × 146 Da) and one hexose unit (162 Da) [109].

Atmospheric pressure chemical ionization (APCI) is another choice of method for
detecting the molecular structure and weight of IGs. The regularities of the characteristic
ions of isorhamnetin 3-O-glucoside (4) obtained in APCI-MS were analyzed; a pseudo
molecular ion of m/z 477 and a second fragment of m/z 315 were provided, a characteristic
fragment ion of m/z 315 was assigned to isorhamnetin, and the loss of 162 Da corresponded
to one glucose unit [108].

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-
TOF MS) is a powerful new technique that can rapidly identify and quantify IGs [110].

4.2. Chromatographic Techniques

IGs can be distinguished from each other on the basis of chromatographic techniques.
Therefore, the analysis, characterization, and quantification of IGs are usually performed
using the following chromatographic techniques: TLC, HPLC, UPLC, and HSCCC.

4.2.1. TLC

TLC is a method that can be used to detect IGs, and has the advantages of rapidity,
simplicity, and economy. TLC is usually carried out in ascending mode on standard silica
gel plates or microcrystalline cellulose. IGs can be eluted on thin-layer chromatography
plates along with the standard compounds and distinguished by their retardation factor
(Rf). TLC on silica gel layers for flavonol glycosides is often eluted with an EtOAc-Pyr-H2O-
MeOH system, an n-BuOH–HOAc–H2O system, an EtOAc–methyl ethyl ketone–HOAc–
H2O system, anEtOAc–HOAc–H2O system [111], a buthanol–EtOH–H2O system [23], or
another developing solvent system [107]. Generally, the spots with IGs on a TLC plate can
be observed directly under UV light, and the spots are dark. They will appear yellow or
green under UV light after the addition of NH3 (gas) or a 1:1 mixture of 2% diphenyl-boric
acid-ethanolamine complex in EtOH and 10% polethylenglycol 4000 in MeOH stain [112].
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Moreover, a 1% ethanolic solution of ferric chloride or aluminum chloride is often used as
a TLC dipping solution.

Isorhamnetin-3-O-glucoside (4) and isorhamnetin-3-O-rutinoside (24) were detected
in the aerial parts of Peucedanum tauricum Bieb. TLC separation of the compounds was
performed on silica gel plates with two different mobile phases (ethyl acetate–methyl
ethyl ketone–formic acid–water, 5:3:1:1, or ethyl acetate–formic acid–water, 9:1:1). The
abovementioned compounds were identified by comparing the hRf (100 × Rf) values with
those of standard compounds [111].

4.2.2. HPLC and UPLC

HPLC is suitable for analyzing active components in natural extracts due to its sim-
plicity, sensitivity, precision, and selectivity. In order to identify and quantify IGs, the
chromatographic conditions of HPLC mainly include the use of a reverse-phase C18 col-
umn, acidic water, and MeOH or MeCN as a mobile phase [23,92,113].

HPLC–diode array detection (DAD) coupled with mass spectrometry can be also
developed for the analysis of IGs. Narcissin (24) (4.9%) and isorhamnetin-3-sophoroside-
7-rhamnoside (43) (3.7%) were found to be the major flavonoid glycosides in Hippophae
rhamnoides, and were analyzed ia HPLC-DAD-ESI-MS/MS [114]. The HPLC-DAD-ESI-
MS/MS analysis of the Hippophae rhamnoides berries of two subspecies provided information
on the structure and composition of IGs [10].

Usually coupled with UV, ultraviolet photodiode array, or MS detectors, UPLC is
an advanced liquid chromatography technique with the advantages of high resolution,
high speed, and high sensitivity [115]. It has become a popular analytical tool for the
analysis of many natural compounds, including IGs. Phenolic compounds in sea buck-
thorn were identified based on UPLC-MS analyses, and it was found that the major
compounds contained isorhamnetin-3-O-rutinoside (24), isorhamnetin-3-O-sophoroside-7-
O-rhamnoside (43), isorhamnetin-3-O-glucoside (4), and isorhamnetin-3-O-rhamnoside-
glucoside-7-O-rhamnoside (40) [116]. The berries of Hippophae rhamnoides were analyzed
via UPLC/PDA/ESI-MS, and it was revealed that their chemical constituents were com-
posed of isorhamnetin-3-neohesperidin (15), isorhamnetin-3-glucoside (4), isorhamnetin-3-
rhamnoside (3), isorhamnetin-3-sophoroside-7-rhamnoside (43), and free IG in different
proportions [77].

4.2.3. HSCCC

High-speed counter-current chromatography (HSCCC), a new, continuous, and effi-
cient liquid–liquid partition chromatography, eliminates the irreversible adsorptive loss of
samples onto solid support matrix columns, and has excellent sample recovery compared
with certain conventional methods [117,118]. IGs can be separated and purified efficiently
through multiple distribution processes using HSCCC. Isorhamnetin-3-O-glucoside (4)
(13 mg) was obtained via one-step HSCCC separation from a 240 mg sample of the medic-
inal herb lotus plumule [119]. HSCCC was also successfully applied to the preparative
isolation of IGs [120].

5. The Health-Promoting Effects of IGs

IGs possess a variety of biological properties, including antioxidant, anti-inflammatory,
and anti-cancer properties. Research has recently been undertaken to investigate their
pharmacological benefits for the treatment of various diseases, such as diabetes, obesity,
hepatic diseases, and thrombosis. Their health-promoting effects are summarized below.

5.1. Antioxidant Activity

Oxidative damage induced by free radicals results in detrimental outcomes, such as a
loss of cellular function and the dysfunction of organic systems [121]. It is worth mentioning
that numerous in vitro and in vivo studies have demonstrated the strong antioxidant and
radical-scavenging properties of IGs (Table 2).
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β-carotene-linoleic acid, 2,2-diphenyl-1-picrylhydrazil (DPPH) scavenging, 2,2′-azino-
bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS), oxygen radical absorbance capacity (ORAC),
peroxyl radical-scavenging capacity (PSC), superoxide scavenging, peroxynitrite (ONOO(-))
assays, and CUPric reducing antioxidant capacity (CUPRAC) are commonly used indirect
assays for identifying antioxidant activity. IGs isolated from the stamens of Nelumbo
nucifera showed significant antioxidant activity, as determined via DPPH and ONOO(-) as-
says [11]. Brassicin (1) exhibited stronger free radical-scavenging ability than vitamin C [13]
and exhibited DPPH radical- and ONOO(-)-scavenging activity [122]. Isorhamnetin 3-O-
robinobioside (22), isorhamnetin 3-O-(2′ ′,6′ ′-O-α-dirhamnosyl)-β-galactoside (37) [123],
typhaneoside (45), and isorhamnetin 3-O-neohesperidoside (15) [124] have been demon-
strated to exhibit antioxidant activity using a DPPH radical-scavenging activity assay.
Astragaloside (13) and narcissin (24) possessed antioxidant capacity, which was evaluated
using ABST [118]. Narcissin (24) and isorhamnetin 3-O-rutinoside-7-O-glucoside (47) ex-
hibited obvious antioxidant activity, which was detected using DPPH, β-carotene-linoleic
acid, and ABST [65,125]. Isorhamnetin 3-O-neohesperidoside (15) was a potent inhibitor of
xanthine oxidase and superoxide anion scavengers [126]. Furthermore, researchers have
revealed the antioxidant properties of isorhamnetin 3-O-glucoside (4) and isorhamnetin
3-O-galactoside (8) in all the antioxidant activity tests employed [127–130].

Evaluation of the antioxidant properties of IGs were also carried out using various
cell type experiments and animal models. The oral administration of isorhamnetin-3,7-
diglucoside (18) to streptozotocin-induced diabetic rats significantly reduced their lev-
els of 5-(hydroxymethyl) furfural (5-HMF), which is an indicator of the glycosylation
of hemoglobin, and of stress [95]. Similarly, isorhamnetin 3-O-robinobioside (22) exhib-
ited significant antioxidant effects on the human chronic myelogenous leukemia cell line
K562 [131]. IGs had the ability to inhibit the formation of H2O2-induced radicals in the
surrounding environment of intestinal epithelial cells [132]. Moreover, the transcriptional
genes of the antioxidant system and the DNA repair pathway were upregulated after incu-
bation with isorhamnetin 3-O-neohesperidoside (15) in pKS plasmid DNA [133]. Narcissin
(24) and isorhamnetin 3-O-glucoside (4) demonstrated strong inhibition of reactive oxygen
species (ROS) production in the oxidative burst activity of whole blood, neutrophils, and
mononuclear cells [134]. Plant extracts rich in IGs also exhibited antioxidant activity. IG-rich
concentrate from Opuntia ficus-indica juice had the ability to inhibit the formation of H2O2-
induced radicals in the surrounding environment of intestinal epithelial cells [135]. The
total antioxidant activity of Hippophae rhamnoides berry extracts, evaluated via ORAC and
PSC, was significantly associated with total phenolics, including isorhamnetin-3-rutinoside
(24) and isorhamnetin-3-glucoside (4) [136].

Table 2. Antioxidant activity of IGs.

Isorhamnetin Glycosides Study Model Method/Assay Conclusion Ref.

Isorhamnetin-3-O-glucoside (4),
Narcissin (24) / DPPH, ONOO-

Showed potent antioxidant activity,
with IC50 values of 11.76 and

9.01 µM in DPPH assay, and 3.34 and
2.56 µM in the ONOO- assay.

[11]

Brassicin (1) / DPPH, ABTS
Showed radical-scavenging activity
of DPPH radical and peroxynitrite,

with IC50 values of 13.3 and 2.07 µM.
[13]

Brassicin (1) / DPPH, peroxynitrite
Showed radical-scavenging activity
of DPPH radical and peroxynitrite,

with IC50 values of 13.3 and 2.07µM.
[122]

Narcissin (24); isorhamnetin,
3,4′-diglucoside (17)

LPS-induced Raw264.7
mouse macrophage cells NO Had an inhibitory effect on the

production of NO induced by LPS. [137]

Isorhamnetin-3-O-glucoside (4),
3-O-galactoside (8)

β-carotene-
linoleic acid DPPH, ABTS, CUPRAC

Act as free radical scavengers and
chain-breaking antioxidants of

DPPH, with IC50 values of 4.84 and
4.51 µM.

[127]
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Table 2. Cont.

Isorhamnetin Glycosides Study Model Method/Assay Conclusion Ref.

Isorhamnetin 3-O-galactoside (8) DPPH

Showed high antioxidant activity
compared to

Trolox (standard
antioxidant compound).

[128]

Typhaneoside (45); isorhamnetin-
3-O-neohesperidoside (15)

HUVECs treated with
LPS NO, MDA, SOD Reduced levels of MDA, increased

SOD activity and NO bioactivity. [124]

Isorhamnetin
3-O-robinobioside (22)

K562 cell line induced
by H2O2

CAA

Inhibited oxidation
(IC50 = 0.225 mg/mL) and
genotoxicity (by 80.55% at

1000 µg/mL).

[131]

Isorhamnetin 3-O-robinoside
(22); isorhamnetin

3-O-(2′ ′,6′ ′-O-α-
dirhamnosyl)-β-galactoside (37)

/ DPPH Effectively scavenged DPPH radicals,
with IC50 values of 3.8 and 4.3 µM. [123]

Isorhamnetin-3-O-glucoside (4) / DPPH, ABTS, FRAP
Highly correlated with DPPH, ABTS,

and FRAP (r = 0.672,
r = 0.660, r = 0.943, respectively).

[130]

Astragaloside (13), narcissin (24) / ABTS
Possessed antioxidant capacity, with

IC50 values
of 33.43 and 40.97 µg/mL.

[118]

Narcissin (24); isorhamnetin
3-O-glucoside (4) / DPPH

Showed pronounced antioxidant
activity, with IC50 values of 165.62

and 177.91 µg/mL.
[65]

Narcissin (24); isorhamnetin-3-O-
rutinoside-7-O-glucoside (47) / DPPH, ABTS Showed obvious antioxidant activity. [125]

Narcissin (24) HepG2 cells CAA

Showed significant in vitro
antioxidant activity, with CAA value

significantly correlated with
narcissin (24) (R2 = 0.998).

[136]

IGs H2O2-induced intestinal
epithelial cells ORAC Able to counteract protein oxidation. [132]

Isorhamnetin
3-O-neohesperidoside (15)

Hydroxyl
radical-induced DNA
damage pKS plasmid

MDA, DNA-strand
scission assay

Transcriptions of several genes
related to the antioxidant system

(HMOX2 and TXNL)
were upregulated.

[133]

Isorhamnetin
3-O-neohesperidoside (15) / ABTS, xanthine/

xanthine oxidase

Was a potent inhibitor of xanthine
oxidase (IC50 = 48.75 µg/mL) and

superoxide anion scavengers
(IC50 = 30 µg/mL).

[126]

Isorhamnetin 3-O-galactoside (8) / ABTS Showed ABTS radical-scavenging
activity (IC50 = 6 ± 0 µM). [129]

Narcissin (24); isorhamnetin
3-O-glucoside (4)

Whole blood,
neutrophils,

or monocytes
ROS Demonstrated potent inhibition of

ROS production. [134]

5.2. Anti-Inflammatory Activity

IGs have anti-inflammatory properties due to different mechanisms. As an impor-
tant inflammatory mediator, high-mobility-group protein 1 (HMGB1) contributes to or-
gan damage and inflammation [138]. Isorhamnetin 3-O-galactoside (8) (5 µM) has been
demonstrated to significantly inhibit the release of HMGB1 and reduce HMGB1-dependent
inflammatory responses in human endothelial cells. It was found that 8 (4.8 mg/mouse)
could also inhibit HMGB1 receptor expression, the HMGB1-mediated activation of NF-kB,
and the production of tumor necrosis factor (TNF-α) in mice [139].

Mitogen-activated protein kinase (MAPK) signaling pathways, including p38, c-Jun
N-terminal kinase (JNK), and extracellular regulated kinases (ERK), play crucial roles in
inflammatory responses [140]. Isorhamnetin 3-O-galactoside (8) (50 µM) reduced cecal
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ligation and endothelin C receptor perforation-mediated shedding and down-regulated
the phosphorylation of p38 MAPK, ERK 1/2, and JNK [14]. Similarly, isorhamnetin 3-
O-glucuronide (5) exhibited anti-inflammatory activity by increasing heme oxygenase-1
(HO-1) expression and suppressing the JNK and p38 signaling pathways in LPS-induced
RAW264.7 macrophage cells [141]. Moreover, isorhamnetin 3-O-glucuronide (5) inhibited
the production of ROS (10 µM), as well as the release of elastase, in a human neutrophil
model (1 µM) and suppressed the upregulation of inducible nitric oxide synthase (iNOS)
expression (5 µM), and could be considered to display anti-inflammatory activity [46,142].

Many studies have shown the anti-inflammatory properties of IGs by inhibiting
inflammatory cytokines. The inflammatory activity of narcissin (24) (100 µM) and isorham-
netin 3-O-glucoside (4) (100 µM) was mediated via the inhibition of nuclear factor kappa-B
(NFκB) and inflammatory mediators such as TNF-α, interleukin-1β (IL-1β), and interleukin-
6 (IL-6) in phytohaemagglutinin-stimulated human peripheral blood mononuclear cells
(PBMC) [132]. Likewise, narcissin (24) (40 µM) achieved the inhibition of inflammatory
cytokines (TNF-α, IL-1β, and IL-6) in advanced glycation end product (AGE)-induced
RAW264.7 cells [143]. Isorhamnetin-3-O-[2,3-O-isopropylidene-α-L-rhamnopyranosyl]-
(1→6)-O-β-D-glucopyranoside (11) (25 µM) showed a significant inhibitory effect on
NO release and the secretion of the cytokines IL-6 and TNF-α [48]. Isorhamnetin-3,4′-
diglucoside (17) (100 µg/mL) and isorhamnetin 3-O-glucoside (4) (100 µg/mL) have shown
the inhibitory effect of IL-6 production on TNF-α-stimulated human osteosarcoma MG-63
cells [144]. Isorhamnetin 3-O-glucoside (4) (100 µg/mL) showed distinct anti-inflammatory
activity with no toxicity on RAW 264.7 macrophage cells as compared to dexametha-
sone [145]. Seddik Ameur et al. studied the anti-inflammatory activity of IGs extracted from
Opuntia ficus-indica flowers, and their results showed that isorhamnetin-3-O-robinobioside
(22) is the product responsible for the anti-inflammatory activity [146]. Both Opuntia
ficus-indica extract (OFI-E) and isorhamnetin-3-O-rhamnosylglucoside (24) (125 ng/mL)
significantly inhibited cyclooxygenase-2 (COX-2), TNF-α, and IL-6 production, of which 24
compounds have been suggested to be suitable natural compounds for the development of
a new anti-inflammatory ingredient [147]. The total flavonoid-rich IGs from sea buckthorn
exhibited a protective effect against LPS/CS-induced airway inflammation by inhibiting
the ERK, PI3K/Akt, and PKCα pathways and diminishing the expression of IL-1β, IL-6,
and COX2 in mice [148].

5.3. Anti-Cancer Activity

Flavonoids have great potential for anticancer prevention [149]. IGs have also been
proven to possess anticancer effects. Brassicin (1) (22.8 µg/mL) showed in vitro cyto-
toxicity against human colon cancer cells in the HCT116 cell line [150]. Isorhamnetin
3-O-neohesperidoside (15) (2.47 µg/mL) showed potent cytotoxicity against breast ductal
carcinoma and colorectal adenocarcinoma (Caco-2) cells [151]. Narcissin (24) showed cyto-
toxic effects in Hela cells and the hormone dependent prostate carcinoma LNCaP cell line
(IC50 = 20.5 µg/mL) [152,153].

Mechanically, IGs have been involved in the induction of apoptosis and the inhibition
of cancer cell proliferation (Figure 4A). Apoptosis, the most vital cell death mechanism,
ultimately contributes to tumor progression [154]. Mitochondria play an essential role in
cell death signaling and ROS generation [155]. The production of ROS above a threshold
level can trigger apoptosis in cancer cells, thereby limiting further cancer progression [156].
After the excessive production of ROS, the expression of genes related to the mitochondrial
apoptosis pathway (Bax, Caspase9, and Caspase3) was aggravated, and the expression
of the anti-apoptotic gene Bcl-2 was reduced [157]. Emerging evidence suggests that IGs
promote ROS generation and the activation of mitochondria-dependent apoptosis in cancer
cells (Figure 4B). Isorhamnetin-3-O-β-D-glucuronide (5) (25–100 µM) dose-dependently
exhibited a strong cytotoxic effect through the ROS-dependent apoptosis pathway in
the human breast cancer cell line MCF-7 [158]. In xenografted immunosuppressed mice,
Opuntia ficus-indica extract (OFI-E) and isorhamnetin-3-O-glucosyl-rhamnoside (28) re-
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duced tumor growth through the overexpression of cleaved Caspase-9, Hdac11, and
Bai1 proteins. Moreover, OFI-E reduced the expression of Bcl-2 [159]. IGs from opun-
tia ficus-indica pads were cytotoxic against HT-29 cells (IC50 = 4.9 ± 0.5 µg/mL) and
Caco-2 cells (IC50 = 8.2 ± 0.3 µg/mL) as they induced apoptosis [160]. Isorhamnetin-3-O-
rhamnosylglucoside (24) induced cell death in the human colon cancer cell line HT-29
(10 µg/mL) through an increase in the Bax/Bcl-2 ratio, indicating that 24 induced apoptosis
through mitochondrial damage [15]. Isorhamnetin 3-O-robinobioside (22) enhanced the
apoptosis effects in tested human lymphoblastoid TK6 cells, which were confirmed via
DNA fragmentation and PARP cleavage, indicating the release of caspase-3 [161]. Nu-
merous studies show the beneficial effects of IGs and their capability for suppressing
proliferation in cancer cells. Ana et al. extracted natural extracts from Opuntia ficus-indica
and Opuntia robusta (ED50 value < 0.5 mg GAE/mL) residues, and evaluated their anti-
proliferative effects in human colon cancer HT29 cells. Their results verified that IGs
inhibited cell growth and induced cell cycle arrest at different checkpoints (G1, G2/M,
and S) [162]. Isorhamnetin-3-O-rhamnosylglucoside (24) (394.68 ± 25.12 µM) inhibited
the proliferation of chronic myelogenous leukemia cells [163,164]. Isorhamnetin 3-O-2′ ′ ′ ′-
O-acetyl−β-D-xylopyranosyl-(1→6)-[β-D-apiofuranosyl-(1→2)]-β-D-glucopyranoside (36)
(IC50 = 57/42/59 µM) and isorhamnetin 3-O-2′ ′ ′-O-acetyl−β-D-xylopyranosyl-(1→6)-β-D-
glucopyranoside (10) (IC50 = 71/60/67 µM) were investigated for their potential cytotoxic
activity in three cancer cell lines (Jurkat cells, cervical carcinoma cells, and MCF7 cells) and
showed moderate antiproliferative activity [27].
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Furthermore, isorhamnetin 3-O-glucoside (4) (10 µM) exerted its inhibitory effects on
matrix metalloproteinase-9 and -2 in HT1080 human fibrosarcoma cells by interfering with
activator protein-1 transcription factor binding [165]. Isorhamnetin-3,7-diglucoside (18)
(50–100 µg/mL) induced a 20% decrease in cancer intestinal cell survival through glycogen
synthase kinase 3-beta regulation in intestinal cells [166].

5.4. Hepatoprotective Ability

The liver is the most essential and functional organ in the body, and it is where primary
detox and metabolic events occur [167]. Liver injury can be caused by various factors,
including alcohol, microbial infection, drugs, biological toxins, and chemical agents [168].
Flavonoids in many different foods and medicinal plants have therapeutic potential in liver
disease [169].

Studies have confirmed that IGs play an important role in liver injury by modulat-
ing multiple pathways (Figure 5). The hepatoprotective effects of IGs are closely linked
with their antioxidant and anti-inflammatory effects. Isorhamnetin 3-O-galactoside (8)
(100 mg/kg) reduced serum TNF-α levels, aminotransferase activities, and the hepatic level
of malondialdehyde (MDA); attenuated increases in iNOS and COX-2 protein and mRNA
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expression levels; attenuated increases in nuclear factor kappa-B (NF-κB) and c-Jun nuclear
translocation; and augmented the levels of HO-1 and mRNA expression and the nuclear
level of nuclear factor E2-related factor 2 (Nrf2) in a carbon tetrachloride (CCl4)-induced
hepatic damage model (Figure 5A). This suggests that IGs exhibit hepatoprotective effects
by enhancing the antioxidative defense system and reducing the inflammatory signaling
pathways [16]. A similar result was obtained for the hepatoprotective effects of isorham-
netin 3-O-glucoside (4) (20 µg/mL/mouse). It suppressed the increase in plasma alanine
aminotransferase (ALT) and aspartate aminotransferase (AST) activities in CCl4-induced
liver injury mice [170]. Opuntia ficus-indica fruit juice (3 mL/rat) administration exerted pro-
tective and curative effects against the CCl4-induced degenerative process in rat liver [171].
The oral administration of a phenolic-rich fraction of sea buckthorn leaves (25–75 mg/kg)
significantly protected against CCl4-induced elevation in AST, ALT, c-glutamyl transpep-
tidase, and bilirubin in the serum, and also protected against histopathological changes
produced by CCl4, such as hepatocytic necrosis, fatty changes, and vacuolation [172]. In
another study, typhaneoside (45) exhibited hepatoprotective effects on D-GalN-induced
cytotoxicity in primary cultured mouse hepatocytes [173]. The phytochemical constituents
of cactus branch extract (92 mg/kg), which were found to possess excellent antioxidant
properties, had protective effects against lithium-induced hepatotoxicity and oxidative
stress in rats [174].
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oxidative stress and anti-inflammatory effects of IGs in CCl4-induced hepatic damage(A). IGs inhibit
TGF-β-induced activation of HSCs through the DNA damage pathway (B). Hepatic metabolic
pathways through which IGs alleviate the adverse effects of ethanol (C).

IGs also had an improvement effect on hepatic lipid accumulation. In high-fat diet-fed
mice, OFI-E (0.3%, 0.6%) reduced fatty acid synthesis and increased fatty acid oxidation
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and caused a decrease in hepatic fat accumulation, thereby preventing hepatic steatosis [70].
Isorhamnetin-3-O-glucoside (4), isorhamnetin, 3,4′-diglucoside (17), and isorhamnetin 3-O-
β-D-glucopyranosyl-7-O-β-D-gentiobioside (47) (30 µM) had significant inhibitory effects
on sodium oleate-induced triglyceride overloading in HepG2 cells [53]. Furthermore, bio-
chemical and histopathological studies showed that sea buckthorn flavonoids (200 mg/kg,
po) significantly improved biomarkers in the serum and liver of tetracycline-induced
nonalcoholic fatty liver mice [175].

Zhang G et al. observed that isorhamnetin-3-O-β-D-glucopyranoside-7-O-α-L-rhamnoside
(20) (40 µM) exhibited a profound inhibitory effect on the activation of hepatic stellate
cells (HSCs) induced by transforming growth factor-β (TGF-β), and decreased the levels
of inflammatory factors. It over-regulated the proteins of the DNA damage signaling
pathway, including the ataxia telangiectasia mutated gene (ATM), Rad3-related gene (ATR),
checkpoint kinase1 (Chk1), checkpoint kinase2 (Chk2), p53, and alpha-smooth muscle
actin (α-SMA) (Figure 5B) [176]. In addition, the active components of sea buckthorn berry
(20 and 40 mg/kg) had inhibitory effects on the development of fibrosis in rats after bile
duct ligation, and they attenuated liver injury and inflammation by downregulating the
expression of αSMA, while over-regulating the DNA damage signaling pathways and their
related genes.

Isorhamnetin 3-O-β-D-glucopyranoside (4) alleviated the adverse effect of ethanol
ingestion by enhancing the activities of alcohol dehydrogenase (ADH), the microsomal
ethanol oxidizing system (MEOS), and aldehyde dehydrogenase (ALDH) in a hepatic
alcohol-metabolizing enzyme system in rats (Figure 5C) [177]. In addition, sea buckthorn
fermentation liquid (1.75, 2.675, 5.35 g/kg) protected against alcoholic liver disease and
modulated the composition of the gut microbiota. It lowered ALT, AST, TNF-α, MDA, and
IL-6, while modulating the gut microbiota composition [178].

5.5. Antidiabetic Activity

The antidiabetic properties of IGs may appear through different functions. IGs inhibit
various pathways associated with the progression of diabetes, including the regulation of
glucose metabolism and enhancing insulin secretion [179].

IGs exert inhibitory activity on several enzymes involved in diabetes management. In
the small intestine, IGs inhibit the activity of α-amylase and α-glucosidase, thereby reduc-
ing the conversion of dietary saccharides into easily absorbed monosaccharide, and thus,
reducing the postprandial enhancement of blood glucose levels (Figure 6). Isorhamnetin-3-
O-glucoside (4) showed a strong ability to bind to α-amylase and α-glucosidase (the IC50
values were 0.16 ± 0.06 and 0.09 ± 0.01 µM) [180]. Narcissin (24) (IC50 = 0.129 mM) could
be useful in lowering postprandial blood glucose by inhibiting α-amylase activity [181].
Meanwhile, 24 was a good 15-lipoxygenase (IC50 = 45± 2 µM) inhibitor [182,183]. Isorham-
netin glucosyl-rhamnosyl-pentoside (50 µg/mL) was reported to exhibit antihyperglycemic
activity by inhibiting α-amylase activity [184]. Sea buckthorn aqueous extracts were corre-
lated with lipase/α-amylase inhibitory activity in all phases of a digestion model in vitro,
with gastric and intestinal fractions largely inhibiting enzyme activity [185].

Dipeptidyl peptidase-IV (DPP-IV) inhibitors promote insulin secretion by prolonging
the activities of incretin glucagon-like peptide 1 and glucose-dependent insulinotropic
polypeptide [186]. In vitro experiments showed that isorhamnetin 3-O-glucoside (4) (IC50,
6.53 ± 0.280 µM) and isorhamnetin 3-O-rutinoside (24) (IC50, 8.57 ± 0.422 µM) had strong
inhibitory effects on DPP-IV, which may provide new insights into isorhamnetin glucosides
as DPP-IV inhibitors for controlling blood glucose [187]. The inhibition of protein tyrosine
phosphatase 1B (PTP1B) activity increased insulin sensitivity and reduced blood glucose
levels [17]. In vitro, 4 (IC50, 1.16 ± 0.03 µM) and 24 (IC50, 1.20 ± 0.05 µM) exhibited
potent inhibitory activity against PTP1B, revealing that they could be potential anti-diabetic
drugs [188].
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Moreover, IGs improved the secondary complications of diabetes. In diabetes, the over-
expression of aldose reductase induces the conversion of glucose to sorbitol via the polyol
pathway, thereby inducing complications of diabetes, such as neuropathy, nephropathy, and
retinopathy [189]. Isorhamnetin-7-O-β-neohesperidoside (12) (IC50 = 5.45 ± 0.26 µg/mL)
and isorhamnetin 3-O-glucoside (4) (IC50 = 21.55 ± 1.52 µg/mL) exhibited remarkable
aldose reductase inhibition activity [12]. It was also found that 4 (25 mg/kg) inhibited
rat lens aldose reductase and sorbitol accumulation in streptozotocin-induced diabetic rat
tissues [190]. Isorhamnetin 3-O-α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranoside (24)
(IC50 = 9 µM) was determined to exhibit a high degree of rat lens aldose reductase inhibitory
activity in vitro [191].

5.6. Anti-Obesity Activity

Flavonoids could protect against obesity-related pathology by inhibiting adipogenesis
and exerting anti-inflammatory activity [192]. Sea buckthorn leaf extract contains a high
content of flavonoid glycosides, especially isorhamnine-3-glucoside (4) and quercetin-3-
glucoside [78]. Flavonoid glycosides extracted from sea buckthorn leaves (SLGs) could
suppress diet-induced obesity in C57BL/6J mice [98]. In this study, the authors mentioned
that 12 weeks of oral administration with a high-fat diet (HFD, 60 kcal% fat) + 0.04% (w/w)
SLGs significantly prevented adiposity and dyslipidemia by suppressing lipogenesis and
the absorption of dietary fat. This anti-obesity effect was explained by the improvement
of inflammation and a decrease in gluconeogenesis. Narcissin (24) and 4 (30 µM) showed
moderate inhibitory effects on triglyceride and glycerol-3-phosphate dehydrogenase ac-
tivity in a 3T3-L1 preadipocyte [193]. Furthermore, it was demonstrated by Chang-Suk
Kong et al. that 4 (20 µM) potently suppressed adipogenic differentiation by downregu-
lating peroxisome proliferator-activated receptor-γ, CCAAT/enhancer-binding proteins,
sterol regulatory element-binding protein 1, and the adipocyte-specific proteins in 3T3-L1
preadipocytes. Furthermore, the specific mechanism mediating its action occurred through
the activation of AMPK [194].
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IG-rich plant extracts also have obvious anti-obesity effects. César Rodríguez-Rodríguez et al.
have demonstrated that oral treatments of HFD, with a low (0.3%) or high (0.6%) dose
of OFI-E rich in isorhamnetin glycosides, to C57BL/6 mice for 12 w ameliorated the de-
velopment of HFD-induced obesity-related metabolic abnormalities by reducing weight
gain, increasing insulin secretion, and enhancing energy expenditure in mice [70]. Further
mechanistic studies verified that OFI-E and IGs could reduce fatty acid synthesis and
increase fatty acid oxidation, leading to reduced fat accumulation in adipose tissue, thereby
preventing adipocyte hypertrophy. OFI-cladode infusions (1%, administered daily in the
drinking water) reduced proinflammatory cytokines such as TNF-α, IL-1β, and IL-6 in
the colon, adipose tissue, and spleen in Swiss male mice fed an HFD, as well as IL-6 and
TNF-α in the plasma. These results suggested that OFI-cladode ameliorated HFD-induced
obesity-related inflammation [195]. The results showed that intragastric administration of
the extract from Hippophae rhamnoides seeds with concentrations of 100 and 300 mg/kg led
to anti-obesity, triglyceride-lowering, and hypoglycemic effects in obese mice. It markedly
inhibited macrophage infiltration into adipose tissue by regulating PPARγ and PPARα gene
expression and inhibiting adipose tissue inflammation [196]. Oral sea buckthorn flavonoid
administration (0.06% and 0.31% w/w, mixed in the diet) was able to alleviate body weight
gain and insulin resistance in high-fat- and high-fructose-diet-induced C57BL/6J mice [197].
An extract of black soybean leaves (EBL), which mainly contains quercetin glycosides and
isorhamnetin glycosides, inhibited HFD-induced obesity. Dietary supplements with 1%
(wt/wt diet) EBL significantly reduced weight gain, improved glucose homeostasis, and
decreased the glucose, insulin, HbA1c, and HOMA-IR index levels in HFD-fed mice. Mech-
anistic studies revealed that EBL inhibited hyperglycemia and hepatic steatosis through the
adiponectin and AMPK signaling pathways, while isorhamnetin 3-O-α-L-rhamnopyranosyl
(1→2)]-β-D-galactopyranosid (33) (50 µM) directly reduced lipid accumulation in HepG2
cells by enhancing AMPK activity [62].

5.7. Antithrombotic Activity

Thrombosis is a critical event in diseases correlated with atherosclerosis, myocardial
infarction, and stroke [198]. The aggregation of platelets at the site of injury, as well as
thrombin generation and fibrin formation triggered by the activation of tissue factors, are
involved in thrombosis formation [199]. Therefore, the therapeutic mechanism includes the
inhibition of platelet activation, adhesion, and aggregation, the improvement of fibrinolytic
system function, and the regulation of coagulation system function [200].

Sae-Kwang Ku et al. assessed the antithrombotic activity of isorhamnetin 3-O-galactoside
(8) from Oenanthe javanica. Studies have confirmed that it (10 µM) could significantly
prolong the activated partial thromboplastin time and prothrombin time, inhibit the activity
of thrombin and factor X, and inhibit the thrombin in human umbilical vein endothe-
lial cells activated by TNF-α and the generation of factor X. In addition, isorhamnetin
3-O-galactoside (2.5 mg/kg) also elicited consistent anticoagulant effects in mice [201].
IGs isolated from sea buckthorn fruits showed marked anticoagulant and antiplatelet
activity [202]. A thrombus-formation analysis system indicated that isorhamnetin 3-O-
β-glucoside-7-O-α-rhamnoside (20) (50 µg/mL) and isorhamnetin 3-O-β-glucoside-7-O-
α-(3′ ′ ′-isovaleryl)-rhamnoside (34) (50 µg/mL) demonstrated anti-coagulant potential
in whole blood. BartoszSkalski et al. came to the consistent conclusion that isorham-
netin 3-O-β-glucoside-7-O-α-(3′ ′ ′-isovaleryl)-rhamnoside (34) (5, 10 µg/mL) possessed
anti-platelet and anticoagulant properties, which extended the thrombin time and inhib-
ited aggregation induced by thrombin [69]. Isorhamnetin 3-O-rhamnosylglucoside (24)
(0.4 mg/mL) can stimulate the endothelial cell to produce tissue plasminogen activators
and prostaglandins and possesses antithrombotic properties [87]. Isorhamnetin-3-O-α-
L-rhamnoside-(1→2)-β-D-glucoside (15) isolated from pollen Typhae can also stimulate
porcine aortic endothelial cells to produce tPA, and it was revealed that it has antithrombotic
effects. Sae-Kwang Ku et al. demonstrated that isorhamnetin-3-O-galactoside (8) (10 µM)
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inhibited the TNF-α-induced production of plasminogen activator inhibitor type 1 (PAI-1)
and reduced the ratio of PAI-1 to tissue-type plasminogen activator (tPA) [201].

5.8. Toxic Effects

Flavonoids are natural components of fruits, vegetables, tea, wine, traditional medicines
(such as ginkgo biloba), and a considerable number of herbal dietary supplements. With
growing interest in alternative medicine, the general population is consuming more
flavonoids [203]. Since flavonoids are common edible ingredients in our daily diets, re-
search on their potential cytotoxicity is warranted.

Currently, there are no systematic toxicological studies on IGs, and further studies are
needed. Bee bread (BB) is a fermented mixture of plant pollen, honey, and bee saliva, and
is rich in flavonoid glycoside derivatives [204]. Filipa Sobral et al. collected a variety of
BB samples, and the most abundant compounds in BB1 (>400 µg/mL) were isrohamnetin-
O-hexosyl-O-rutinoside and isorhamnetin-O-pentosyl-hexoside. They found that the BB1
sample showed no toxicity to non-tumor porcine liver primary cells [205]. Isorhamnetin-3-
rutinoside-4′-glucoside (35), isolated from P. lanceolata inflorescences, showed significantly
less cytotoxicity towards the nontumorigenic cell line MCF-12A at a concentration of
400 µM [206]. Isorhamnetin-3-O-β-D-galactopyranoside (8) and isorhamnetin-3-O-β-D-
glucopyranoside (4) (100 µg/mL) isolated from Salsola imbricata Forssk. exhibited no cyto-
toxicity in RAW 264.7 macrophage cells [158]. Furthermore, it was demonstrated that the
viability of PBMCs was slightly decreased after 48 h of incubation with isoretin-3-O-rutin
(24) (0–180 µM) from Cyrtosperma johnstonii. However, the decrease in cell viability was no
greater than 30% [207]. A brine shrimp toxicity assay of extracts and isolated compounds
from Terminalia macroptera leaves showed that narcissin (24) was not toxic against brine
shrimp larvae at the tested concentrations (200 µM) [182].

6. Bioaccessibility of IGs

The bioaccessibility of bioactive compounds refers to the maximum fraction of the
compound released from the food matrix into the lumen of the gastrointestinal tract to be
absorbed [208]. Most flavonoids exist in nature as glycosides, in which sugar residues mod-
ify the absorption mechanism and their ability to enter cells or interact with transporters
and cellular lipoproteins [209,210]. Flavonoid glycosides exhibit better bioavailability both
in vitro and in vivo, which is probably due to their higher aqueous solubility and stabil-
ity during digestion [8]. At the same time, the gut microbiota plays an important role
in improving the bioavailability and enhancing the absorption of flavonoids [211]. The
deglycosylation of flavonoid glycosides by the gut microbiota enhances the bioavailability
of flavonoids [212].

Compared with isorhamnetin aglycone, IGs have higher accessibility. Antunes-
Ricardo et al. found that glycosylation protected isorhamnetin from degradation dur-
ing simulated digestion, and IGs were better retained in the circulatory system than
aglycone [8]. Isorhamnetin-3-O-rutinoside (24) (93.2 ± 0.2%) and isorhamnetin 3-O-
glucoside (4) (66.8 ± 1.7%) from almond skins showed higher bioaccessibility than isorham-
netin (25.1 ± 7.0%) after simulated digestion [213]. Isorhamnetin glucosyl-rhamnosyl-
rhamnoside, isorhamnetin glucosyl-rhamnosyl-pentoside, isorhamnetin hexosyl-hexosyl-
pentoside, and isorhamnetin glucosyl-pentoside showed high bioaccessibility in the peels
of four prickly pear varieties during in vitro simulated gastrointestinal digestion [214].
Isorhamnetin glucosyl-rhamnosyl-rhamnoside and isorhamnetin glucosyl-pentoside in
Opuntia ficus-indica cladodes showed bioaccessibility values of 58% and 38% [215].

It was also reported that the antidiabetic, anti-inflammatory, and antiallergic activities
of flavonoid glycosides were similar or even higher than those of aglycones when provided
orally [216–219]. The effect of flavonoid glycosides is beneficial, probably due to the fact
that flavonoid glycosides maintain higher plasma concentrations and have a longer mean
residence time in the blood than aglycones [220]. Typhaneoside (45) and isorhamnetin-
3-O-neohesperidoside (15) were detected immediately after the oral administrations of
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pollen typhae extract in rats, indicating that they were rapidly absorbed after oral adminis-
tration [86,221]. IGs in sea buckthorn berries were monoglucuronidated in humans and
were readily bioavailable [222]. Following the ingestion of lightly fried onions, flavonols
were absorbed into the plasma of humans as glycosides, with a higher accumulation of
isorhamnetin-4′-glucoside (9) in the plasma and urine than quercetin conjugates, which
indicated that 9 may be preferentially absorbed [223]. Similarly, the results of a randomized
crossover supplementation trial in female volunteers showed that 9 underwent significant
elevation in the plasma after the ingestion of onion powder [224]. Antunes-Ricardo et al.
reported that IGs found naturally in O. ficus-indica have a longer elimination half-life than
isorhamnetin, suggesting that they can maintain constant plasma concentrations, and thus,
prolong their biological effects [8].

Planar lipophilic polyphenols, such as curcumin, epigallocatechin gallate, quercetin,
and genistein, are known as Pan-Assay Interference Compounds (PAINS) or Invalid
Metabolic Panaceas (IMPS) because of their ability to interfere with membrane dipole
potential [225]. Ana Marta de Matos et al. demonstrated that compounds produced via
C-glycosylation are no longer able to alter the membrane dipole potential [226]. However,
O-glycosylated compounds are easily hydrolyzed in the gut, so they are not suitable for
this strategy. There are no more studies on the interference of isorhamnetin glycosides on
membrane dipole potential, so further research in this field is warranted.

7. Marketed Products Related to IGs

In recent years, there has been increased interest in natural phytonutrients. Phytonu-
trients, such as beta-carotene (representative food, e.g., carrots), lutein (collard), isoflavones
(soybeans), resveratrol (red wine), and anthocyanins (grapeseed), are known to provide
a variety of significant benefits to humans and improve human well-being [227]. IGs as
phytonutrients have been used in food and as a remedy against different health disorders,
and processed into various products.

7.1. Food and Functional Food Products Using Opuntia ficus-indica

The cultivation for Opuntia ficus-indica is scattered across various parts of the world,
such as Central and South America, Southern Spain, the Mediterranean Sea, Angola,
Australia, India, and South Africa [228–230]. Opuntia ficus-indica has long been marketed in
different forms, such as fresh, frozen, or pre-cooked, and used as fresh greens and in salads
in Mexico, Latin America, South Africa, and the Mediterranean area [231]. As a popular
dietary supplement in the United States, Opuntia ficus-indica products could be potentially
utilized for body weight control and liver function support.

Opuntia ficus-indica can be processed into many food products (Figure 6). Its cladodes
have been used as a vegetable, usually eaten freshly peeled, in salads, cooked (boiled, fried,
or deep-fried), or made into a juice or sauce [232,233]. Its fruit can be squeezed and used to
produce juices, jams, candies, beverages, ice creams, and teas [234–236], and has also been
added to rice field bean flour to produce an innovative gluten-free pasta [237]. Its peel has
been utilized as a substitute for vitamin E, as an antioxidant in margarine preservation [238].
Its seed can be used to make oil [239]. Freeze-dried pulp can be added to rice or corn flour,
resulting in a puffed flavanol-rich snack [240]. Its cladodes, pulp, or seeds, or whole plant,
can be made into flour, which can partly substitute wheat or corn flour in doughs, bread,
cookies, snacks, or desserts [18,241,242]. Opuntia ficus-indica-related products on the market
have been listed in Table 3.

During the processing of Opuntia ficus-indica products, the processing technology used
preserves the fruit’s nutritional and sensory characteristics, and increases the content of
IGs. It was reported that the extrusion or the preparation of concentrated juice pretreated
with a pulsed electric field of Opuntia ficus-indica allowed for an increase in isorhamnetin
glycoside content, especially isorhamnetin-3-O-rutinoside (24) [243,244].
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Table 3. Selected examples of marketed Opuntia ficus-indica products.

Product Type Ingredients Brand Country

Tender nopalitos Cladode La Costena Mexico

Sauce Cladode, fruit Marie Sharp’s, Navajo Mike’s Belize, United States

Beer Whole plant Michelob Ultra United States

Juice Fruit Dynamic Health, Maxx Herb United States

Drink Cladode Yunseonae Cactus, San Pellegrino Korea, Italian

Cocktail syrup Fruit The Prickly Pear Pantry United States

Water Fruit, whole plant Pricklee, True Nopal United States

Tea Fruit Snapple United States

Tea bags Cladode and fruit, fruit Only Natural, Loyd United States, Poland

Sugar Cladode, fruit HealthForce SuperFoods, Arizona Gifts United States

Capsules Cladode Swanson, Solaray, Natural Home Cures,
Tadin, Carlyle United States

Tablets Whole plant Planetary Herbals United States

Pills Whole plant Flyby United States

Meal Seed Nuestra NS Salud United States

Powder Cladode BareOrganics United States

Liquid supplements Fruit Nochtli SuperiorFruit United States

Drops Whole plant Natural Home Cures United States

Campanelle pasta Cladode Merkin Vineyards United States

7.2. Food and Functional Food Products of Hippophae rhamnoides

Hippophae rhamnoides possesses abundant bioactive compounds that can be utilized in
the preparation of functional food products [19]. The berries, seeds, leaves, and even bark
can be processed into supplemental products that gave the body all-natural assistance for
many different functions. Hippophae rhamnoides leaves have gradually begun to be used
in the food industry for tea processing [245]. A wide variety of products—jams, jellies,
juices, powder, and seed oils—can be formulated from Hippophae rhamnoides berries [76].
Over the years, Hippophae rhamnoides products have increased in popularity (Table 4) [246].
Hippophae rhamnoides product consumption as part of the regular diet is common in Asia,
the United States, and some European countries [247].

Table 4. Selected examples of marketed Hippophae rhamnoides products.

Product Ingredients Brand Country

Juice Flesh, juice, skin, pulp, seed oil Genesis Today, Dynamic Health,
Tongrentang, Vitba

United States, United States,
China, Russia

Oil Seed, berry SeabuckWonders, SIBU,
PipingRock, Swanson

United States, United States,
United States, United States

Pure Berry SIBU United States

Powder Berry LOOV Estonia

Tea Leave, berry OBH, Far East echipam, Apotheke,
Xiuzheng, Wanmei

Lithuania, Korea, Germany,
China, China

Capsules Seed, berry Terezia Czech Republic
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It was found that isorhamnetin derivatives were the most important flavonoids in
Hippophae rhamnoides fruit juice [248]. The treatment of by-products in juice production
via solvent-free microwave hydrogenation diffusion and gravity technology obtained
more flavonoids, such as isorhamnetin, isorhamnetin 3-O-glucoside (4), isorhamnetin
3-O-rutinoside (24), than conventional solvent extraction [249].

8. Conclusions and Prospects

IGs are bioactive flavonoids found in various plants, such as Opuntia ficus-indica,
Hippophae rhamnoides, and Ginkgo biloba. Routine and innovative assay methods, such
as IR, TLC, NMR, UV, MS, HPLC, UPLC, and HSCCC, have been widely used for the
characterization and quantification of IGs. Numerous lines of findings have elucidated
the pharmacological activities of IGs. These studies have focused on multiple properties
of IGs, such as their antioxidant, anti-inflammatory, or anticancer capacities. In recent
years, IGs have attracted more attention due to their health-promoting effects on diabetes,
obesity, liver injury, and thrombosis. Furthermore, the sugar residues of IGs make them
more bioaccessible than aglycones. Meanwhile, IGs maintain higher plasma concentrations
and longer average residence time in the blood than aglycons. This indicates that IGs are
potent phytonutrients with potential health-promoting effects.

Growing evidence based on observational and clinical studies suggests that a plant-
based diet based on fruits, vegetables, and whole grains has a significant effect on pre-
venting various chronic diseases, including cancer, diabetes, and obesity [5]. IG traces
have been identified in Hippophae rhamnoides, Opuntia ficus-indica, Vaccinium corymbosum,
Vaccinium myrtillus, Brassica juncea, rice, onions, Ginkgo biloba, pollen Typhae, Microctis
folium, Sambucus nigra, and Calendula officinalis, among their dietary and medicinal com-
ponents [8–10]. People are more comfortable consuming phytochemicals and nutrients
in their daily diets, such as fruit, vegetable juice, and tea [250]. They make vegetables
and fruits into salads, blend them in juices, and process them into by-products. Hippophae
rhamnoides could be served in pure juices, wine, and health supplements [251]. Meanwhile,
Opuntia ficus-indica is used in many forms, including in food, feed, health, and nutrition,
and is also used in formulated products, including teas, jams, and juices [252]. Additionally,
IGs could be ingested from these plants. The extensive studies herein provide a sufficiently
solid basis to discuss the health claims and health-promoting biological activities of IGs in
humans. However, the clinical pharmacological effects of Igs still require further study so
that their protective effects can be fully exploited in medical or pharmaceutical settings.
The pharmacological mechanism of IGs also needs to be further elucidated to provide a
material basis for their clinical investigation and application.
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Abbreviations

5-HMF 5-hydroxymethylfurfural
ABTS 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate)
ADH alcohol dehydrogenase
AGEs advanced glycation end products
ALDH aldehyde dehydrogenase
ALT alanine aminotransferase
Ara L-arabinose
AST aspartate aminotransferase
ATM ataxia telangiectasia mutated gene
ATR ATM and Rad3-related gene
BB bee read
CCl4 carbon tetrachloride
Chk1 checkpoint kinase1
Chk2 checkpoint kinase2
CAA cellular antioxidant activity assay
COX-2 cyclooxygenase-2
CUPRAC CUPric reducing antioxidant capacity
DAD diode array detection
DPPH 2,2-diphenyl-1-picrylhydrazil
DPP-IV dipeptidyl peptidase-IV
DW dry weight
ERK extracellular regulated kinases
ESI electrospray ionization
FRAP ferric reducing antioxidant power
Gal D-galactose
Glc D-glucose
Glccur D-glucuronic
HFD high-fat diet
HHP high hydrostatic pressure
HMGB1 high-mobility-group protein 1
HO-1 heme oxygenase-1
HPLC high-performance liquid chromatography
HSCCC high-speed counter-current chromatography
HSCs hepatic stellate cells
IGs isorhamnetin glycosides
IL-6 interleukin-6
IL-1β interleukin-1β
iNOS inducible nitric oxide synthase
IR infrared spectroscopy
JNK c-Jun N-terminal kinase
LPS lipopolysaccharide
MAPK mitogen-activated protein kinase
MDA malondialdehyde
MEOS microsomal ethanol oxidizing system
MS mass spectrometry
NF-κB nuclear factor kappa-B
NMR nuclear magnetic resonance
Nrf2 nuclear factor E2-related factor 2
OFI-E opuntia ficus-indica extract
ONOO(-) peroxynitrite
ORAC oxygen radical absorbance capacity
PAI-1 plasminogen activator inhibitor type 1
PBMC human peripheral blood mononuclear cells
PSC peroxyl radical-scavenging capacity
PTP1B protein tyrosine phosphatase 1B
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Rha L-rhamnose
ROS reactive oxygen species
Xyl D-xylose
TGF-β transforming growth factor-β
TLC thin-layer chromatography
TNF-α tumor necrosis factor
tPA tissue-type plasminogen activator
UPLC ultra-performance liquid chromatography
UV ultraviolet radiation
α-SMA alpha-smooth muscle actin
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