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Abstract: The ability to preserve cognitive function and protect brain structure from the effects of the
aging process and neurodegenerative disease is the goal of non-pharmacologic, lifestyle interventions
focused on brain health. This review examines, in turn, current diet and exercise intervention trends
and the collective progress made toward understanding their impact on cognition and brain health.
The diets covered in this review include the Mediterranean diet (MeDi), Dietary Approaches to Stop
Hypertension (DASH), Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND),
ketogenic diet, intermittent fasting, and weight loss management. The exercise approaches covered
in this review include endurance, resistance, combined exercise programs, yoga, tai chi, and high-
intensity interval training. Although valuable evidence is building concerning how diet and exercise
influence cognitive performance and brain structure, many of the open questions in the field are
concerned with why we see these effects. Therefore, more strategically designed intervention studies
are needed to reveal the likely multiple mechanisms of action in humans.
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1. Introduction

Cognitive decline is one of the greatest threats to an individual’s independence and
quality of life for those 65 years and older [1]. With a large segment of the US population
entering this life stage [2], we must use cutting-edge, interdisciplinary research approaches
to investigate what factors influence the trajectory of healthy cognitive and brain aging.
The literature has identified several critical modifiers of brain and cognitive aging [3]. In
addition, the American Heart Association’s “Primary Care Agenda for Brain Health” is
based on modifiable risk factors known to affect brain health throughout the lifespan [4].
These modifiable risk factors include aspects of lifestyle such as diet and exercise, both
of which have been identified as promising prevention-related interventions [4]. While
the focus of prior research on dietary and exercise interventions has traditionally centered
on overall health and wellness or cardiovascular health [5-7], increasingly, scientists have
sought to apply these interventions to improve brain health. Due to the rapidly evolving
research in these areas, the focus of this narrative review is to provide an overview of what
is known about the impact of diet and exercise on cognition and brain health since the
last review of its kind [8,9]. It focuses on their impact as modifiers of cognition and brain
aging. A brief review of age-related changes in cognition and brain structure is provided
first, followed by a survey of dietary and exercise interventions for impacting cognition
and brain structure in older adults.
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2. Age-Related Changes in Cognition and the Brain
2.1. Age-Related Changes in Cognition

Decades of behavioral research have shown that there is significant variance in the
cognitive abilities of older adults. Moreover, cognitive aging is typically accompanied
by decreased performance within specific cognitive domains and broader cognitive abili-
ties [10,11].

A widely observed age-related change in cognition is reduced processing speed. This
manifests from either the inability to access information necessary for problem-solving
or simply from an increase in the amount of time needed for task-relevant information
processing [12].

Core facets of memory are also affected by the aging process, albeit differently. Take,
for example, the two types of conscious, long-term memory, episodic and semantic memory.
Episodic memory refers to recalling past experiences (e.g., a recent European trip). In
contrast, semantic memory captures general knowledge about the world (e.g., the meaning
of “nutrition”). As we reach adulthood, semantic memory performance remains relatively
stable compared to episodic memory, which becomes less reliable [13-15]. Working memory
actively maintains information in short-term memory and enables goal-directed thought
and decision-making [15]. However, working memory capacity in older adulthood is
known to significantly decline [16]. In addition, working memory enables performance
on complex, high-level cognitive tasks [17], and therefore a corresponding reduction in
executive functions is also evident in advanced age. Executive functions are higher-level
cognitive tasks such as problem-solving and decision-making and measure facets of cogni-
tive control and inhibition [18,19].

In addition to domain-specific changes in cognitive aging, broader facets of cognition
are also known to be affected. For example, cognitive abilities that fall under crystallized
intelligence (problem-solving in the context of prior knowledge and experience) tend to
increase into late adulthood. In contrast, those that fall under fluid intelligence (problem-
solving in the context of novel situations) tend to be highly susceptible to aging, peaking in
the 20s and 30s and then steadily declining afterward [20,21]. One reason these changes in
general and specific facets of cognition occur in late life is due to age-related structural and
physiological changes in the brain. The following sections discuss these changes and their
connection to the abovementioned cognitive changes.

2.2. Age-Related Changes in the Brain

The aging process has a profound effect on the brain [13,22-24]. The following sec-
tions will discuss age-related changes to brain structure and the underlying changes in
physiology that lead to those structural changes.

Brain Structure. The aging process differentially impacts brain regions and networks
across the cortex. Structural changes in the brain associated with aging include reduced gray
matter volume and cortical thickness. The primary regions affected are the prefrontal cortex,
hippocampus, medial temporal lobe, and association areas within the parietal lobes [13,22].
In addition, age-related decreases in the integrity of white matter microstructure are evident
in anterior cortices and progressing to posterior regions (as measured by decreasing fiber
coherence and organization [25].

Gray matter volume is an approximate measure of neuronal and glial cell bodies
and can be measured in vivo using structural magnetic resonance imaging (MRI). In older
adulthood, gray matter volume and cortical thickness are known to shrink within multiple
brain regions, including the prefrontal cortex, association areas of the parietal cortex, and
subcortical regions of the medial temporal lobe (i.e., the hippocampus and entorhinal
cortex). Research consistently finds that older adults experiencing atrophy in these age-
sensitive brain regions also exhibit reduced cognitive performance on tasks of processing
speed, memory, and executive function [26-29]. For example, age-related reduction of
hippocampal volume, resulting from a combination of neuronal cell loss and a decrease
in neurogenesis, is associated with decreased cognitive performance on memory, spatial
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learning, and emotional regulation tasks [30]. Additionally, studies reporting a reduction
in the prefrontal cortex (PFC) volume also observe declines in performance on tests of
executive function [19].

White matter (WM) fibers and tracts are the myelinated axons that physically connect
local and distant regions of the brain, thereby facilitating both local and global information
processing. In older adulthood, the integrity of the white matter microstructure begins to
deteriorate in a non-uniform pattern, with anterior regions changing earlier in the aging
process and posterior regions changing much later in the aging process [25]. The integrity
of these white matter tracts is often quantified by the existence and severity of white
matter hyperintensities (WMH) lesions. WMHs can be identified by structural MRI or
with summary measures of fractional anisotropy or diffusivity from magnetic resonance
diffusion tensor imaging (DTI).

White matter hyperintensities are understood to be a sign of vascular damage in the
brain, representing the lesion of brain tissue. They increase in prevalence with age and are,
therefore, more prevalent in older adults than younger adults. Although there is a heritable
aspect to developing WMHs, they are also reliably associated with multiple metabolic and
cardiovascular risk factors. In addition, WMHs are related to structural and functional
brain changes such as reduced frontal lobe metabolism and worsening executive function
scores [31].

Diffusion tensor imaging (DTI) is a neuroimaging technique that examines the struc-
tural integrity of white matter tracts throughout the brain. Tract integrity can be measured
by assessing the physical properties of fiber organization and water molecule movement
along primary, secondary, and tertiary diffusion axes [32]. Fractional anisotropy (FA) mea-
sures fiber coherence and is calculated as a ratio of diffusion in the primary orientation
compared to other orientations. A region with a high preference for a particular orientation
will have a high FA value, indicating highly organized fibers, a sign of intact white matter
tracts [32]. FA decreases in older adulthood and provides evidence for decreased fiber
integrity in late life [33]. Axial diffusivity measures diffusion along the primary orientation,
radial diffusivity measures diffusion along the secondary and tertiary orientations, and
mean diffusivity is the mean diffusion along all three orientations. Diffusivity increases
with age, indicating decreased fiber organization and therefore decreased tract integrity [25].
DTI studies have shown that increases in diffusivity (a measure of disordered fiber orienta-
tion) and reduced fractional anisotropy (reduced microstructure integrity), mostly in frontal
regions and were linked to declines in executive function [34] and fluid intelligence [35].

Additionally, the neurobiology of aging literature demonstrates that other neuronal
circuits vulnerable to the effects of aging are located in the hippocampus and neocortex.
The neurons in these circuits tend to be pyramidal and have connections to the prefrontal,
temporal, and parietal areas [36]. Dendritic spines of pyramidal neurons have also been
found to be especially affected by age [37]. The vulnerability seems to be the loss of
synapses and synaptic plasticity in these regions. Synaptic plasticity is the bedrock of
learning and memory, making it especially important for higher-level cognitive functions
in humans.

The structural brain changes described here support the literature on cognitive aging.
As mentioned above, gray matter atrophy is associated with decreased memory perfor-
mance, white matter hyperintensities have been associated with reduced executive function
and poor white matter integrity is associated with disrupted network connectivity, leading
to slower processing speed and reduced executive control consistently observed in older
adults [25,38]. It is important to note that these age-related structural changes do not occur
in isolation but are often exacerbated by genetic risk factors, environmental risk factors,
and disease processes such as cardiovascular disease [39].

Brain Physiology. Along with the regional age-related structural gray and white mat-
ter changes in the brain, there are also age-related physiological changes with a more global
effect across the brain. The primary physiological changes addressed in the neurobiology
of aging literature include energy metabolism, calcium homeostasis, immune function,
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and growth factors. These global brain changes not only impact the trajectory of brain
volume and white matter integrity throughout the aging process but also hold deleterious
consequences for cognitive performance [40]. Each of these neurobiological mechanisms is
described in turn below.

One important age-related change in brain physiology is in energy metabolism. With
normal aging, mitochondria become dysfunctional and glucose metabolism is altered. Iron
plays a lead role in energy metabolism due to its involvement in the electron transport
chain, which produces ATP in mitochondria. Complex-bound iron is safe in the mitochon-
dria, but the aging process makes this binding process inefficient, leaving unbound iron
in the mitochondria. This leads to mitochondrial dysfunction (reduced energy output)
that also produces damaging reactive oxygen species/free radicals that damage neural
cell membranes. Reduced energy sources also inhibit cellular repair mechanisms and
eventually cause loss of neuropil and myelin [40], leading to atrophy in the periphery of
the brain vasculature and regions such as the dorsolateral prefrontal and inferior parietal
cortices [24]. These structural changes result in reduced information processing capacity of
brain networks, impairing cognitive processes, with the most complex, least automated
processes being more susceptible to this system-wide noise [40].

Calcium homeostasis is another physiological process impacted by aging. Calcium’s
movement through plasma membranes, intercellular concentrations, and its use as metabolic
buffers and sensors are all crucial to neuronal function. Therefore, it is tightly regu-
lated by neurons. As the aging process can affect these mechanisms, the consequences
are widespread, disrupting neurotransmitter release, neuronal excitability, synaptic plas-
ticity, gene expression, programmed cell death, and other metabolic processes in the
brain [41]. In addition, these disruptions have implications for cognitive functions such
as learning and memory due to their dependence on molecular mechanisms activated by
calcium signalling.

A crucial explanatory framework for understanding the effects of inflammation on
the aging brain is inflamm-aging, described in the literature as the progressive increase in
systemic inflammation as humans age [42]. As we age, pro-inflammatory proteins increase
while anti-inflammatory proteins decrease [43]. In addition, the aging process results
in higher levels of oxidative stress due to lipid peroxidation [44,45]. Gone unchecked,
inflammation and free radicals can damage neurons and synapses, which profoundly
affect cognitive function [45]. In a longitudinal study of over 1800 healthy older adults,
ten inflammatory proteins were correlated with processing speed, attention, and memory
measures over a 6-year follow-up period [46]. Converging evidence from a second longi-
tudinal study of approximately 1000 older adults found that individuals with low LDL
cholesterol and high levels of inflammation had lower scores for tests of general cognition
and memory [47].

Lastly, older adulthood is associated with changes in growth factors and neurotropic
factors. Brain-derived neurotrophic factor (BDNF) is an essential protein in the brain that
is required for neuronal health, brain development, learning and memory. The aging
process can lead to dysregulation of BDNF signaling, causing atrophy and declines in
cognitive performance [48]. BDNF also has a neuroprotective role, protecting the brain
against oxidative stress [49]. Healthy lifestyle factors such as diet and exercise have also
been associated with increases in BDNF to facilitate their beneficial effects on cognitive
aging [49,50].

Summary. Collectively, age-related changes in cognition, brain structure, and brain
physiology operate as potential targets for lifestyle interventions, especially those focused
on a healthy diet and exercise, aimed at improving age-related cognitive outcomes and
possibly aiding in the prevention or delay of cognitive decline related to Alzheimer’s and
related dementias. The upcoming section describes how nutrition impacts brain health,
supporting cognitive function in older adults.
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3. Effects of Diet on Cognition and Brain Health in Aging

Evidence from the scientific literature is clear that there are key lifestyle factors that
have an essential impact on brain health. For example, the American Heart Association and
the American Academy of Neurology have stated that Life’s Simple 7® Modifiable risk fac-
tors across the life course, first established for cardiovascular health, are just as appropriate
for brain health [4]. Since food is required to sustain life, a healthy diet is a prime modifiable
behavior on which to focus. In addition, a healthy diet can also help an individual with
other lifestyle factors included in Life’s Simple 7® including weight control, lipid control,
blood pressure control, and reduction of diabetes risk [4]. The question then becomes,
what is a healthy diet? To answer this, it is essential first to understand the important role
nutrients play in neuronal function, neurometabolic processes, and, ultimately, cognitive
function. Considerable evidence in nutritional epidemiology demonstrates that essential
amino acids, fatty acids, vitamins, and minerals are critical for the proper function of the
body [51,52]. Amino acids in the diet come primarily from consuming meat, while many of
the vitamins and minerals come from various fruits, vegetables, beans, and nuts [51,52].
The brain relies upon these nutrients to support a variety of functions related to neuronal
health and survival, nerve impulse, synthesis of neurotransmitters, lipid membrane asym-
metry and integrity, synaptic plasticity, and a wide array of metabolic functions related to
energy and homocysteine production [44,53,54]. These processes are critical to brain health
and intimately tied to cognitive function.

This accumulated evidence has resulted in numerous dietary interventions that use
supplementation with individual nutrients or select groups of nutrients to examine their
effect on reversing or stopping cognitive decline once clinical signs appear. Unfortunately,
these studies are either inconclusive or show no therapeutic effect. Examples include
studies examining: Vitamin E [55]; Vitamins & Minerals [56]; Folic Acid with/without
B12 [57]; Vitamin D [58]. However, new evidence from a randomized clinical trial provides
evidence for the role of a multivitamin/mineral supplement in supporting global cognitive
performance in older adults, especially those with a history of cardiovascular disease [59].

3.1. MeDi, DASH, MIND Diets

A growing body of evidence suggests that comprehensive, whole diets are most
effective in delaying or reducing the incidence of cognitive decline and dementia [60]. The
prevailing thought is that studying whole diets or components of diets comes from an
understanding that individuals eat various foods across multiple food groups, and the
nutrients from those foods have synergistic effects above and beyond the effects associated
with individual nutrients or nutrient groups. As an example, the absorption of vitamins
in a dark leafy green salad is improved when eaten with olive oil and vinegar instead of
a fat-free ranch dressing. Here, healthy fats in olive oil are a carrier for the vitamins and
minerals in the leafy greens [54]. This example illustrates the need for a more ecologically
valid approach, where nutrient status is based on more holistic dietary patterns.

Several recent reviews identify multiple observational studies (both cross-sectional
and longitudinal) and intervention trials that provide consistent and converging evidence
for the positive impact of the Mediterranean diet (MeDi), the Dietary Approaches to Stop
Hypertension (DASH) diet, and the Mediterranean-DASH Intervention for Neurodegen-
erative Delay” (MIND) diet on brain health and cognition [60-62]. By far, these dietary
patterns are the most referenced in the literature. Although these diets were developed
for different purposes, their components overlap significantly. Here we describe these
three diets and summarize the literature associated with their impact on cognition and
brain health.

3.1.1. Mediterranean Diet (MeDi)

The MeDi focuses on the traditional dietary patterns of countries near the Mediter-
ranean Sea and emphasizes fruits, vegetables, nuts & seeds, and low-fat dairy [63,64]. The
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diet is generally highly regarded for its contribution to cardiovascular health. In addition,
the MeDi includes recommendations for physical activity and social engagement.

3.1.2. Dietary Approaches to Stop Hypertension (DASH) Diet

The DASH diet was developed to help individuals with hypertension reduce their
sodium intake to improve blood pressure and is focused on increasing fruit, vegetables,
whole grains, and nuts. In addition, the diet suggests poultry and fish for meat intake and
dairy should be low-fat. The diet also encourages salt restriction and limited consumption
of red meat, sweets, and added sugars in drinks [65]. The literature shows that the DASH
diet is also an effective approach to reducing the risk of cardiovascular disease [66].

3.1.3. “Mediterranean-DASH Intervention for Neurodegenerative Delay” (MIND) Diet

Building on the established research of the MeDi and DASH diets, Morris and col-
leagues developed the “Mediterranean-DASH Intervention for Neurodegenerative Delay”
(MIND) diet, a combination of the Mediterranean diet and the Dietary Approaches to
Stop Hypertension (DASH) diet [67]. The MIND diet measures 15 dietary components,
ten healthy components, and five unhealthy components, each scored according to con-
sumption frequency, with higher scores obtained by consuming more healthy and less
unhealthy foods. The healthy components of the MIND diet emphasize the consumption
of vegetables, especially leafy green vegetables. It is also suggested to eat berries (instead
of fruit), nuts, beans, legumes, whole grains, lean meat, and wine. In addition, the MIND
diet emphasizes using olive oil as the primary cooking fat.

3.1.4. Dietary Components shared by MeDi, DASH, and MIND

Vegetables. Dark leafy greens and other vegetables are rich in vitamins A, C, E and
K, folate, carotenoids, fiber, iron, magnesium, potassium, and calcium. Evidence suggests
that these nutrients promote vascular health, and the antioxidants serve a neuroprotective
role [5,68]. This is primarily why they are investigated for their role in cognition [69]. For
example, a study by Morris and colleagues found that a reduction in cognitive decline was
associated with consuming at least one serving per day of green leafy vegetables [68].

Fruits and Berries. The flavonoids in berries have been associated with reduced
cognitive decline [70]. This is attributed to the anti-inflammatory and antioxidant properties
of flavonoids, along with their involvement in neuronal signaling and accumulation in
brain regions that support learning and memory [70,71].

Nuts and Olive Oil. Fatty acids such as omega-3 polyunsaturated fatty acids (PUFAs)
and polyphenols are found in abundance in a variety of nuts and olive oil [70,72]. Dietary
fatty acids are anti-inflammatory agents and support a healthy vascular system [73]. Dietary
polyphenols can also improve cognitive function by supporting neuronal signaling and
acting as antioxidants and anti-inflammatory agents [74]. Together these bioactive nutrients
support cognitive function by protecting brain structure and metabolism.

Whole Grains and Beans. Whole grains and beans are an essential source of complex
carbohydrates, fiber, and vitamin E. While they have not been tied to brain health directly
or indirectly, they play a supporting role in maintaining a healthy weight, gut, and car-
diovascular system [75-77]. At a systemic level, this helps reduce key risk factors often
associated with dementia, such as diabetes, cardiovascular disease, and obesity [75-77].

Dairy. Recent research on dairy consumption and brain health suggests that low-
fat and fermented dairy products may offer beneficial cognitive effects and reduce the
risk of dementia later in life [78]. Low-fat dairy contains protein that supports glucose
regulation and insulin release, bioactive peptides that support metabolic and immune
processes, metabolism-supporting vitamins and minerals like vitamin B12 and calcium,
and probiotics [79]. In a recent randomized control trial, Choi and colleagues examined
the effect of milk consumption on the concentration of glutathione, a brain antioxidant,
in a cohort of older adults with low dairy consumption rates. Compared to the control
group, who maintained low dairy consumption, the intervention group consumed 3 cups
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of 1% milk daily (as suggested by the Dietary Guidelines for Americans). It significantly
increased glutathione at the end of the 3-month trial [80]. Additionally, fermented dairy
products contain bioactive agents such as oleamide and dehydroergosterol, which facilitate
the reduction of microglial activation and neurotoxicity [81].

Lean Meat and Fish. Macro-nutrients such as the proteins and amino acids found
in lean meat and fish have long been studied for their function in cognitive aging due
to their significant contribution to energy metabolism and their function as precursors
for neurotransmitters (e.g., serotonin, dopamine, and norepinephrine) required for mood,
motivation and attention [82,83]. Dietary neurotransmitters such as acetylcholine and
glutamate are found in seafood and are essential for learning and memory [82,83]. Fish
and seafood are also excellent sources of mono- and poly-unsaturated fatty acids [72,73].
Dietary intervention studies have shown that Omega-3 PUFAs increase brain-derived
neurotropic factor (BDNF), which is known to improve synaptic function and support
cognitive mechanisms for memory processing [74,84,85]. Lean meat and fish are also
excellent sources of vitamins B12 and D, essential for the proper functioning of the nervous
system, as evidenced by nervous system dysfunction when a deficiency in either of these
vitamins is present [5].

Red Meat, Fried Foods, Fast-Food, Pastries, and Sweets. The MeDi, DASH, and
MIND diets all suggest the restricted intake of red meat, fried foods, fast foods, pastries
and sweets. Morris calls these “brainless foods” in her 2017 book, where she stresses
the importance of reducing the consumption of red meat, full-fat dairy, fried food, fast
food, pastries, and sweets [86]. Saturated fats are one of the main reasons for limiting the
consumption of red meat and fried foods. Saturated fats are connected to an increased
risk of cardiovascular disease and developing dementia in late life [87]. In mice, saturated
fat consumption is associated with reduced blood-brain barrier integrity and hyperactive
microglia [88]. In addition, red meat and fast food are often cooked using high heat and
therefore leads to increased consumption of advanced glycation end-products (AGEs),
which increase inflammation and promote the proliferation of amyloid beta plaques and
neurofibrillary tangles [72,89-92].

Furthermore, fried foods and fast food typically contain added trans fats and sodium,
magnifying their negative impact on the cardiovascular system [93-95]. Pastries and sweets
are simple carbohydrates that are a hallmark of the Western diet, with overconsumption
linked to insulin sensitivity and obesity [96]. Both chronic conditions are risk factors for
dementia in late life [97].

3.1.5. Effects of the MeDi, DASH, and MIND Diets on Hallmarks of the Aging Brain

When considering the systemic effects of aging on the brain and how individual
nutrients support brain function (see review above), it is reasonable to expect that the
MedDi, DASH, and MIND diets may exert a systemic effect on the brain, associated with
the hallmarks of the aging [98]. These systemic effects include (1) cell membrane and
vascular integrity, (2) inflammation, resolution, and oxidation, and (3) lipid and energy
metabolism. Each of these factors is reviewed in turn below.

Cell Membrane and Vascular Integrity. The Mediterranean diet [99,100] and the
DASH diet [101,102] have both been found to preserve the structural integrity of cellular
membranes and vasculature by supporting cardiovascular and metabolic health in observa-
tional studies. Although the MIND diet has not yet been investigated in this regard, much
like the diets it is derived from, it likely supports healthy cholesterol and triglycerides, low
blood pressure, and reduced coronary artery disease due to its focus on consuming foods
high in whole grains and omega-3 fatty acids [103,104].

Inflammation, Resolution, and Oxidation. The aging process is accompanied by an
increase in pro-inflammatory proteins and a decrease in anti-inflammatory proteins [43].
Inflammation and free radicals can damage neurons and synapses necessary for information
processing across the brain. This loss of neuronal function results in a profound effect on
cognitive function [45].
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Vitamins (like vitamins By, Bg, B1p, D, and folate) and minerals (such as calcium,
magnesium, zinc, and selenium) that act as anti-inflammatory and antioxidant agents
protect and preserve brain structures from damage due to the generation of reactive
oxidative species by mitochondria and lipid peroxidation, and neural insults due to chronic
inflammatory molecules [54,69].

At the same time, the aging process is also associated with a decreased ability to resolve
inflammation, inhibiting the repair and restoration of damaged tissue and clearance of
cellular waste and debris [105]. Resolution of inflammation, which includes the suppression
of pro-inflammatory molecules, decreased permeability of the vasculature, and increased
macrophage clearance of debris, depends on specialized pro-resolving mediators (SPMs)
derived from omega-3 fatty acids. Preclinical studies have identified omega-3 fatty acid
supplementation as a promising intervention. But evidence from randomized clinical trials
has been inconclusive, with supplementation only helping a subset of participants [105,106].

Many cross-sectional studies appeal to nutrition’s anti-inflammatory/antioxidant
benefits to explain why a particular diet or group of nutrients or diet is associated with
better cognition [67,68,107-109]. A recent review highlighted studies that have incorpo-
rated biomarkers of inflammation as an outcome, finding that cross-sectional assessments
consistently supported the association between higher diet scores and lower inflammatory
markers [110]. Although it has yet to be investigated, the MIND diet’s emphasis on foods
high in anti-inflammatory compounds (berries and dark leafy greens) and omega-3 fatty
acids (salmon and olive oil), it is reasonable that high adherence would be associated with
reduced inflammation and oxidation [84].

Lipid and Energy Metabolism. Age-related changes to neurotransmitter function,
energy production, and nutrient utilization can also drastically change the brain, reducing
the efficiency of information transmission across cortical networks [111-113]. Diets that
provide significant omega-3 fatty acids and polyphenols have been shown to increase
levels of BDNF, an essential molecule for brain function due to its role in normal neural
function, moderation of energy homeostasis and metabolism, and its neuroprotective
properties [84]. BDNF preferentially accumulates in the hippocampus and cerebral cortex,
which supports learning and memory by promoting synaptic plasticity [74]. Additionally,
BDNF can protect against amyloid beta (A(3) toxic effects and tau hyperphosphorylation in
Alzheimer’s disease, despite concurrent A(3-mediated suppression of BDNF mRNA [114].
Although it is currently unknown how the DASH and MIND Diet might influence BDNF
levels, a study examining the MeDi found that the diet was not significantly associated
with BDNF levels in the full sample but was significant in a subsample of depressed
individuals [115].

In summary, likely, multiple components of the MeDi, DASH, and MIND diets that
lead to the increased consumption of vitamins, minerals, polyphenols, and omega-3 fatty
acids may have individual and additive effects that target systemic factors associated with
brain aging.

3.1.6. Effects of the MeDi, DASH, and MIND Diets on Cognition in Aging

Global Cognition and Neurodegenerative Disorders. A review by van den Brink
and colleagues found that higher adherence to the MeDi, DASH, and MIND diets was
associated with better cognitive scores [60]. Further, recent reviews show adherence to the
MeDi diet was associated with decreased risk of developing mild cognitive impairment
(MCI), Alzheimer’s Disease (AD), dementia, and conversion from MCI to AD [99,116].
Although not as well studied as the MeDj, there is also evidence to suggest that MIND diet
adherence is associated with a reduced risk of AD and MCI. [117]. Morris and colleagues
examined data from a cohort of 960 older adults. They found that even with a median
MIND score of 9.5 out of 15, individuals in the highest tertile of MIND scores had slower
rates of cognitive decline over ten years than those in the lower tertiles. The authors found
that those with the highest MIND diet scores had a lower prevalence of cardiovascular
conditions, higher physical activity, and higher education levels. Even in models including
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these covariates, the relationship between MIND diet scores and slower cognitive decline
remained [67]. Additionally, the authors examined the same cohort and found that higher
MIND diet scores were associated with a decreased risk of developing AD over ten years.
The estimated effect of the diet was a 53% reduction of risk for individuals in the highest
tertile (mean MIND diet score of 9.6 out of 15) and 35% for the middle tertile (mean MIND
diet score of 7.5 out of 15) [117]. Although there are no intervention studies that manipulate
MIND diet adherence to examine cognitive performance in older adults with or without
cognitive challenges, there is a study currently in progress to address such questions [118].

Domain Specific Cognitive Performance. While the MeDi, DASH, and MIND diets
have been associated with benefits on global cognition, prior research has also investigated
their association with domain-specific cognitive processes in aging. Research supports
that both the MeDi & MIND diets have a positive effect on working memory and verbal
fluency [99,119-121]. The two diets also have a separate effect on other domain-specific
cognitive functions. The MeDi diet has been positively associated with attention [122,123]
and long-term memory [124]. MIND diet adherence has been positively associated with
performance on measures of visuospatial ability [67,125], perceptual speed [67,121], and
executive function [67,123,125,126].

Summary. A large body of evidence suggests that the MeDi and MIND diets are
associated with both general and domain-specific facets of cognitive ability. Overall, the
effects of these diets on global cognition are attributed to a specific focus on the intake of
berries, leafy green vegetables, whole grains, nuts, and olive oil. As described previously,
the flavonoids in berries, extensive vitamins and minerals in leafy greens, and omega-3 fatty
acids in fatty fish and olive oil have well-established anti-inflammatory, antioxidant, and
other neuroprotective properties [5,68,70,71]. On the other hand, the more domain-specific
effects of the MeDi and MIND diet may be attributed to the fact that certain brain regions
are more vulnerable to the effects of aging. Therefore the effects of flavonoids, vitamins,
minerals, and omega-3 fatty acids can exert a local effect in addition to their systemic
effect [60,67,127].

3.2. Effect of Ketogenic Diet and Intermittent Fasting on Cognition & Brain Function

Two other diets examined in the literature in relation to cognition and brain function
include the ketogenic diet (KD) and intermittent fasting (IF). The ketogenic diet pushes
the body’s metabolism into a state of ketosis, where the body switches to using ketones
as a primary energy source instead of glucose. This can be accomplished by decreasing
carbohydrate intake, increasing fat intake, or taking a ketogenic supplement [128]. In a
recent review of 10 randomized control trials, ketogenic diet adherence was associated
with improved general cognition and episodic memory in patients with MCI and AD [129].
Intermittent fasting alternates between a fasting and non-fasting state, with the fasting state
lasting at least 12 h [130]. Recent reviews have also connected intermittent fasting with
improved cognition for healthy adults [131] and those with dementia [132]. The mechanism
for both diets is believed to be improvements at the cellular level, with the KD associated
with ketosis and IF related to caloric restriction. In both cases, the result is neurotransmitter
regulation, synaptic maintenance, and oxidation-reduction, although much of this work
is in animals [133,134]. Although not new diets, both the ketogenic diet and intermittent
fasting are new approaches in the field of nutritional interventions to improving cognition
and brain health in humans, so more intervention work will be required to understand the
advantages and disadvantages of adhering to these diets and who may benefit the most
from adopting them.

3.3. Effect of Weight Management Diets on Cognition & Brain Function

Several studies have noted that improved cognitive functioning is associated with
intentional weight loss. Brinkworth et al. [135] reported enhanced working memory and
processing speed in a sample of overweight and obese individuals who lost weight on either
a low-carbohydrate /high-fat or high-carbohydrate /low-fat diet over 1 yr. Smith et al. [136]
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showed that participants on the DASH diet combined with a behavioral weight manage-
ment program exhibited more significant improvements in executive function, memory,
learning, and psychomotor speed. In addition, DASH diet alone participants showed
better psychomotor speed compared to when with usual diet control. Neurocognitive
improvements appeared to be mediated by increased cardiovascular fitness and weight
loss. Siervo et al. [137] reported weight loss in obese (BMI 30-50) individuals was associ-
ated with improved cognitive performance as assessed by the Trail Making Test. Bariatric
surgery-induced weight loss has also been show to enhance attention, executive function
and memory [138]. Gowey and colleagues [139] found that individuals with obesity who
achieved clinically significant weight loss via a behavioral intervention have average to
above-average executive function. Similarly, individuals who maintained their weight loss
for at least one year, compared to those who regained, performed better on decision-making
tests. Recently, Szabo-Reed et al. found that stronger baseline attention was associated with
completing a 3-mo. weight loss intervention, executive control, and working memory were
related to the weight loss achieved [140].

In addition to diet alone, adding exercise has also been shown to positively affect
cognition. Peven et al. [141] enrolled adults with overweight and obesity into a 12-month be-
havioral weight loss intervention. Participants were assigned to either an energy-restricted
diet alone, an energy-restricted diet plus 150 min of moderate-intensity exercise per week
or an energy-restricted diet plus 250 min of exercise per week. Following the intervention,
weight significantly decreased in all groups. The authors found a significant multivari-
ate effect of group on cognitive changes and a Group x Time interaction only on Iowa
Gambling Task (IGT) reward sensitivity, such that the high exercise group improved their
performance relative to the other two intervention groups. There was also a main effect
of Time, independent of the intervention group, on the IGT net payoff score. Changes
in weight were not associated with other changes in cognitive performance. Overall, the
authors concluded that engaging in a high amount of exercise improved reward sensitivity
above and beyond weight loss alone. This suggests an additional benefit to adding exercise
into behavioral weight loss regimens on executive functioning, even without additional
weight loss benefits.

3.4. Limitations of Available Research

The primary limitation of available research is the lack of evidence via intervention
trials. Most of what is known in the literature concerning the relationship between diet,
cognition, and brain health is due to observational studies, the majority of which are
cross-sectional, with a few longitudinal. Also, most studies focus on cognitive performance
as a primary outcome, whereas few have explored the neural mechanisms underlying
improvements in cognition in an intervention.

3.5. Dietary Intervention Summary

Dietary patterns are an essential factor in cognitive and brain health for aging indi-
viduals. Common targets of all diets addressed include inflammation, oxidation, glucose
metabolism, insulin sensitivity, and adiposity, all factors associated with aging and consid-
ered risk factors for Alzheimer’s disease and related dementias. Table 1 provides a brief
overview of each dietary intervention approach described above.
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Table 1. Summary of dietary interventions that support cognition and brain health in older adults.

Dietary Intervention

Key Characteristics/Focus

Associated Cognitive
Benefits

Associated Brain
Health Benefits

Mediterranean Diet (MeD1i)

Increase intake of vegetables,
fruits, nuts, seeds,
low-fat dairy

Higher general cognition,
decreased risk of developing
dementia, decreased risk of
converting from MCI to AD;
positive association with
working memory, verbal
fluency, attention, and
long-term memory

Cell membrane and vascular
integrity, inflammation,
resolution, and oxidation;
lipid & energy metabolism

Dietary Approaches to Stop
Hypertension (DASH)

Increase intake of vegetables,

fruits, and whole grains, nuts,

low-fat dairy, and reduction of
sodium intake

Higher general cognition

Cell membrane and
vascular integrity

Mediterranean-DASH
Intervention for
Neurodegenerative
Delay(MIND)

Increase intake of leafy greens,
berries, fatty fish, and olive oil

Higher general cognition,
decreased risk of developing
dementia; positive association
with working memory, verbal
fluency, visuospatial ability,
perceptual speed, and
executive function

Cell membrane and vascular
integrity, inflammation,
resolution, and oxidation;
lipid & energy metabolism

Ketogenic Diet

Switching the body’s energy
consumption to ketones
instead of glucose by limiting
intake of sugar and simple
carbohydrates while
increasing protein intake

Higher general cognition;
positive association with
episodic memory

Neurotransmitter regulation,
synaptic maintenance, and
reduction of oxidation in
animal studies

Intermittent Fasting

Keeping the body in a fasted
state for 12 or more hours per
day, aiding in restriction of
caloric intake

Higher general cognition

Neurotransmitter regulation,
synaptic maintenance, and
reduction of oxidation in
animal studies

Weight Management Diets

Reducing caloric intake by
adjusting ratio of
carbohydrates and fats or
adopting a heart healthy diet

Executive function, memory,
learning, psychomotor speed

More research is needed

4. Effects of Exercise on Cognition and Brain Health in Aging

In addition to diet, physical activity and exercise have a biologically plausible and
temporal relationship with a multitude of diseases, including coronary heart disease [142],
atherosclerosis [143], stroke [144], type 2 diabetes [145], some cancers [146], and all-cause
mortality [147,148]. Physical activity is any bodily movement produced by skeletal muscles
that requires energy expenditure. Exercise, on the other hand, is a subset of physical
activity that is planned, structured and repetitive and has the improvement or maintenance
of physical fitness [149]. Regular endurance and resistance exercise training decreases
age-related morbidity and mortality, improves risk factors for chronic disease, and helps
maintain independent functioning [147,148,150].

4.1. Brain Mechanisms Associated with Exercise

Animal research suggests that exercise positively impacts brain health [151-166].
Specifically, exercise stimulates neurogenesis [151], as evidenced by increased counts of
new neurons in adult animals on an exercise regimen. Exercise is also associated with en-
hanced neuronal survival [152], resistance to brain injury [153,154], and increased synaptic
development and plasticity [155]. Exercise promotes vascularization in the brain [156,157],
is associated with increased learning [151,158], mobilizes gene expression profiles pre-
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dicted to benefit brain plasticity [159], and maintains cognitive function [160]. Exercise
in cognitively normal older adults is associated with evidence of lower cerebral amyloid
deposition (as assessed by both brain PET PIB imaging and CSF Af) [162,165,167]. Exercise
may modulate vascular risk factors for dementia (atherosclerosis [143], heart disease [142],
stroke [144], diabetes [168-173]). Studies have specifically shown that exercise decreases
systemic inflammatory markers [174] and increases levels of endogenously-produced,
neuroprotective proteins such as brain-derived neurotrophic factor (BDNF) that support
neuronal growth and survival [175,176]. Exercise also positively affects energy balance and
glucose metabolism via actions on AMP kinase and insulin signaling, processes that have
been suggested to increase A trafficking and clearance [177-179].

4.2. Endurance Exercise and Cognition/Brain Structure

Endurance exercise consists of prolonged physical exertion with energy requirements
supplied primarily by endurance metabolism. Public health recommendations from the
World Health Organization (WHO), Centers for Disease Control (CDC), American College
of Sports Medicine (ACSM), as well as others, recommend that older adults do at least
150 min of moderate-intensity endurance exercise per week (46-63% of maximal oxygen
consumption capacity [VO,max]) as part of a regular exercise regimen to maintain health
and fitness [150,180,181]. Endurance exercise generally consists of walking, jogging, run-
ning, swimming, and cycling, with walking being the most practiced form of endurance
exercise among older adults [182]. Endurance exercise regimens produce beneficial physio-
logic adaptations in older adults, including increases in cardiorespiratory fitness, metabolic
adaptations with benefits to glycemic control and lipids, and reduced body fat [150].

Most studies of the effect of exercise on brain health focus on endurance exercise
or physical activity, reflecting predominantly endurance-type activities. Observational
studies have demonstrated that self-reported physical activity is positively associated with
cognitive differences at baseline or may drive longitudinal gains or slower decline over
time [183-188]. Additionally, MRI studies suggest that exercise, and associated endurance
fitness levels, may attenuate age- and AD-related brain changes. Higher endurance fitness
levels are associated with less age-related brain volume decline [189-191].

Randomized controlled trials have examined the role of endurance exercise on cogni-
tion. Though the results are mixed, the overall evidence suggests that endurance exercise
in healthy, older adults may have a beneficial impact on cognitive performance [192-197],
promotes brain plasticity [193,198], and attenuates hippocampal atrophy while improving
visual attention and memory [193]. A meta-analysis [199] examined 18 endurance interven-
tion studies of varying quality and found a moderate effect for combined exercise programs
across all cognitive outcome measures (effect size = 0.6). Increasing age did not appear to
attenuate these benefits, with evidence that individuals aged 71 to 80 had perhaps greater
benefits than younger age groups.

4.3. Resistance Training and Cognition

Resistance training is an important component of a complete exercise program for
older adults [200]. It uses muscular contraction against resistance to mitigate the effects of
aging on neuromuscular function and functional capacity [201-205]. It can also improve
muscle strength, mass, and output [206]. Older adults retain the ability to benefit from
resistance exercise to a similar extent as younger adults [150]. In addition to endurance
exercise, public health recommendations suggest that older adults perform resistance
training at least twice weekly to maintain function, health, and fitness [207]. Physiologic
benefits include increased muscle mass and power and bone mass and strength [208]. These
benefits of resistance exercise are not consistently observed with endurance exercise and are
critical for maintaining function and combating age-related sarcopenia [209,210]. Bioener-
getic adaptations from resistance training include increasing high-energy phosphate (ATP
and creatine phosphate) availability and increasing mitochondrial density and oxidative
capacity [150].
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There are fewer large, well-designed, randomized controlled trials assessing resistance
training on brain health outcomes, although the available literature has proved promis-
ing [200]. Randomized clinical trials have examined the effects of resistance training on
cognitive function and have found that participation results in improvements in execu-
tive function [211], memory [212], verbal fluency [212], and global cognition [212-214].
However, results have been inconsistent in showing that resistance training can prevent
cognitive decline and AD [215,216]. In a study of 62 older adults randomized to resistance
training or a control group, resistance training (both high and low-intensity groups) was as-
sociated with improved working memory [217]. In another study of 155 older women [218],
one year of resistance training was associated with the benefit of selective attention and
conflict resolution performance compared to those randomized to the control group. Para-
doxically, resistance training was associated with a 0.3-0.4% decline in whole brain volume
compared to controls, though this effect has yet to be replicated. A recent systematic review
showed that resistance training positively affected older adults’ executive cognitive ability
and global cognitive function. It also had a weak but positive impact on memory. There
was no significant improvement in attention. The authors also concluded that tri-weekly
resistance training has a better effect on general cognitive ability than biweekly [219].

4.4. Combined Exercise and Cognition

Despite the widespread recommendation for combined exercise, no studies have
directly compared the effects of aerobic vs. resistance or combined training on cognition.
However, studies have assessed the differential impact of these exercise modalities on body
weight and composition [220-222], insulin resistance [222-226], inflammation [227], and
functional limitations [223-225]. The results of these studies suggest that combining aerobic
and resistance training is optimal for effects on insulin resistance [223,225] and physical
function [225] but does not offer advantages for altering adiposity [228].

Resistance and endurance training elicit physiologic adaptations to cardiovascular,
muscular, bioenergetic, and neuroendocrine systems [217,229,230]. Resistance training
relies preferentially on anaerobic metabolism during the short but intense training bouts.
This improves muscle strength and quality while increasing high energy phosphate (ATP
and creatine phosphate) availability, mitochondrial density, and oxidative capacity [150],
effects that are generally not observed with aerobic exercise. In contrast, aerobic exercise
training increases the capacity of muscle to generate energy through increased myoglobin
content in muscle and increased efficiency of oxygen extraction and carbohydrate oxidation.
Despite some concern that combined aerobic and resistance training will result in an
“interference effect” where the development of strength during the same period might
influence the development of aerobic capacity and vice versa, several studies have found
no evidence of this possible effect [227,230].

The field has not directly assessed whether public health recommendations provide
independent or combined effects on cognition in older adults. Conclusions from prior
work are limited by design. Specifically, there is limited literature comparing resistance
or combined exercise to a non-exercise control [218,231-238]. There is also high variability
in endurance exercise types: walking, circuit training, running [239], swimming/aqua en-
durances [239], etc. [194,215,240]. There is also variability in resistance training parameters,
including modality, weekly sessions, and progression [218,232,234,235,241,242]. Finally,
there is an ongoing trial to test the independent and combined effects of resistance and
endurance training on brain health and physiology in old adults [243].

4.5. Other Forms of Exercise

Yoga. Yoga is a popular complementary health approach and form of physical activity
practiced by adults and older adults. Yoga combines physical postures, rhythmic breathing,
and meditative practice to offer those who do it a unique holistic mind-body experience. A
recent systematic review and meta-analysis evaluated the effect of yoga-related mind-body
therapies on cognitive function in older adults. For example, Bhattacharyya, Andel and
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Small [244] found 12 studies and 11 randomized controlled trials. The studies involved
various yoga practices with a common focus on meditative postural exercises. They
revealed significant beneficial effects on memory (Cohen’s d = 0.38), executive function
(Cohen’s d = 0.40), and attention and processing speed (Cohen’s d = 0.33).

Similarly, Gothe et al. [245] reviewed 11 studies examining the effects of yoga practice
on brain structures, function and cerebral blood flow. The studies demonstrate a positive
effect of yoga practice on the structure and/or function of the hippocampus, amygdala,
prefrontal cortex, cingulate cortex, and brain networks, including the default mode network.
However, there is variability in the neuroimaging findings that partially reflects different
yoga styles and approaches and sample size limitations [246]. Overall, the existing body of
research offers early evidence that behavioral interventions like yoga may hold promise to
mitigate age-related and neurodegenerative declines, as many of the regions identified are
known to demonstrate significant age-related atrophy.

Tai Chi. Tai Chi is another popular complementary health approach and form of phys-
ical activity practiced by adults and older adults. Tai Chi is a traditional Chinese martial
art that includes a series of slow, gentle movements, physical postures, a meditative state
of mind and controlled breathing. Research surrounding this mind-body exercise suggests
it may impact older adults” cognition and brain function. For example, Liu et al. [247]
recently completed a systematic review and meta-analysis to evaluate the impact of Tai
Chi on cognitive function. The authors found Thirty-three randomized controlled trials
and that tai chi could progress global cognition when assessed in middle-aged and elderly
patients suffering from cognitive and executive function impairment. Similarly, a recent lit-
erature review to evaluate the effect of tai chi practice on brain structure and neurobehavior
changes found the increased volume of cortical grey matter, improved neural activity and
homogeneity, and increased neural connectivity in different brain regions, including the
frontal, temporal, and occipital lobes, cerebellum, and thalamus. Furthermore, the longer
one practices tai chi, these brain regions are altered [248].

High-Intensity Interval Training (HIIT). High-intensity interval training (HIIT) has
emerged as a time-efficient strategy to improve health-related fitness compared to tradi-
tional training methods. HIIT is an interval exercise that incorporates several rounds of
alternating exercises at a high intensity (i.e., 80% of heart rate max) followed by a short
period of lower-intensity movements (i.e., recovery). Leahy et al. [249] recently conducted
a review to explore the impact of HIIT training on cognitive function in children and
adolescents. A total of 22 studies were included in the review. Acute studies showed
small to moderate effects for executive function (standardized mean difference [SMD], 0.50,
95% confidence interval [CI], 0.03-0.98; p = 0.038) and affect (SMD, 0.33; 95% CI, 0.05-0.62;
p = 0.020), respectively. Chronic studies also showed a small significant effect on executive
function (SMD, 0.31; 95% CI, 0.15-0.76, p < 0.001), well-being (SMD, 0.22; 95% CI, 0.02-0.41;
p = 0.029), and ill-being (SMD, —0.35; 95% CI, —0.68 to —0.03; p = 0.035). The review
provides preliminary evidence suggesting that participation in HIIT can improve cognitive
function and mental health in children and adolescents. Recent evidence also supports
the contention that HIIT elicits higher fat oxidation in skeletal muscle than other forms of
exercise and is an excellent stimulus to increase maximal oxygen uptake (VO, max). HIIT
also seems to be an excellent stimulus to enhance BDNF (a protein synthesized in neurons
that participates in cognitive processes as measured at the hippocampus) [250]. In addition,
HIIT should be included in stroke rehabilitation for its beneficial effects on neuroplasticity
processes [251]. HIIT has also enhanced cognitive flexibility in older adults [252]. The
findings in older mice suggest HIIT can improve physical function and reduce frailty,
decreasing the risk of disability and loss of independence with age [253,254]. However,
more research on HIIT is needed before strong conclusions can be drawn.

4.6. Limitations of Available Research

Although the literature supporting the influence of exercise on cognition and brain
health appears robust, there are several limitations of this review and the literature itself
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that should be mentioned. First, this is not a systematic review; all the available literature
is not represented. Current public health recommendations state that older adults do at
least 150 min of moderate-intensity endurance exercise, two strength sessions, and some
flexibility exercise per week [150,180,181]. However, the impact of this type of program
and its effect on cognition and brain health has not been evaluated. Ongoing studies hope
to determine its impact [243]. It is also unclear how alternative forms of exercise, such as
yoga, tai chi, or HITT, play into the public health recommendations and how they influence
cognitive function and brain health when combined with more traditional forms of exercise
(i.e., endurance or resistance training).

4.7. Exercise Intervention Summary

Overall, the literature suggests that exercise and physical activity positively affect
cognitive function and brain health. Unfortunately, it is not clear what exercise should
be prescribed to maintain and potentially enhance cognition and brain health with age.
Continued research in this area strives to answer these questions. Table 2 provides a brief
overview of each dietary intervention approach described above.

Table 2. Summary of exercise interventions that support cognition and brain health in older adults.

Exercise Intervention

Associated Brain

Characteristics/Focus

Associated Cognitive
Benefits

Health Benefits

Endurance

Prolonged physical exertion
with energy requirements
supplied primarily by
endurance metabolism

Reduced rate of cognitive
decline, improvement in
global cognition, visual
attention, and memory

Vascularization, synaptic
plasticity, reduced amyloid
burden, reduced risk of
cardiovascular disease,
attenuate atrophy

Resistance training

Use of muscular contraction
against resistance

Global cognition executive
function, memory,
verbal fluency

More research is needed

Combined exercise

Usually, an exercise program
that combines
endurance/aerobic exercise
and resistance exercise

More research is needed

Improved insulin resistance,
reduced inflammation

Physical postures, rhythmic

Memory, executive function,

Improved brain structure

Yoga breathing, and attention, and .
. . . and function
meditative practice processing speed
Form of martial arts that
emphasizes gentle Global cognition Increased gray matter volume
Tai Chi p ! and neural activity, but more

movements, physical postures,
and controlled breathing

executive function

research is needed

High-Intensity Interval
Training (HIIT)

Alternates between
high-intensity bursts of
aerobic exercise, with short
periods of low-intensity
movements for recovery

Cognitive flexibility

Improved neuroplasticity and
increased BDNF production

5. Conclusions

Age-related changes in cognition, brain structure, and physiology are potential targets
for lifestyle interventions. Improving health through diet and exercise may prevent or
delay cognitive decline related to Alzheimer’s and dementia. Dietary patterns are an
essential factor in cognitive and brain health for aging individuals [60]. Promising research
utilizing various dietary approaches, including the MeDi, DASH, MIND, Ketogenic, inter-
mittent fasting, and weight loss diets, is available. Common targets of all diets addressed
include inflammation, oxidation, glucose metabolism, insulin sensitivity, and adiposity,
all factors associated with aging and considered risk factors for Alzheimer’s disease and
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related dementias. In addition to diet, exercise and physical activity also positively affect
cognitive function and brain health. Depending on type and intensity, exercise can target
brain vascularization, neurotransmitter regulation, growth factors, and neurogenesis [255].
Unfortunately, it is not clear what exercise should be prescribed to maintain and poten-
tially enhance cognition and brain health with age. Also, the interaction between dietary
interventions and exercise and their effects on aging, cognition, and other risk factors for
Alzheimer’s disease and related dementias (ADRD) has not been established. Additionally,
it will be essential to consider the impact non-modifiable risk factors for ADRD have on
the effectiveness of these interventions. While this is a common practice for some non-
modifiable risk factors such as genetics (e.g., APOE status) [256], others, such as sex, are
not as widely examined in this context [257].
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