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Abstract: Aging is a cellular state characterized by a permanent cessation of cell division and
evasion of apoptosis. DNA damage, metabolic dysfunction, telomere damage, and mitochondrial
dysfunction are the main factors associated with senescence. Aging increases β-galactosidase activity,
enhances cell spreading, and induces Lamin B1 loss, which further accelerate the aging process. It is
associated with a variety of diseases, such as Alzheimer’s disease, Parkinson’s, type 2 diabetes, and
chronic inflammation. Ginseng is a traditional Chinese medicine with anti-aging effects. The active
components of ginseng, including saponins, polysaccharides, and active peptides, have antioxidant,
anti-apoptotic, neuroprotective, and age-delaying effects. DNA damage is the main factor associated
with aging, and the mechanism through which the active ingredients of ginseng reduce DNA damage
and delay aging has not been comprehensively described. This review focuses on the anti-aging
mechanisms of the active ingredients of ginseng. Furthermore, it broadens the scope of ideas for
further research on natural products and aging.
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1. Introduction

Aging is an inevitable process that affects all individuals. The process is marked by a
gradual decline in mobility and metabolic quality, accompanied by phenotypic changes in
cellular characteristics, including cell growth arrest [1], chromatin remodeling, metabolic
reprogramming, impaired autophagy, and the secretion of pro-inflammatory factors [2–4].
DNA damage, metabolic dysfunction, telomere damage, and mitochondrial dysfunction are
the main causes of aging [5]. DNA damage is a major driver of aging; it induces permanent
cell cycle arrest, and the associated markers accumulate in senescent cells with age [6].

Ginseng (Panax ginseng C. A. Meyer) is a perennial plant and a valuable medicinal
herb that belongs to the Araliaceae family. Its main components include ginsenosides,
polysaccharides, amino acids, volatile oil, and polyacetylene. Historically, ginseng is known
as the “king of herbs” and has been widely used to treat various diseases. For example,
it was used to slow down the aging process through DNA protection achieved by the
reduction in oxidative stress and regulation of intestinal microorganisms [7–11].

This review highlights the active components of ginseng that can delay aging; the
relationship between ginseng, DNA damage, and aging; and the anti-aging mechanism of
the active components.
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2. Aging Process

DNA damage is a major cause of aging, which is triggered by chromosomal telomere
shortening. Therefore, cell cycle arrest is an important mechanism associated with the pro-
gression of aging [6]. Under physiological conditions, DNA is susceptible to attacks from
extracellular forces or intracellular metabolites; these attacks can lead to various forms of
DNA damage, including the formation of an apurinic/apyrimidinic (AP) site; the oxidation,
nitrosylation, and alkylation of DNA bases; single-strand and double-strand breaks; and
other modifications [12]. Responses to DNA damage include DNA damage recognition,
checkpoint activation, cell cycle arrest, and ultimately, DNA repair, apoptosis, or senes-
cence [13]. The main phenotypes observed in senescent cells include increased lysosomal
β-galactosidase activity, enhanced cell spreading, telomere shortening, and loss of laminin
B1 [14]. In addition, senescent cells produce senescence-associated secretory phenotypes
(SASPs) that are mainly cytokines, chemokines, growth factor proteases, and metallopro-
teinases [4]. These factors act in both paracrine and autocrine manners [15] to accelerate
tissue and aging. The process leads to the manifestation of local and systemic patholog-
ical features and the increased incidence of age-related diseases, such as osteoarthritis,
atherosclerosis, type 2 diabetes [16–18], and neurodegenerative diseases [19,20].

As shown in Figure 1, sustained DNA damage activates DNA damage response
pathways, including the ataxia telangiectasia-mutated gene (ATM), Rad3-related gene
(ATR), and p53 [21] pathways. DNA damage triggers the activation of the cell-cycle-
dependent protein kinase inhibitor, p21, which promotes cell cycle arrest and induces
senescence. In addition, DNA damage activates P16INK4a, a cell-cycle-dependent protein
kinase inhibitory protein that inhibits CDK4 binding to cell cycle protein D [2]. This
prevents retinoblastoma (RB) phosphorylation, and the hypophosphorylated state of RB
leads to the inhibition of E2F-dependent gene expression and the blockade of G1/S cell
cycle progression, which causes cell cycle arrest and ultimately induces senescence [4,22].
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In addition, the transfer of free DNA from the nucleus or mitochondria to the cyto-
plasm can promote inflammation and accelerate aging [23,24]. Cyclic guanosine monophosphate–
adenosine monophosphate (GMP-AMP) synthase (cCGAS) recognizes bound DNA in the
cytoplasm and induces a conformational change in the catalytic center of cGAS to convert
guanosine triphosphate (GTP) and adenosine triphosphate (ATP) to GMP-AMP (cGAMP)
(Figure 2) [25]. cGAMP serves as a second messenger, inducing a conformational change
in STING, which is then transferred from the endoplasmic reticulum to the Golgi appa-
ratus. STING recruits and activates TANK-binding kinase 1 (TBK1) and IFN regulatory
factor 3 (IRF3), respectively, through a phosphorylation-dependent mechanism. This trig-
gers the activation of NF-κB and initiates the transcriptional induction of downstream
pro-inflammatory cytokine genes associated with senescence.
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3. Anti-Aging Properties of the Active Components of Ginseng

The active ingredients of ginseng can be categorized into saponins, polysaccharides,
amino acids, volatile oils, polyethylenes, and other substances. Polysaccharides are mainly
amylose glucan and pectin [26,27]. The main amino acids are arginine, glutamic acid, and
aspartic acid [28]. Volatile oils mainly include aldehydes, heterocycles, sesquiterpenes,
fatty acids, fatty acid esters, and alkanes, of which, sesquiterpenes are the most abun-
dant [29]. Polyacetylenes are mainly diacetyl alcohol, triacetyl alcohol, acetic acid, and
linolenic acid [30,31]. In addition, salicylamine, maltose, glucoside, vitamins, enzymes,
and various trace components have been isolated and identified from ginseng [32,33].
The purified compounds and extracts derived from ginseng possess the potential to be
utilized in various manners for the purpose of retarding the aging process, as indicated in
Tables 1 and 2. Ginsenosides can slow down the aging process by regulating the immune
system, mitigating DNA damage through antioxidant and anti-inflammatory mechanisms,
and protecting the nervous system [34–38]. Ginseng volatile oil has been shown to prolong
the life span of experimental animal models, including Drosophila and Caenorhabditis elegans,
owing to its antioxidant and anti-aging effects [39]. Bioactive peptides reduce the content of
senescence markers in NIH/3T3 mouse fibroblasts, significantly inhibit S-phase cell cycle
arrest, promote DNA synthesis, and delay cellular senescence [28].
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Table 1. Effect of the purified compounds from ginseng on aging.

Active Ingredient Biological Effects In Vivo Model In Vitro Model Testing Index Source

Rg1

Mitigation of DNA
damage and

antioxidant and
anti-aging effects

NRF2−/−,
C57BL/6 mice

intraperitoneally
injected with

D-galactose (D-gal)
for 42 days

D-gal induced primary
bone marrow

mesenchymal stem
cells treated for 24 h

β-Galactosidase,
γ-H2AX, p16, p53,

p21, IL-6, IL-1β
[40]

Antioxidant,
anti-apoptotic, free
radical-scavenging,

and anti-inflammatory
effects

C57BL/6
intraperitoneally

injected with D-gal
for 42 days

β-Galactosidase,
MDA, SOD, IL-1β,

IL-6, TNF-α,
p53, p21

[41]

Antioxidant effect and
mitigation of

oxidative stress

C57BL/6
intraperitoneally

injected with D-gal
for 42 days

D-gal stimulation of
primary neural

stem cells

MDA, SOD, GSH-px,
p53, p21, Rb [42]

Inhibition of excessive
activation of the

Wnt/β-linked protein
signaling pathway

C57BL/6 mice
injected with D-gal

for 42 days

ROS, SOD, GSH-px,
MDA, c-Myc,
GSK-3β, p53,

p16, p21

[43]

Antioxidant and
downregulation of

aging-related proteins

Sprague Dawley
rats injected with
D-gal for 42 days

IL-2, IL-6, TNF-α,
GSH, SOD, MDA [44]

Rg3
Downregulation of

AKT and regulation of
NAD/NADH

Human dermal
fibroblasts undergo

continuous passaging
up to 34–36

generations, allowing
them to become
senescent cells

SA-β-gal, ROS,
sirt1/3/6,

NAD/NADH,
p21, p53

[45]

Rb1

Regulation of the
p53-p21-Cdk2

pathway, cell cycle
regulation, and

anti-apoptotic effect

C57BL/6 mice fed
for 10 months

p53, p21, Cdk2, bax,
NF-κB [46]

Rb2 Induction of
autophagy

Human dermal
fibroblasts undergo
passaging until they

become senescent cells
in 34 to 36 generations

SA-β-gal, p53, p21,
p16, CDK4, p62 [47]

Re

Upregulation of
Nrf2/GPx-

1/ERK/CERB
signaling

Klotho
mutant mice

NOX, ROS, GPx,
Nrf2, ERK, CERB [48]
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Table 2. Effect of the extracts of ginseng on aging.

Active Ingredient Biological Effects In Vivo Model In Vitro Model Testing Index Source

Ginsenosides

Anti-apoptotic and
antioxidant effect and
inhibition of oxidative

DNA damage

Helicobacter pylori
stimulated AGS
human gastric
epithelial cells

(bacteria:cells = 3:1)
for 1 h

ROS, Bax/Bcl-2,
caspase-3, ATM,

Mdm2, ARF
[49]

Total Ginsenoside
Aqueous Extract

Inhibition of
oxidative stress

Caenorhabditis
elegans and worms

ROS, NAD+,
SIRT1, NRF2 [11]

Ginsenoside
aqueous extract

Anti-inflammatory and
antioxidant effects

Mir-155-5p inhibitor,
human umbilical

vein endothelial cells

SA-β-gal, ROS NO,
NF-κB, p53, p21 [50]

Ginseng
rhamnogalacturonic

acid I

Upregulation of DAF-16
and skn-1 activities C. elegans ROS, Nrf2, DAF-16 [51]

Red ginseng extracts

Anti-inflammatory effect
and regulation of

antioxidant
enzyme activity

C57BL/6 20–21
months

NOS, COX, TNF-α,
IL-1β [52]

Ginseng
oligopeptide

Adjustment of the
NAD/SIRT1/PGC-1 α

pathways to improve
mitochondrial function

Embryonic NIH/3T3
fibroblasts treated
with H2O2 for 4 h

γ-H2A.X, ROS,
GSH-Px, SOD,

MDA
[53]

Ginseng volatile oil
Elimination of free

radicals and suppression
of oxidation

C. elegans SOD, MDA [39]

Black ginseng

Inhibition of
p53-p21/p16 activation
and anti-inflammatory

effect

18-month-old
C57BL/6 mice

20 Gy γ

radiation-induced
senescence of

primary mouse
embryonic

fibroblasts and 30
passages of

HEK293 cells

SA-β-percentage
of gal-positive

cells, p53
[54]

Red ginseng Inhibition of the
Akt pathway

36-day-old female
Drosophila

melanogaster

Raf1, ERK, p-ERK,
AKT, p-AKT [55]

Korean ginseng
Regulation of PPAR

signaling and
antioxidant effect

Dec2−/− mice
HEI-OC1 cells
treated with

neomycin for 24 h

Dec1, Dec2, Dec25,
Il1β, Fabp2 [56]

4. Anti-Aging Mechanism of Ginseng
4.1. Active Ingredients of Ginseng Delay Aging by Reducing Endogenous Oxidative DNA Damage

DNA damage is mainly divided into two types: spontaneous endogenous damage
caused by intrinsic factors within the organism (such as reactive oxygen species (ROS)
and cellular metabolic byproducts) and exogenous damage caused by the external envi-
ronment (such as ionizing radiation and chemicals) [57,58]. Intracellular ROS is the most
common factor associated with endogenous damage. The mitochondrial respiratory chain
is one of the main sources of ROS in cells. Intracellular mitochondrial dysfunction or endo-
plasmic reticulum stress can lead to ROS production [59]. ROS oxidize nucleoside bases,
attack the double bonds of DNA molecules, and induce single- or double-stranded DNA
breaks [60,61]. Excessive ROS production leads to intracellular oxidative/antioxidative
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dysregulation that causes oxidative stress and further DNA damage [62]. Therefore, a
reduction in the excessive production of ROS can achieve a balance between intracellular
oxidation and antioxidation and ultimately alleviate oxidative stress, which is an impor-
tant strategy for delayed aging. The active components of ginseng, Rg1, Rg3, and Re,
increase the expression of antioxidant enzymes by regulating the dissociation of Kaep1
and Nrf2 proteins in the Keap1/Nrf2/ARE pathway, inhibiting the expression of mam-
malian target of rapamycin (mTOR) proteins in the Akt-mTOR pathway, and activating the
Wnt/β-linked protein signaling pathway. These reduce ROS production [8,36,38], improve
oxidation/antioxidation balance, mitigate endogenous DNA damage, and ultimately slow
down aging (Figure 3).
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PI3K/Akt/Nrf2 signaling plays a central role in aging-related diseases [63]. Nrf2 is
a key redox-sensitive transcription factor that regulates antioxidant defense in various
cells by protecting against endogenous and exogenous oxidative stress [64], increasing
the activity of antioxidant enzymes, and maintaining normal mitochondrial function and
structure [65]. Kelch-1ike ECH-associated protein l (Keap1) is an oxidative stress sensor
that normally binds to Nrf2 in the cytoplasm to form a complex [66]. Nrf2 phosphorylation
promotes the dissociation of Nrf2 from Keap1 in response to oxidative stress within the
organism (Figure 3). Nrf2 translocates to the nucleus and binds to the au-rich element to
promote the expression of various downstream antioxidant enzymes, such as glutathione
S-transferase, glutathione, and superoxide dismutase, to exert antioxidant capacity and
ultimately maintain the oxidative/antioxidant balance and reduce DNA damage [67]. Gin-
senoside Rg1 promotes the expression of antioxidant enzymes by activating the PI3K/Akt
pathway and phosphorylating Nrf2 [40]. Forkhead box protein O transcription factor 3
(FoxO3) is a longevity gene [68]. Klotho, one of the first anti-aging genes to be identified,
increases FoxO3 activity and suppresses ROS-related oxidative stress by inhibiting the ac-
tivities of phosphatidylinositol 3 kinase (PI3K) and serine-threonine kinase Akt (AKT) [69].
Ginseng and Klotho share the same effect. Ginseng enhances the activity of FoxO3a by
inhibiting PI3K and AKT, which results in the reduction in mitochondrial damage, the
maintenance of mitochondrial morphology, the reduction in ROS production, and the
regulation of aging-related traits [70].

In addition, mTOR is a key serine-threonine protein kinase located downstream of
the PI3K/Akt signaling pathway; mTOR overactivation leads to increased ROS produc-
tion and increases the likelihood of endogenous oxidative damage [71]. Ginseng and
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ginsenoside 20(S)Rg3 can inhibit PI3K/Akt to downregulate mTOR expression, reduce ROS
production, and mitigate oxidative stress-induced aging [71,72]. Panax ginseng saponins
protect chondrocytes from senescence and apoptosis by downregulating PI3K/Akt/mTOR
phosphorylation, preventing a decline in mitochondrial membrane potential, regulating
mitochondrial permeability to maintain normal mitochondrial morphology, and reducing
ROS production [73].

The activation of the classical Wnt/β-linked protein signaling pathway reduces ROS
production [74]. The Wnt/β-catenin signaling pathway is mainly composed of β-catenin,
glycogen synthase kinase-3 (GSK-3), casein kinase 1 (CK1), APC, Axin, and the β-catenin
complex (Figure 3). Under normal conditions, β-catenin is phosphorylated by GSK-3β
and CK1, and the phosphorylated β-catenin is targeted for ubiquitination and degradation.
Oxidative stress results in the inactivation of GSK-3β through phosphorylation; conse-
quently, β-catenin is transferred to the nucleus, facilitating the progression of transcription.
Ginsenoside Rg1 promoted β-catenin degradation, inhibited β-catenin expression, reduced
oxidative stress, and alleviated age-related neurological disorders in mice by increasing
GSK-3β phosphorylation [75,76].

4.2. Ginseng Active Ingredients Delay Aging by Reducing Exogenous Oxidative DNA Damage

Exogenous DNA damage is mainly triggered by ionizing radiation (IR), cosmic radia-
tion, ultraviolet (UV) radiation, and chemicals in the external environment [77,78]. Radi-
ation acts in a direct way by applying the released energy to biological macromolecules,
causing DNA breaks [79]. Indirect molecule stimulation in substances leads to high free
radical and ROS production, damaging biomolecules, causing oxidative DNA damage,
dysregulating cellular signaling pathways, and inducing aging [78]. The skin is the largest
organ of the body and a common site for exogenous injury. Matrix metalloproteinases
(MMPs) remodel the extracellular matrix and can degrade collagen [80]. UV exposure
leads to MMP-1 upregulation, which destroys collagen fibers, allowing them to be fur-
ther degraded by other members of the MMP family, leading to skin aging [81–83]. The
active ingredients of ginseng mainly downregulate MMP via signaling pathways such
as MAPK/ERK/p38/JNK, MITF, and P53 to initiate anti-photo-aging, anti-wrinkle, and
anti-melanin production to slow exogenous damage-induced aging caused by exogenous
damages such as UV radiation [84–86].

The MAPK signaling pathway, which includes the MAPK kinase kinase (MKKK),
MAPK kinase (MKK), and MAPK components, responds to both extracellular and intracel-
lular signals to influence the cell fate [87]. AP-1 is an intracellular transcriptional activator
that regulates MMP expression and catalyzes dermal collagen degradation. When UVB
stimulates cells to produce large amounts of ROS, ginseng protein (GP) and ginseng calyx
ethanol extract (Pg-C-EE) can inhibit the ERK, p38, and JNK expression; block AP-1 and
CRBE transcription; reduce MMPS production; and slow skin aging (Figure 4) [88,89]. Fur-
thermore, C-Mx, an active ingredient derivative of ginsenoside, also demonstrates a certain
anti-aging ability. In addition to inhibiting ERK, p38 JNK, and AP-1 expression, C-Mx
also promotes procollagen synthesis by regulating the TGF-β/Smad pathway, maintains
the cellular oxidative/antioxidative balance, reduces exogenous oxidative damage, and
alleviates skin aging [90].



Nutrients 2023, 15, 3286 8 of 19

Nutrients 2023, 15, x FOR PEER REVIEW 8 of 20 
 

 

UVB stimulates cells to produce large amounts of ROS, ginseng protein (GP) and ginseng 
calyx ethanol extract (Pg-C-EE) can inhibit the ERK, p38, and JNK expression; block AP-1 
and CRBE transcription; reduce MMPS production; and slow skin aging (Figure 4) [88,89]. 
Furthermore, C-Mx, an active ingredient derivative of ginsenoside, also demonstrates a 
certain anti-aging ability. In addition to inhibiting ERK, p38 JNK, and AP-1 expression, C-
Mx also promotes procollagen synthesis by regulating the TGF-β/Smad pathway, main-
tains the cellular oxidative/antioxidative balance, reduces exogenous oxidative damage, 
and alleviates skin aging [90]. 

When cells feel stimulated by UV radiation from an external source, they generate a 
large amount of melanin so that they absorb UV radiation from the outside world, which 
in the long run will lead to abnormal pigmentation and induce skin aging [91,92]. MITF is 
a basic helix–loop–helix/leucine-zipper transcription factor essential for melanocyte de-
velopment and survival and controls melanocyte proliferation [93]. Ginsenoside Rh3, Rb2, 
and Rg3 (multiple active ingredients) inhibit ERK expression, preventing the transcription 
factor MITF from exercising its function, inhibiting excessive melanin production, pre-
venting age spot formation, and slowing skin aging [94–96]. In addition, when photo-ox-
idation occurs with UVB radiation, MMP upregulation induces superoxide radical gener-
ation, which are converted to ROS, hydrogen peroxide, and other compounds [97]. Rb3, 
an active ginseng ingredient, slows skin photoaging by downregulating Pro-MMP2 and 
Pro-MMP3 expression, increasing GSH levels, and decreasing UVB-induced ROS levels 
to reduce the exogenous DNA oxidative damage [98]. 

In addition to reducing exogenous DNA damage via the MAPK/ERK/p38/JNK and 
MITF pathways, ginsenosides can also slow aging via p53, a multifunctional protein in-
volved in DNA repair, metabolic pathway control, embryo implantation, and the driving 
force of cellular senescence [99]. Koryo Red Ginseng (KRG) extract repairs DNA damage 
via P53 signaling regulation, inhibits radiation-induced apoptosis, and prevents intracel-
lular ROS production in HaCaT cells [100]. Black ginseng (BG) delays senescence induced 
by exogenous factors such as ionizing radiation in primary murine embryonic fibroblasts 
via P53-P21 protein downregulation [54]. 

 
Figure 4. Ginseng active ingredient pathway of reducing exogenous DNA damage. 

4.3. Active Ingredients of Ginseng Slow Down Aging by Regulating DNA Damage Repair 
At least five major DNA repair pathways are associated with DNA damage in organ-

isms: base excision repair (BER), nucleotide excision repair, mismatch repair, homologous 

Figure 4. Ginseng active ingredient pathway of reducing exogenous DNA damage.

When cells feel stimulated by UV radiation from an external source, they generate a
large amount of melanin so that they absorb UV radiation from the outside world, which in
the long run will lead to abnormal pigmentation and induce skin aging [91,92]. MITF is a
basic helix–loop–helix/leucine-zipper transcription factor essential for melanocyte develop-
ment and survival and controls melanocyte proliferation [93]. Ginsenoside Rh3, Rb2, and
Rg3 (multiple active ingredients) inhibit ERK expression, preventing the transcription factor
MITF from exercising its function, inhibiting excessive melanin production, preventing
age spot formation, and slowing skin aging [94–96]. In addition, when photo-oxidation
occurs with UVB radiation, MMP upregulation induces superoxide radical generation,
which are converted to ROS, hydrogen peroxide, and other compounds [97]. Rb3, an active
ginseng ingredient, slows skin photoaging by downregulating Pro-MMP2 and Pro-MMP3
expression, increasing GSH levels, and decreasing UVB-induced ROS levels to reduce the
exogenous DNA oxidative damage [98].

In addition to reducing exogenous DNA damage via the MAPK/ERK/p38/JNK
and MITF pathways, ginsenosides can also slow aging via p53, a multifunctional protein
involved in DNA repair, metabolic pathway control, embryo implantation, and the driving
force of cellular senescence [99]. Koryo Red Ginseng (KRG) extract repairs DNA damage via
P53 signaling regulation, inhibits radiation-induced apoptosis, and prevents intracellular
ROS production in HaCaT cells [100]. Black ginseng (BG) delays senescence induced by
exogenous factors such as ionizing radiation in primary murine embryonic fibroblasts via
P53-P21 protein downregulation [54].

4.3. Active Ingredients of Ginseng Slow Down Aging by Regulating DNA Damage Repair

At least five major DNA repair pathways are associated with DNA damage in or-
ganisms: base excision repair (BER), nucleotide excision repair, mismatch repair, homolo-
gous recombination (HR), and non-homologous end joining (NHEJ) [62]. DNA damage
that has not been accurately repaired can lead to genomic rearrangements and transcrip-
tional dysregulation, contributing to cellular senescence, apoptosis, or uncontrolled divi-
sion [57,101,102]. p53 is involved in DNA repair, metabolic pathway control, and cellular
senescence. Its main function is to induce apoptosis and cell cycle arrest [99]. p21 is a
cyclin-dependent kinase inhibitor that blocks cell cycle progression and is involved in tran-
scription, apoptosis, and DNA repair [103]. When double-strand breaks caused by DNA
damage are not fully repaired, the activation of ATM and ATR triggers the phosphorylation
of p53; the phosphorylated form of p53 then regulates p21-induced cell cycle arrest and
subsequently triggers cellular senescence or apoptosis [104].
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The active ingredients of ginseng can repair DNA damage by upregulating the activity
of DNA glycosylases and sirtuin family members in the DNA damage repair system and
inhibiting the cGAS-STING pathway, thereby slowing down the aging process [105–107].
DNA glycosylase is one of the key enzymes in the BER pathway, mainly composed of
nucleic acid Endonuclease VIII like (NEIL) 1, NEIL2, and NEIL3 proteins [108]. Sirtuins
are multifunctional ribosyltransferases with a conserved NAD+-dependent catalytic core
structural domain. Each family member localizes to a different subcellular compartment
and targets a different substrate to control various biological processes, such as DNA
damage repair, the maintenance of genomic stability, aging, and tumorigenesis [109].

DNA glycosylase recognizes damaged DNA after the body’s DNA is attacked and
generates an AP site (Figure 5) [110]. Poly(ADP-ribose) polymerase (PARP) family protein
factors recognize and bind to AP-nucleic acid endonuclease DNA ligase, facilitating excision
repair [62]. In mice, the knockdown of NEIL1 resulted in severe DNA damage [108,111].
Ginsenoside Rd upregulated the expression of NEIL1 and NEIL3 in rat brain cells to reduce
DNA damage by promoting the repair function of DNA glycosylases [105]. SIRT6 is a
member of the sirtuin family that binds to PARP and repairs damaged DNA by stimulating
DNA glycosylase activity [112]. Ginsenoside RC increases the deacetylase activity of SIRT6
and stimulates BER by activating PARP [113].
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When a DNA double-strand breakage (DSB) occurs, cellular machinery initiates homol-
ogous recombination (HR), NHEJ, and other repair methods. A variety of repair enzymes
are involved in the process of DNA homologous recombination repair. DNA-dependent
protein kinase, catalytic subunit (DNA-PKcs), and CtIP are indispensable repair enzymes
in the DNA break repair process [114,115]. SIRT6 promotes overall DNA repair through
the deacetylation of DNA-PKcs and carboxy-terminal binding protein (CtBP)-interacting
protein (CtIP) [116]. SIRT6 silencing leads to impaired downstream signaling, and this
affects the recruitment of key repair proteins [117]. SIRT6 stimulates DNA repair only in
the presence of the coenzyme nicotinamide adenine dinucleotide (NAD+) in living cells.
Double-strand breaks lead to the activation of PARP1, and excessive PARP1 activation leads
to the depletion of NAD+ substrate [118]. Ginseng active peptides can increase the expres-
sion of SIRT3, SIRT6, and SIRT1 for normal mitochondrial function, increase the content of
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NAD+ for the more efficient repair of sirtuins, and reduce the content of β-galactosidase
(a marker of senescence in cells that delays aging) [45].

In addition, cGAS-STING inhibits DNA damage repair [107]. DNA damage activates
BER and homologous recombination repair (Figure 4) [119,120]. Upon the occurrence of
DNA double-strand breaks, cGAS is dependent on the Y215 tyrosine residue to facilitate
its transfer to the nucleus in a dephosphorylated state, while simultaneously avoiding
disruption of the nuclear membrane in order to reach the site of DNA damage. This process
interferes with the signaling of the homologous recombination pathway, ultimately leading
to the inhibition of precise homologous recombination repair [120]. The deactivation of
glutathione peroxidase 4 (GPX4) increases lipid peroxidation, inhibits the transfer of STING
from the endoplasmic reticulum (ER) to the Golgi apparatus, and reduces the production
of inflammatory factors [77]. Ginsenoside Rd inhibited the activation of the CGAS-STING
pathway by decreasing GPX4 expression, reducing inflammation, and alleviating acute
lung injury to delay aging in mice [78].

4.4. Other Anti-Aging Mechanisms of Ginseng

The active ingredients of ginseng can delay aging through anti-inflammatory mech-
anisms, the promotion of cellular autophagy, and the regulation of intestinal microbes
(Figure 6). Inflammation leads to a decrease in tissue repair and production; this is a
major factor associated with aging [121]. The typical immune transcription factor NF-κB
is activated in an ATM-dependent manner, suggesting that NF-κB is critical for the ex-
pression of pro-inflammatory signaling molecules following DNA damage [122,123]. The
NF-κB signaling pathway accelerates the aging process [124]. Pro-inflammatory factors con-
tribute to the development of chronic inflammation in autocrine and paracrine forms [125].
Chronic inflammation secretes cytokines that maintain inflammation and redox stress,
exacerbate oxidative damage, and induce ROS, hydrogen peroxide, and hydroxyl radical
production, exacerbating DNA damage and accelerating the onset of aging and related
diseases [126,127]. The aqueous extracts and active ingredients of ginseng regulate the
expression of inflammatory factors and delay aging through the NF-κB signaling pathway.
For example, the aqueous extract of Korean red ginseng and ginseng active peptide inhib-
ited the secretion of typical pro-inflammatory factors IL-1β, IL-6, and TNF-α in various
organs of aged mice to delay aging [98–100]. Ginsenoside Rc targeted TANK-binding
kinase 1/interferon regulatory factor-3; inhibited the expression of TNF-α, IL-1, and IFNs;
reduced chronic inflammation; and ultimately delayed aging [128,129]. Autophagy refers
to the lysosomal degradation and recycling of all types of intracellular components; it is a
highly selective cellular clearance pathway associated with the maintenance of cellular and
tissue homeostasis [130–132]. There are three main types of autophagy: macro-autophagy,
micro-autophagy, and chaperone-mediated autophagy [133]. Macro-autophagy involves
the formation of autophagosomes with a double-layered membrane structure that engulfs
intracellular components [134]. Autophagy mainly includes four processes: the induction of
autophagy, the formation of autophagosomes, the transport and fusion of autophagosomes
and lysosomes, and degradation and recovery [135]. Impaired autophagy accelerates cellu-
lar senescence [3], and autophagy activity decreases with age in different organisms [136].
p62 is an autophagic receptor that plays an important role in the autophagy process [121].
The anti-aging effect of Korean red ginseng is mediated by autophagy [137]. Moreover, it
has been reported that, in the model organism, C. elegans, ginseng volatile oil delayed aging
and prolonged life by increasing the expression of autophagy substrate p62 protein [39].
Rg2 maintains mitochondrial function and delays brain aging by promoting the degrada-
tion of p62 [138]. ROS induce the degradation of the extracellular matrix, leading to visible
signs of skin aging. The active ingredients in ginseng berries alleviate skin aging through
autophagy [139,140].
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Ginonin, the active ingredient of ginseng, can delay aging by regulating the LPA
receptor in the G protein-coupled receptor (Figure 6). LPA and LPA1 receptors play crucial
roles in early brain development [141]. The ginseng active ingredient, gintonin, generates
the second messenger, Ca2+, via the LPA receptor to activate the Ca2+-dependent kinase,
receptor, gliotransmitter, and neurotransmitter release, initiating first-order amplification
and inducing further intracellular effects as well as intercellular communication [142]. In
memory dysfunction, an important condition in neurodegenerative diseases, brain aging
affects hippocampal function and induces memory dysfunction. In D-galactose-induced
aged murine brains, hippocampal LPA1 receptors are reduced, and gintonin administration
increases LPA1 receptor expression in the murine hippocampus [143]. In the age-related
neurodegenerative disease, Alzheimer’s disease (AD), gintonin promotes non-amyloid
protein, sAβPPα, release via the LPA1 receptor signaling pathway and Ca2+-dependent
metalloproteinase secretase activation and protein translocation processes [144]. This
ultimately prevents A formation and amyloid plaque accumulation in the brains of aged
AD model animals and delaying brain aging.

In addition, ginseng active ingredients exhibited good anti-tumor properties. Tumor
development is closely related to aging. The ginsenoside active ingredients achieve anti-
tumor effects by inhibiting the growth, proliferation, and viability of cancer cells, inducing
apoptosis, inhibiting cell cycle, and a series of other pathways [145–148]. Rh2 achieves anti-
tumor activity by inhibiting tumor cell migration, upregulating the pro-apoptotic gene Bax,
downregulating the anti-apoptotic gene Bcl-2, and disrupting the HSP90A-CDC37 system
in hepatocellular carcinoma cells [149,150]. In addition, the anti-tumor effects of other active
components of ginseng have been successively demonstrated. Ginseng polysaccharides
achieve anti-tumor effects by altering the gut microbiota and kynurenine/tryptophan ratio,
enhancing anti-programmed cell death 1/programmed cell death ligand 1 (anti-PD-1/PD-
L1), targeting GPX4, and facilitating macrophage and NK cell activation [151–154]. Rg3
inhibits thyroid cancer metastasis by suppressing vascular endothelial growth factor-C
(VEGF-C) protein expression in PTC cells and VEGF-A protein expression in anaplastic
thyroid cancer (ATC) cells [155]. This ultimately reduces melanoma cell proliferation by
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inhibiting ERK and Akt signaling [156]. Osteosarcoma inhibition is achieved by modulating
the Wnt/β-collagen pathway via MMP2, MMP7, and MMP9 downregulation [157].

The active ingredients of ginseng can delay aging by regulating the abundance of
intestinal microflora. The human gastrointestinal tract is occupied by various microbial
communities that are involved in maintaining the health of the host and in several physio-
logical processes. Changes in the composition of gut microbes influence the onset of various
diseases and aging [158,159]. Ginseng exerts powerful anti-aging effects through the mod-
ulation of inflammatory pathways and the microbe–gut–brain axis [72]. Korean ginseng
inhibits the abundance of inflammation-related microbes, including Verrucomicrobiota,
Ruminococcus, and Eubacterium, to delay aging and inhibit the death of dopaminergic
neurons [160]. Fermented ginseng can regulate the intestinal microbiota of C. elegans;
improve the composition and structure of the intestinal flora; increase the relative abun-
dance of Erythrobacter, Flavobacterium, and Microbacterium; and prolong the life span of
C. elegans [161]. Ginsenoside Rh4 reduced the number of Firmicutes and increased the
abundance of Bacteroidetes, which resulted in the inhibition of inflammation [162] and a
delay in the aging process.

5. Discussion

Aging is a permanent process that occurs in all life forms. The anti-aging effect
of ginseng has been documented since ancient times. Extracts, oligopeptides, volatile
oils, or monomers from ginseng are able to alleviate age-related diseases and delay the
aging process [163–166]. Ginsenosides are the most widely studied active ingredients,
and ginsenoside monomers, such as Rg1, Rg3, Rb1, and Rc, have shown strong anti-
aging effects and demonstrated good therapeutic effects against neurodegenerative disease,
diabetes, skin aging, muscle atrophy, and other age-related diseases [167–171]. The active
ingredients of ginseng mainly contribute to aging delay through the following mechanisms:
(1) the increase in the expression of antioxidant enzymes to achieve a balance between
intracellular oxidation and antioxidation, the mitigation of excessive production of ROS,
and the reduction in endogenous DNA damage, which prevent cell cycle arrest and delay
aging; and (2) the regulation of the activities of DNA glycosylase and sirtuins in the process
of DNA damage repair to ensure that the DNA repair pathway can accurately repair DNA
damage caused by various factors associated with aging.

It is noteworthy that most of the studies examined in this review only assessed
longevity, antioxidant enzymes, inflammatory factors, and aging markers in model organ-
isms (such as flies and C. elegans). Moreover, research on the activity of galactosidase is also
limited to the changes in the levels of proteins associated with the related pathways, and
there are few in-depth studies on its role in the molecular mechanism of aging. In addition,
studies on the biological activities of ginseng have continued to face problems related to
the complexity of its active components, and consequently, the molecular mechanisms
underlying the functions of these active components have remained poorly understood. To
address these limitations and identify specific mechanisms of action and targets, network
pharmacology and CRISPR (clustered regularly interspaced short palindromic repeats)
technologies have been used to screen potential drugs from ginseng using knockout mice
and cellular models. These innovative methodologies offer promising avenues to increase
our understanding of the mechanisms of action associated with the anti-aging effect of
ginseng.
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regulatory effects of acetyl-CoA distribution in the healthy and diseased brain. Front. Cell Neurosci. 2018, 12, 169. [CrossRef]

119. Tang, S.; Stokasimov, E.; Cui, Y.; Pellman, D. Breakage of cytoplasmic chromosomes by pathological DNA base excision repair.
Nature 2022, 606, 930–936. [CrossRef]

120. Liu, H.; Zhang, H.; Wu, X.; Ma, D.; Wu, J.; Wang, L.; Jiang, Y.; Fei, Y.; Zhu, C.; Tan, R.; et al. Nuclear cGAS suppresses DNA repair
and promotes tumorigenesis. Nature 2018, 563, 131–136. [CrossRef]

121. Aliper, A.M.; Bozdaganyan, M.E.; Orekhov, P.S.; Zhavoronkov, A.; Osipov, A.N. Replicative and radiation-induced aging: A
comparison of gene expression profiles. Aging 2019, 11, 2378–2387. [CrossRef] [PubMed]

122. Chen, Y.L.; Tang, C.; Zhang, M.Y.; Huang, W.L.; Xu, Y.; Sun, H.Y.; Yang, F.; Song, L.L.; Wang, H.; Mu, L.L.; et al. Blocking
ATM-dependent NF-κB pathway overcomes niche protection and improves chemotherapy response in acute lymphoblastic
leukemia. Leukemia 2019, 33, 2365–2378. [CrossRef]

123. Dunphy, G.; Flannery, S.M.; Almine, J.F.; Connolly, D.J.; Paulus, C.; Jønsson, K.L.; Jakobsen, M.R.; Nevels, M.M.; Bowie, A.G.;
Unterholzner, L. Non-canonical activation of the DNA sensing adaptor STING by ATM and IFI16 mediates NF-κB signaling after
nuclear DNA damage. Mol. Cell 2018, 71, 745–760. [CrossRef] [PubMed]

124. Tian, Y.; Li, H.; Qiu, T.; Dai, J.; Zhang, Y.; Chen, J.; Cai, H. Loss of PTEN induces lung fibrosis via alveolar epithelial cell senescence
depending on NF-κB activation. Aging Cell 2019, 18, e12858. [CrossRef] [PubMed]

125. Uyar, B.; Palmer, D.; Kowald, A.; Murua Escobar, H.; Barrantes, I.; Möller, S.; Akalin, A.; Fuellen, G. Single-cell analyses of aging,
inflammation and senescence. Ageing Res. Rev. 2020, 64, 101156. [CrossRef]

126. Bektas, A.; Schurman, S.H.; Sen, R.; Ferrucci, L. Aging, inflammation and the environment. Exp. Gerontol. 2018, 105, 10–18.
[CrossRef]

127. Pezone, A.; Olivieri, F.; Napoli, M.V.; Procopio, A.; Avvedimento, E.V.; Gabrielli, A. Inflammation and DNA damage: Cause,
effect or both. Nat. Rev. Rheumatol. 2023, 19, 200–211. [CrossRef]

128. Yu, T.; Yang, Y.; Kwak, Y.S.; Song, G.G.; Kim, M.Y.; Rhee, M.H.; Cho, J.Y. Ginsenoside Rc from Panax ginseng exerts anti-
inflammatory activity by targeting TANK-binding kinase 1/interferon regulatory factor-3 and p38/ATF-2. J. Ginseng Res. 2017,
41, 127–133. [CrossRef]

129. Yu, T.; Rhee, M.H.; Lee, J.; Kim, S.H.; Yang, Y.; Kim, H.G.; Kim, Y.; Kim, C.; Kwak, Y.S.; Kim, J.H.; et al. Ginsenoside Rc from
Korean Red ginseng (Panax ginseng C.A. Meyer) Attenuates inflammatory Symptoms of Gastritis, Hepatitis and Arthritis. Am. J.
Chin. Med. 2016, 44, 595–615. [CrossRef]

130. Kaushik, S.; Tasset, I.; Arias, E.; Pampliega, O.; Wong, E.; Martinez-Vicente, M.; Cuervo, A.M. Autophagy and the hallmarks of
aging. Ageing Res. Rev. 2021, 72, 101468. [CrossRef]

131. Kirkin, V. History of the selective autophagy research: How did it begin and where does it stand today? J. Mol. Biol. 2020, 432,
3–27. [CrossRef]

https://doi.org/10.1038/s41467-020-16361-y
https://doi.org/10.15252/embj.2019102718
https://www.ncbi.nlm.nih.gov/pubmed/31544964
https://doi.org/10.1093/nar/gku1356
https://doi.org/10.1681/ASN.2017111218
https://doi.org/10.1101/cshperspect.a012583
https://doi.org/10.1074/jbc.M115.658146
https://www.ncbi.nlm.nih.gov/pubmed/26245904
https://doi.org/10.1126/science.1202723
https://doi.org/10.1021/acs.jafc.2c06146
https://doi.org/10.1038/nrm.2017.48
https://doi.org/10.1101/gad.308254.117
https://www.ncbi.nlm.nih.gov/pubmed/29321179
https://doi.org/10.3324/haematol.2017.176248
https://www.ncbi.nlm.nih.gov/pubmed/29025907
https://doi.org/10.1016/j.celrep.2017.02.082
https://doi.org/10.3389/fncel.2018.00169
https://doi.org/10.1038/s41586-022-04767-1
https://doi.org/10.1038/s41586-018-0629-6
https://doi.org/10.18632/aging.101921
https://www.ncbi.nlm.nih.gov/pubmed/31002655
https://doi.org/10.1038/s41375-019-0458-0
https://doi.org/10.1016/j.molcel.2018.07.034
https://www.ncbi.nlm.nih.gov/pubmed/30193098
https://doi.org/10.1111/acel.12858
https://www.ncbi.nlm.nih.gov/pubmed/30548445
https://doi.org/10.1016/j.arr.2020.101156
https://doi.org/10.1016/j.exger.2017.12.015
https://doi.org/10.1038/s41584-022-00905-1
https://doi.org/10.1016/j.jgr.2016.02.001
https://doi.org/10.1142/S0192415X16500336
https://doi.org/10.1016/j.arr.2021.101468
https://doi.org/10.1016/j.jmb.2019.05.010


Nutrients 2023, 15, 3286 18 of 19

132. Gatica, D.; Lahiri, V.; Klionsky, D.J. Cargo recognition and degradation by selective autophagy. Nat. Cell Biol. 2018, 20, 233–242.
[CrossRef] [PubMed]

133. Eckhart, L.; Tschachler, E.; Gruber, F. Autophagic control of skin aging. Front. Cell Dev. Biol. 2019, 7, 143. [CrossRef] [PubMed]
134. Galluzzi, L.; Green, D.R. Autophagy-independent functions of the autophagy machinery. Cell 2019, 177, 1682–1699. [CrossRef]
135. Li, W.; He, P.; Huang, Y.; Li, Y.F.; Lu, J.; Li, M.; Kurihara, H.; Luo, Z.; Meng, T.; Onishi, M.; et al. Selective autophagy of intracellular

organelles: Recent research advances. Theranostics 2021, 11, 222–256. [CrossRef] [PubMed]
136. Leidal, A.M.; Levine, B.; Debnath, J. Autophagy and the cell biology of age-related disease. Nat. Cell Biol. 2018, 20, 1338–1348.

[CrossRef]
137. Kim, J.K.; Shin, K.K.; Kim, H.; Hong, Y.H.; Choi, W.; Kwak, Y.S.; Han, C.K.; Hyun, S.H.; Cho, J.Y. Korean Red Ginseng exerts

anti-inflammatory and autophagy-promoting activities in aged mice. J. Ginseng Res. 2021, 45, 717–725. [CrossRef] [PubMed]
138. Zhang, J.J.; Chen, K.C.; Zhou, Y.; Wei, H.; Qi, M.H.; Wang, Z.; Zheng, Y.N.; Chen, R.X.; Liu, S.; Li, W. Evaluating the effects of

mitochondrial autophagy flux on ginsenoside Rg2 for delaying D-galactose induced brain aging in mice. Phytomedicine Int. J.
Phytother. Phytopharm. 2022, 104, 154341. [CrossRef]

139. Kim, J.; Cho, S.Y.; Kim, S.H.; Cho, D.; Kim, S.; Park, C.W.; Shimizu, T.; Cho, J.Y.; Seo, D.B.; Shin, S.S. Effects of Korean ginseng
berry on skin antipigmentation and antiaging via FoxO3a activation. J. Ginseng Res. 2017, 41, 277–283. [CrossRef]

140. Choi, W.; Kim, H.S.; Park, S.H.; Kim, D.; Hong, Y.D.; Kim, J.H.; Cho, J.Y. Syringaresinol derived from Panax ginseng berry
attenuates oxidative stress-induced skin aging via autophagy. J. Ginseng Res. 2022, 46, 536–542. [CrossRef]

141. Cho, Y.J.; Choi, S.H.; Lee, R.; Hwang, H.; Rhim, H.; Cho, I.H.; Kim, H.C.; Lee, J.I.; Hwang, S.H.; Nah, S.Y. Ginseng Gintonin
Contains Ligands for GPR40 and GPR55. Molecules 2020, 25, 1102. [CrossRef] [PubMed]

142. Choi, S.H.; Kim, H.J.; Cho, H.J.; Park, S.D.; Lee, N.E.; Hwang, S.H.; Cho, I.H.; Hwang, H.; Rhim, H.; Kim, H.C.; et al. Gintonin, a
Ginseng-Derived Exogenous Lysophosphatidic Acid Receptor Ligand, Protects Astrocytes from Hypoxic and Re-oxygenation
Stresses Through Stimulation of Astrocytic Glycogenolysis. Mol. Neurobiol. 2019, 56, 3280–3294. [CrossRef] [PubMed]

143. Nam, S.M.; Hwang, H.; Seo, M.; Chang, B.J.; Kim, H.J.; Choi, S.H.; Rhim, H.; Kim, H.C.; Cho, I.H.; Nah, S.Y. Gintonin Attenuates D-
Galactose-Induced Hippocampal Senescence by Improving Long-Term Hippocampal Potentiation, Neurogenesis, and Cognitive
Functions. Gerontology 2018, 64, 562–575. [CrossRef] [PubMed]

144. Hwang, S.H.; Shin, E.J.; Shin, T.J.; Lee, B.H.; Choi, S.H.; Kang, J.; Kim, H.J.; Kwon, S.H.; Jang, C.G.; Lee, J.H.; et al. Gintonin, a
ginseng-derived lysophosphatidic acid receptor ligand, attenuates Alzheimer’s disease-related neuropathies: Involvement of
non-amyloidogenic processing. JAD 2012, 31, 207–223. [CrossRef]

145. Gao, Q.; Zheng, J. Ginsenoside Rh2 inhibits prostate cancer cell growth through suppression of microRNA-4295 that activates
CDKN1A. Cell Prolif. 2018, 51, e12438. [CrossRef]

146. Zhang, Q.; Hong, B.; Wu, S.; Niu, T. Inhibition of prostatic cancer growth by ginsenoside Rh2. Tumor. Biol. 2015, 36, 2377–2381.
[CrossRef]

147. Tang, Y.; Chen, J.; Li, J.; Zheng, Y.; Zhong, X.; Huang, S.; Chen, B.; Peng, B.; Zou, X.; Chen, X. Pristimerin synergistically sensitizes
conditionally reprogrammed patient derived-primary hepatocellular carcinoma cells to sorafenib through endoplasmic reticulum
stress and ROS generation by modulating Akt/FoxO1/p27(kip1) signaling pathway. Phytomedicine 2021, 86, 153563. [CrossRef]

148. Xiaodan, S.; Ying, C. Role of ginsenoside Rh2 in tumor therapy and tumor microenvironment immunomodulation. Biomed.
Pharmacother. 2022, 156, 113912. [CrossRef]

149. Lev-Ari, S.; Starr, A.N.; Vexler, A.; Kalich-Philosoph, L.; Yoo, H.S.; Kwon, K.R.; Yadgar, M.; Bondar, E.; Bar-Shai, A.;
Volovitz, I.; et al. Rh2-enriched Korean ginseng (Ginseng Rh2+) inhibits tumor growth and development of metastasis of
non-small cell lung cancer. Food Funct. 2021, 12, 8068–8077. [CrossRef]

150. Chen, C.; Wang, Y.S.; Zhang, E.T.; Li, G.A.; Liu, W.Y.; Li, Y.; Jin, Y.H. (20S) Ginsenoside Rh2 Exerts Its Anti-Tumor Effect by
Disrupting the HSP90A-Cdc37 System in Human Liver Cancer Cells. Int. J. Mol. Sci. 2021, 22, 13170. [CrossRef]

151. Huang, J.; Liu, D.; Wang, Y.; Liu, L.; Li, J.; Yuan, J.; Jiang, Z.; Jiang, Z.; Hsiao, W.W.; Liu, H.; et al. Ginseng polysaccharides
alter the gut microbiota and kynurenine/tryptophan ratio, potentiating the antitumour effect of antiprogrammed cell death
1/programmed cell death ligand 1 (anti-PD-1/PD-L1) immunotherapy. Gut 2022, 71, 734–745. [CrossRef]

152. Zhai, F.G.; Liang, Q.C.; Wu, Y.Y.; Liu, J.Q.; Liu, J.W. Red ginseng polysaccharide exhibits anticancer activity through GPX4
downregulation-induced ferroptosis. Pharm. Biol. 2022, 60, 909–914. [CrossRef] [PubMed]

153. Shin, M.S.; Hwang, S.H.; Yoon, T.J.; Kim, S.H.; Shin, K.S. Polysaccharides from ginseng leaves inhibit tumor metastasis via
macrophage and NK cell activation. Int. J. Biol. Macromol. 2017, 103, 1327–1333. [CrossRef]

154. Lee, D.Y.; Park, C.W.; Lee, S.J.; Park, H.R.; Seo, D.B.; Park, J.Y.; Park, J.; Shin, K.S. Immunostimulating and Antimetastatic Effects
of Polysaccharides Purified from Ginseng Berry. Am. J. Chin. Med. 2019, 47, 823–839. [CrossRef] [PubMed]

155. Wu, W.; Zhou, Q.; Zhao, W.; Gong, Y.; Su, A.; Liu, F.; Liu, Y.; Li, Z.; Zhu, J. Ginsenoside Rg3 Inhibition of Thyroid Cancer
Metastasis Is Associated with Alternation of Actin Skeleton. J. Med. Food. 2018, 21, 849–857. [CrossRef] [PubMed]

156. Meng, L.; Ji, R.; Dong, X.; Xu, X.; Xin, Y.; Jiang, X. Antitumor activity of ginsenoside Rg3 in melanoma through downregulation of
the ERK and Akt pathways. Int. J. Oncol. 2019, 54, 2069–2079. [CrossRef]

157. Mao, X.; Jin, Y.; Feng, T.; Wang, H.; Liu, D.; Zhou, Z.; Yan, Q.; Yang, H.; Yang, J.; Yang, J.; et al. Ginsenoside Rg3 Inhibits the
Growth of Osteosarcoma and Attenuates Metastasis through the Wnt/β-Catenin and EMT Signaling Pathway. eCAM 2020, 2020,
6065124. [CrossRef] [PubMed]

https://doi.org/10.1038/s41556-018-0037-z
https://www.ncbi.nlm.nih.gov/pubmed/29476151
https://doi.org/10.3389/fcell.2019.00143
https://www.ncbi.nlm.nih.gov/pubmed/31417903
https://doi.org/10.1016/j.cell.2019.05.026
https://doi.org/10.7150/thno.49860
https://www.ncbi.nlm.nih.gov/pubmed/33391472
https://doi.org/10.1038/s41556-018-0235-8
https://doi.org/10.1016/j.jgr.2021.03.009
https://www.ncbi.nlm.nih.gov/pubmed/34764726
https://doi.org/10.1016/j.phymed.2022.154341
https://doi.org/10.1016/j.jgr.2016.05.005
https://doi.org/10.1016/j.jgr.2021.08.003
https://doi.org/10.3390/molecules25051102
https://www.ncbi.nlm.nih.gov/pubmed/32121640
https://doi.org/10.1007/s12035-018-1308-1
https://www.ncbi.nlm.nih.gov/pubmed/30117105
https://doi.org/10.1159/000491113
https://www.ncbi.nlm.nih.gov/pubmed/30138913
https://doi.org/10.3233/JAD-2012-120439
https://doi.org/10.1111/cpr.12438
https://doi.org/10.1007/s13277-014-2845-5
https://doi.org/10.1016/j.phymed.2021.153563
https://doi.org/10.1016/j.biopha.2022.113912
https://doi.org/10.1039/D1FO00643F
https://doi.org/10.3390/ijms222313170
https://doi.org/10.1136/gutjnl-2020-321031
https://doi.org/10.1080/13880209.2022.2066139
https://www.ncbi.nlm.nih.gov/pubmed/35575436
https://doi.org/10.1016/j.ijbiomac.2017.05.055
https://doi.org/10.1142/S0192415X19500435
https://www.ncbi.nlm.nih.gov/pubmed/31091972
https://doi.org/10.1089/jmf.2017.4144
https://www.ncbi.nlm.nih.gov/pubmed/30136914
https://doi.org/10.3892/ijo.2019.4787
https://doi.org/10.1155/2020/6065124
https://www.ncbi.nlm.nih.gov/pubmed/32733585


Nutrients 2023, 15, 3286 19 of 19

158. Carmody, R.N.; Gerber, G.K.; Luevano, J.M., Jr.; Gatti, D.M.; Somes, L.; Svenson, K.L.; Turnbaugh, P.J. Diet dominates host
genotype in shaping the murine gut microbiota. Cell Host Microbe 2015, 17, 72–84. [CrossRef]

159. Conway, J.; Duggal, A.N. Ageing of the gut microbiome: Potential influences on immune senescence and inflammageing. Ageing
Res. Rev. 2021, 68, 101323. [CrossRef]

160. Jeon, H.; Bae, C.H.; Lee, Y.; Kim, H.Y.; Kim, S. Korean red ginseng suppresses 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-
induced inflammation in the substantia nigra and colon. Brain Behav. Immun. 2021, 94, 410–423. [CrossRef]

161. Xu, H.Y.; Li, Q.C.; Zhou, W.J.; Zhang, H.B.; Chen, Z.X.; Peng, N.; Gong, S.Y.; Liu, B.; Zeng, F. Anti-oxidative and anti-aging effects
of probiotic fermented ginseng by modulating gut microbiota and metabolites in Caenorhabditis elegans. Plant Foods Hum. Nutr.
2023, 78, 320–328. [CrossRef]

162. Bai, X.; Fu, R.; Duan, Z.; Liu, Y.; Zhu, C.; Fan, D. Ginsenoside Rh4 alleviates antibiotic-induced intestinal inflammation by
regulating the TLR4-MyD88-MAPK pathway and gut microbiota composition. Food Funct. 2021, 12, 2874–2885. [CrossRef]
[PubMed]

163. Fan, W.; Huang, Y.; Zheng, H.; Li, S.; Li, Z.; Yuan, L.; Cheng, X.; He, C.; Sun, J. Ginsenosides for the treatment of metabolic
syndrome and cardiovascular diseases: Pharmacology and mechanisms. Biomed. Pharmacother. 2020, 132, 110915. [CrossRef]

164. Zheng, Q.; Bao, X.Y.; Zhu, P.C.; Tong, Q.; Zheng, G.Q.; Wang, Y. Ginsenoside Rb1 for myocardial ischemia/reperfusion injury:
Preclinical evidence and possible mechanisms. Oxid. Med. Cell Longev. 2017, 2017, 6313625. [CrossRef] [PubMed]

165. Dai, X.; Zeng, G.; Hong, L.; Ye, Q.; Chen, X.; Zhang, J. Ginsenoside Rg1 and astaxanthin act on the hypothalamus to protect
female mice against reproductive aging. Chin. Med. J. 2022, 135, 107–109. [CrossRef] [PubMed]

166. Li, Y.; Chen, C.; Li, S.; Jiang, C. Ginsenoside Rf relieves mechanical hypersensitivity, depression-like behavior, and inflammatory
reactions in chronic constriction injury rats. Phytother. Res. 2019, 33, 1095–1103. [CrossRef]

167. Gao, Y.; Li, J.; Chu, S.; Zhang, Z.; Chen, N.; Li, L.; Zhang, L. Ginsenoside Rg1 protects mice against streptozotocin-induced type 1
diabetic by modulating the NLRP3 and Keap1/Nrf2/HO-1 pathways. Eur. J. Pharmacol. 2020, 866, 172801. [CrossRef]

168. Zhou, T.; Zu, G.; Zhang, X.; Wang, X.; Li, S.; Gong, X.; Liang, Z.; Zhao, J. Neuroprotective effects of ginsenoside Rg1 through
the Wnt/β-catenin signaling pathway in both in vivo and in vitro models of Parkinson’s disease. Neuropharmacology 2016, 101,
480–489. [CrossRef]

169. Xie, L.; Zhai, R.; Chen, T.; Gao, C.; Xue, R.; Wang, N.; Wang, J.; Xu, Y.; Gui, D. Panax Notoginseng Ameliorates podocyte EMT by
targeting the Wnt/β-catenin signaling pathway in STZ-induced diabetic rats. Drug Des. Dev. Ther. 2020, 14, 527–538. [CrossRef]

170. Ryu, S.; Jeon, H.; Kim, H.Y.; Koo, S.; Kim, S. Korean red ginseng promotes hippocampal neurogenesis in mice. Neural Regen. Res.
2020, 15, 887–893. [CrossRef]

171. Cho, D.E.; Choi, G.M.; Lee, Y.S.; Hong, J.P.; Yeom, M.; Lee, B.; Hahm, D.H. Long-term administration of red ginseng non-saponin
fraction rescues the loss of skeletal muscle mass and strength associated with aging in mice. J. Ginseng Res. 2022, 46, 657–665.
[CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.chom.2014.11.010
https://doi.org/10.1016/j.arr.2021.101323
https://doi.org/10.1016/j.bbi.2021.02.028
https://doi.org/10.1007/s11130-023-01055-9
https://doi.org/10.1039/D1FO00242B
https://www.ncbi.nlm.nih.gov/pubmed/33877243
https://doi.org/10.1016/j.biopha.2020.110915
https://doi.org/10.1155/2017/6313625
https://www.ncbi.nlm.nih.gov/pubmed/29430282
https://doi.org/10.1097/CM9.0000000000001542
https://www.ncbi.nlm.nih.gov/pubmed/33989229
https://doi.org/10.1002/ptr.6303
https://doi.org/10.1016/j.ejphar.2019.172801
https://doi.org/10.1016/j.neuropharm.2015.10.024
https://doi.org/10.2147/DDDT.S235491
https://doi.org/10.4103/1673-5374.268905
https://doi.org/10.1016/j.jgr.2021.12.001
https://www.ncbi.nlm.nih.gov/pubmed/36090680

	Introduction 
	Aging Process 
	Anti-Aging Properties of the Active Components of Ginseng 
	Anti-Aging Mechanism of Ginseng 
	Active Ingredients of Ginseng Delay Aging by Reducing Endogenous Oxidative DNA Damage 
	Ginseng Active Ingredients Delay Aging by Reducing Exogenous Oxidative DNA Damage 
	Active Ingredients of Ginseng Slow Down Aging by Regulating DNA Damage Repair 
	Other Anti-Aging Mechanisms of Ginseng 

	Discussion 
	References

