
Citation: Piątkowska-Chmiel, I.;
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Abstract: During the COVID-19 pandemic, an increase in the incidence of overweight and obesity in
children was observed. It appears that unhealthy food choices, an unbalanced diet, and a sedentary
lifestyle, as well as experiencing stress related to the pandemic, may be contributing to this disturbing
trend. Chronic stress is a significant factor contributing to eating disorders and obesity in youngsters,
involving medical, molecular, and psychological elements. Individuals under chronic stress often fo-
cus on appearance and weight, leading to negative body image and disrupted relationships with food,
resulting in unhealthy eating behaviors. Chronic stress also impacts hormonal balance, reducing the
satiety hormone leptin and elevating the appetite-stimulating hormone ghrelin, fostering increased
hunger and uncontrolled snacking. Two systems, the hypothalamic–pituitary–adrenal axis and the
sympathetic system with the adrenal medulla, are activated in response to stress, causing impaired
secretion of noradrenaline and cortisol. Stress-related obesity mechanisms encompass oxidative
stress, neuroinflammation, insulin resistance, and neurohormonal and neurotransmission disorders.
Stress induces insulin resistance, elevating obesity risk by disrupting blood sugar regulation and
fat storage. Stress also affects the gut microbiome, potentially influencing chronic inflammation
and metabolic processes linked to obesity. In conclusion, chronic stress is a multifaceted risk factor
for eating disorders and obesity in children, necessitating a comprehensive understanding of effec-
tive preventive and intervention strategies amid the escalating prevalence of childhood overweight
and obesity.

Keywords: chronic stress; COVID-19 pandemic; overweight; obesity; children; adolescents; eating
behaviors

1. The Impact of Chronic Stress Related to the COVID-19 Pandemic on Eating Behaviors
and the Risk of Obesity in Childhood

The global consequences of the COVID-19 pandemic have profoundly affected the
lives and health well-being of individuals worldwide. The extensive consequences of this
unprecedented situation became visible in both the physical and psychological dimensions,
giving rise to significant risks associated with non-communicable diseases. The imple-
mentation of social distancing measures during the pandemic has triggered a cascade of
effects, including restrictions on outdoor physical activity, and alterations in eating habits
and sleep patterns. These changes have proven to be pivotal factors contributing to the
surge in cases of overweight and obesity, in adults and among children [1–4]. Growing
evidence suggests that chronic stress associated with the COVID-19 pandemic has played
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a significant role in eating habits among the general population [1–7]. Stress is one of
the important factors that can affect appetite food intake, eating patterns, and intestinal
microbiome [8,9]. Stress-induced gut dysbiosis may influence chronic inflammation and
metabolic processes that may be associated with obesity [10,11]. Furthermore, chronic
stress may affect nourishment preferences toward the consumption of energy-dense foods,
leading to the accumulation of abdominal adipose tissue and obesity [8]. A study involving
Chinese students indicated that 24.9% of them experienced anxiety arising from the onset of
COVID-19. This heightened anxiety was linked to factors such as quarantine, a lack of inter-
personal contacts, the overwhelming influx of news, and exposure to false information—all
contributing to an increased mental burden and a change in eating habits [12]. Clinical
observations indicate that individuals dealing with chronic stress often develop a fixation
on their physical appearance and weight, fostering a negative body image that disrupts
their relationship with food. This discordance can give rise to maladaptive eating behaviors,
such as emotional overeating—seeking solace in highly processed foods as a means of
escaping stress or finding comfort. The consequences of such practices may manifest in
the form of excessive calorie intake, ultimately leading to overweight and obesity. Re-
grettably, during the pandemic, there was a concerning rise in obesity, among children
and adolescents [1]. The unintentional consequence of social distancing restrictions was a
negative impact on physical activity opportunities [13,14]. A meta-analysis of 22 studies
of 14,216 children aged 3–18 years indicated that during the COVID-19 pandemic, total
engagement in physical activity in children was reduced by 20% (90% CI −34 to −4%)
compared with the pre-pandemic period [13]. This negative phenomenon was most promi-
nent in moderate-to-vigorous physical activity with a −28% change (90% CI: −41% to
−13%) [14]. Isolation and an increase in sedentary lifestyles have played a key role in the
development of excess weight among this demographic [15–18]. Moreover, it has been
noticed that after the COVID-19 outbreak, screen time among children increased [19,20].
A recent report published by the CDC demonstrated that in the pediatric population in
the United States between the pre-pandemic period and during the COVID-19 pandemic,
the rate of body mass index almost doubled from 0.052 (95% CI = 0.051–0.052) to 0.100
(95% CI = 0.098–0.101) kg/m2/month [1]. It should be also emphasized that the increase in
the rate of BMI change was particularly apparent in those children and adolescents who
experienced overweight and obesity before the pandemic [1,6].

A meta-analysis of twelve studies from eight countries also revealed a significant
association between the lockdown during the COVID-19 pandemic and gain of body weight
(MD 2.67; 95% CI 2.12–3.23; p < 0.00001) and increase in BMI (MD 0.77 kg/m2; 95% CI
0.33–1.20; p = 0.0006) in school-age children and adolescents [2]. Based on the Children’s
Hospital of Philadelphia Care Network data, it has been reported that the most significant
increase in the obesity rates during the COVID-19 pandemic was recorded in children aged
5 to 9 years and those who were Hispanic, non-Hispanic Black, publicly insured, or lower
income [5]. A recent systematic review revealed that although in most analyzed studies
there was no reported change in the number of meals per day among children during the
pandemic, there was an increase in the amount of food consumed [21]. It seems that social
isolation has contributed to a rise in the consumption of home-cooked meals, linked to an
increased intake of legumes, vegetables, and fruit, along with reduced consumption of fast
food [18,21]. However, a noticeable surge in snacking and the consumption of “comfort
food” was observed during the pandemic [18,21]. The term “comfort food” refers to a
variety of meals typically considered energy-dense, high-fat, and/or high-carbohydrate
products believed to provide emotional comfort [22]. Consuming comfort food during
the pandemic could be seen as a coping mechanism for dealing with emotional distress,
negative emotions, insecurity, and loneliness [18,21]. Furthermore, the combination of
social isolation and continuous media exposure, including television even during meals,
has been linked to an elevated consumption of fried food, sweets, and sugar-sweetened
beverages, accompanied by a decreased intake of fruits and vegetables [18]. There is a
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negative relationship between screen time and physical activity and an association between
extra screen time and unhealthy eating habits [23].

As indicated, chronic stress is a complex risk factor in the context of eating disor-
ders and obesity in children and adolescents. Understanding these multidimensional
aspects is crucial in developing effective preventive and intervention strategies, as the
increasing prevalence of overweight and obesity in children is one of the most important
challenges for health care. This review provides a comprehensive analysis of the impact of
chronic stress on obesity among children and adolescents, which has significantly increased
during the COVID-19 pandemic. This study takes into account both psychological and
biological pathomechanisms.

2. Psychological Aspects of Eating Disorders during the COVID-19 Pandemic
2.1. Mental Health, Pandemic Environment, and Eating Disorders

Stress is an element that forms the mental sphere of every human being, regardless
of age, gender, stage of mental development, or social status. It has a chronic, relatively
strong, and prolonged effect on the health and biopsychospiritual status of the individual,
although it can also have an individually positive effect. It such a case, stress is called
eustress, which generates a positive psychological response to the interacting stressors;
this effect mainly depends on personal reasoning and definition of stress and its impact on
well-being [24–27].

The perception of stress by the child and adolescent is related to many factors, various
social exposures, the transition between phases of psychomotor development, changes
in health, family, and school situations, imposed restrictions, and peer relationships. It
should be noted that, according to recent studies, a child from the age of 2 is aware
of the changes occurring in their environment. Such changes include the SARS-CoV-2
(COVID-19) virus pandemic and the associated reorganization of the environment, such as
isolation, homeschooling, restrictions on peer relationships, health problems for children
and adolescents themselves, as well as their loved ones and others, including the topics of
dying and death [28–30].

During the SARS-CoV-2 pandemic, the occurrence of disorders related to food intake
was observed in both children and adolescents. These included problems with appetite,
choice of unhealthy foods, and changing dynamics in the development of previously diag-
nosed eating disorders. Some of the main elements associated with abnormal relationships
with food are psychological and psychiatric aspects [31,32]. The pandemic period has led
to increased levels of stress, anxiety, and depression in children and adolescents, which
accompany the aforementioned problems [31–33].

Appetite disorders include a decrease, increase, or loss of the urge to take food. A
study by Paiva et al. in Brazil found a statistically significant (p < 0.001) association between
the presence of anxiety in children (related, among other things, to social isolation during a
pandemic) and the occurrence of appetite problems. The presence of anxiety in children
translated into a 3.12-fold increased risk of changes in appetite, which in the majority was
manifested by increased food intake [34]. A study conducted in Spain by Lavigne-Cerván
et al. found that more than half of the children and adolescents studied had moderate to
high levels of anxiety, which coincided with the results of a study by Jiao et al. conducted
in China that showed reduced or no appetite [35,36]. The National Child Traumatic Stress
Network’s guide to parents, published in 2020, highlighted the possibility of appetite-
related disorders in children of all ages, indicating the nature of the problem [37]. Appetite
is influenced, alongside increasing anxiety, by depressive symptoms, which are a challenge
during pandemics [38,39]. Among children and adolescents suffering from depression, the
majority show decreased or increased appetite, as well as weight disturbances [40–42].

Choosing the right food is the basis for a healthy diet. Children’s and adolescents’ di-
etary choices are influenced by parental eating habits, household habits, and the
environment [43]. During the pandemic, access to smartphones, social isolation, and
increasing stress led to the occurrence of dietary disorders. Increased intake of high-calorie
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foods, inter-meal snacking, and less frequent choice of healthy, low-calorie foods are caused
by increasing stress and prolonged screen time [44–47].

According to the Diagnostic and Statistical Manual of Mental Disorders Fifth Edition,
there are three specific eating disorders: anorexia nervosa (AN), bulimia nervosa (BN),
and binge eating disorder (BED) [48]. The number of diagnoses of these disorders among
children and adolescents increased during the COVID-19 pandemic, with AN being the
predominant one. A cross-sectional study conducted in Canada by Agostino et al. con-
firmed a significant increase in new diagnoses of AN, rapid evaluation of disease markers,
and hospitalizations for this condition [49–51]. Moreover, during the pandemic, there was
also an increase in hospitalizations due to bulimia nervosa and other eating disorders [52].

It has to be highlighted that there is a mutual relationship between obesity and eat-
ing disorders, particularly bulimia nervosa and binge eating disorder [53]. Individuals
with BED have a three to six times increased risk of obesity compared with the general
population [54]. Although patients with BN may have normal weight, the lifetime preva-
lence of obesity in this group is about 33% [55]. In a cohort of Canadian adolescents, the
prevalence of eating disorders was 9.3% in obese boys and 20.2% in obese girls compared
with 2.1% and 8.4% of normal-weight boys and girls, respectively [56].

Obesity and eating disorders share a common pathophysiology that involves biologi-
cal, environmental, behavioral, and cognitive determinants [53,57]. Possible shared genetic
susceptibility for both disorders may be associated with at-mass and obesity-associated
(FTO) gene polymorphisms [53]. Moreover, dysregulation of the hypothalamic–pituitary–
adrenal axis (HPA) and gut dysbiosis play an important role in the pathophysiology of obe-
sity and eating disorders [53]. Environmental risk factors identified for both disorders are,
among others, weight teasing, internalization of unattainable beauty ideals portrayed on
social media and television, social pressure and frequent criticism, bullying, and unhealthy
family eating patterns [53,57]. Psychological determinants that may play a significant role
in the development of obesity and eating disorders may include low self-esteem, negative
self-evaluation, and high body dissatisfaction [53]. Body dissatisfaction, compromised
interpersonal functioning, aberrant emotional regulation, and inappropriate weight control
behaviors are also common factors contributing to both disorders [53,57].

Disordered eating symptomatology was exacerbatedduring the pandemic and were
more pronounced in adolescents than in younger children. Individuals at increased risk for
developing these conditions were also observed to exhibit their exponents. These conditions
were also observed to be exhibited by individuals at an increased risk of developing them.
Circumstances that may have a role in triggering eating disorders include increasing anxiety,
social isolation, and more time spent on social media. This often resulted in disturbances
in the perception of one’s own body; excessive physical activity, fear of gaining weight,
and inappropriate food intake were often observed as a result. These circumstances not
only influenced the occurrence of eating disorder symptoms but also the motivation to
recover [32,58–60]. Family members spending more time together at home as a result of
social distancing and lockdown requirements reflected increased parental recognition of
eating disorder symptoms in children, which may have had an impact on the increase in
acute ED visits and hospital admissions. Some patients and their families linked the onset
of lockdown as a trigger for hospital admission. The overall increase in hospital admissions
for eating disorder exacerbations and prolonged stays has resulted in an increased demand
for care related to the treatment of these disorders [61–63].

Table 1 provides information on the psychological and pedagogical interventions that
are used in the treatment of eating disorders in children and adolescents.
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Table 1. Psychological and pedagogical interventions used in eating disorder treatment based
on [64–69].

Psychological and Pedagogical Interventions Used in Eating Disorder Treatment

Anorexia Nervosa Bulimia Nervosa Binge Eating Disorder References

• Family-based treatment (FBT) • Family-based treatment (FBT) • Family-based treatment (FBT)

[64–69]

• Parent-focused treatment (PFT) • Guided self-help cognitive
behavioral therapy (gshCBT)

• Guided self-help cognitive
behavioral therapy (gshCBT)

• Systemic family therapy (SyFT) • Individual supportive
psychotherapy (SPT)

• Enhanced cognitive behavioral
psychotherapy (CBT-E)

• Enhanced cognitive behavioral
psychotherapy (CBT-E)

• Cognitive behavioral therapy for
adolescents (CBT-A)

• Dialectical behavior therapy
(DBT)

• Adolescent-focused therapy (AFT) • Psychodynamic therapy (PDT) • Interpersonal psychotherapy
(IPT)

• Cognitive remediation therapy
(CRT) • Dialectical behavior therapy (DBT) • Health education groups

• Intensive multifamily therapy • Interpersonal psychotherapy (IPT)
• Create a multidisciplinary team including a pediatrician, psychiatrist, psychologist, family therapist, nurse, dietician, and

social services.
• Nutritional education for families.
• Psychoeducation in nutrition.

• Educational video materials.

2.2. Prevention of Eating Disorders

In the face of the numerous described problems associated with stress-related eating
disorders and obesity (covibesity) in a group of children and adolescents, preventive
measures to counteract the psychosocial aspects that promote the development of these
disorders become important.

The first group of recipients of the above-described measures should be the primary
support system of the child or adolescent, namely the family environment. During the
pandemic, adhering to the principles of social isolation, caregivers spent significantly more
time at home, working remotely, supervising the learning of their offspring, and fulfilling
the duties of daily life in the online system. As a result, adults became distanced from mun-
dane pleasures and, consequently, a sense of disorganization, frustration, and anger was
aroused, which was often unloaded on the child or adolescent [70–72]. Heightened emo-
tional reactions from the parent, such as excessive criticism and hostility, can consequently
lead to the child developing an eating disorder in the form of malnutrition or compulsive
overeating [72]. Eating meals as a family can be a difficult psychological experience for a
young person, and as a result, young people may restrict eating [71,72]. Available studies
describe the relationship between the qualitative support of caregivers and the risk of
eating disorders in their children [72]. In 2014, a program to support caregivers of people
with eating disorders called Peer-Led Resilience (PiLAR) was introduced in Ireland. It
was followed by an evaluation of its effects, which showed increased knowledge, skills,
and improved psychological well-being of parents, positively influencing the quality of
treatment and mental health of their children. Studies confirm the great importance of
psychoeducation, self-help, and skills training in telepsychiatry systems in developing
supportive attitudes of caregivers toward children with eating disorders and obesity [72,73].
For obesity, possible preventive actions for parents are shown in Figure 1.

Preventive actions aimed at children themselves are divided, according to the spe-
cialized literature, into two types: universal—carried out in all children regardless of the
degree of assessed risk; selective—carried out in groups of high-risk children (e.g., dancers,
athletes, and obese children) [74]. A meta-analysis and systematic review conducted by
Chua, Tam, and Shorey confirms the effectiveness of implementing eating disorder and
obesity prevention activities in school settings. These interventions are primarily aimed at
reducing the internalization of beauty ideals, and thereby increasing students’ self-esteem.
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These interventions are based on psychoeducation, training in the use of social media,
and interpersonal training with an emphasis on the phenomena of teasing by peers. The
study also indicates that girls are more prone to these activities than boys, due to their
greater susceptibility to generating the cognitive illusion of a bad body image [75].

A major role in the prevention of eating disorders and obesity in the era of the COVID-
19 pandemic is played by healthcare system workers, i.e., pediatricians, family physicians,
and mental healthcare workers. Their roles and responsibilities are described in a narrative
review by Singh et al. [76]. Pediatricians and family physicians conducting a periodic
examination of a child or adolescent can recognize physical symptoms of stress and the
patient’s externalizing/internalizing emotional states. These professionals can then screen
for mental disorders, including eating disorders and compulsive overeating, using brief,
standardized screening tools such as the Children’s Eating Disorders Inventory (EDI-C);
the Eating Disorder Examination Questionnaire (EDE-Q); semi-structured interviews, such
as the Children’s Eating Disorder Examination (ChEDE); and online measures, such as the
Development and Well-Being Assessment (DAWBA) [77,78]. The role of mental healthcare
workers is to promote mental health (in the form of digital brochures, videos, etc., available
online for caregivers, teachers, and children), increase mental health awareness and, most
importantly, promote the practice of mental health hygiene [38,76].

3. Medical Aspects of Obesity in Children and Adolescents
3.1. Overview of Obesity in Childhood

According to the World Health Organization (WHO), overweight and obesity are dis-
orders characterized by abnormal or excessive fat accumulation and associated with health
hazards [79]. Table 2 presents diagnostic criteria of childhood obesity according to various
definitions [80–85]. Abdominal or central obesity may be identified if a waist-to-height
ratio is greater than 0.5 [15,86,87]. It has been also reported that the 90th percentile of waist
circumference by age and sex for children and adolescents aged 6 to 18 years is the cutoff to
identify central obesity in children and adolescents [88]. Obesity is one of the most serious
challenges worldwide in all age groups [15,84,87]. Joint UNICEF/WHO/World Bank esti-
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mates demonstrated that globally, in 2020, the problem of overweight and obesity referred
to 5.7% of children under 5 years of age, which aligns with 38.9 million children [89].

Table 2. Diagnostic criteria for childhood obesity [80–85].

Organization Diagnostic Criteria for Obesity

World Health Organization
[80,81]

Children under 5 years of age
Overweight: age- and sex-adjusted weight-for-height >2 standard

deviations above WHO Child Growth Standards median
Obesity: age- and sex-adjusted weight-for-height >3 standard deviations

above the WHO Child Growth Standards median

Children between 5 and 19 years of age
Overweight: age- and sex-adjusted BMI >1 standard deviation above the

WHO Growth Reference median
Obesity: age- and sex-adjusted BMI-for-age >2 standard deviations above

the WHO Growth Reference median

U.S. Centers for Disease Control and Prevention (CDC)
[82,83]

Children between 2 and 19 years of age
Overweight: age- and sex-adjusted BMI ≥85th to <95th percentile on

CDC Growth Charts
Obesity: age- and sex-adjusted BMI ≥95th percentile on CDC Growth

Charts
Severe obesity: 120% of the 95th percentile of the age- and sex-adjusted

BMI or greater, or BMI ≥35 kg/m2

Children under 2 years of age
CDC recommends the use of the WHO criteria

American Academy of Pediatrics (AAP)
[84]

Severe obesity
Class 2 obesity: age- and sex-adjusted BMI ≥ 35 to <40 kg/m2 or ≥120 to

140% of the 95th percentile, whichever is lower
Class 3 obesity: age- and sex-adjusted BMI ≥ 40 kg/m2 or ≥140% of the

95th percentile, whichever is lower

International Obesity Task Force (IOTF)
[85]

Overweight
International age- and sex-specific BMI percentile cutoffs equivalent to

BMI 25 kg/m2 at age 18 years

Obesity
International age- and sex-specific BMI percentile cutoffs equivalent to

BMI 30 kg/m2 at age 18 years

The WHO European Regional Obesity Report 2022 indicated that in a population of
children aged from 5 to 9 years, the prevalence of overweight was 29.5% and the prevalence
of obesity was 11.6% [90]. Overweight occurred in 24.9% of older children and youth
between 10 and 19 years of age. In this population, 7.1% of children were obese [90].

The National Health and Nutrition Examination Survey (NHANES) from 2017–2018
revealed that 16.1% of children and adolescents in the United States were overweight, and
19.3% had obesity, including approximately 30% with severe obesity [91].

Data from 2416 population-based studies in a pediatric population demonstrated that
from 1975 to 2016 the increasing trend in mean BMI reached a plateau at high levels in many
high-income countries, and a steep increase trend in east, south, and southeast Asia [92].
The highest prevalence of obesity exceeding 30% of the children’s population was reported
in some countries of the Pacific Ocean region [92].

According to the World Obesity Federation, the global prevalence of childhood obesity
is predicted to rise from 10% to 20% in boys and from 8% to 18% in girls in the period
2020–2035 [16]. It is estimated that in 2035 there will be 383 million children living with
obesity worldwide [16].
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Obesity has a detrimental impact on children’s health. Possible consequences of
obesity in childhood are listed in Table 3 [15,84,87,93].

Table 3. Complications associated with obesity in childhood [15,84,87,93].

System Disorder

Cardiovascular
Hypertension

Left ventricle hypertrophy
Premature atherosclerotic cardiovascular disease

Respiratory

Asthma
Obstructive sleep apnea

Sleep disorders
Hypoventilation syndrome

Endocrine

Dyslipidemia
Impaired glucose tolerance

Type 2 diabetes
Metabolic syndrome

Polycystic ovary syndrome
Impaired growth and puberty

Gastrointestinal

Metabolic dysfunction-associated steatotic liver disease
Gastroesophageal reflux disease

Cholelithiasis
Constipation

Micronutrient deficiencies

Musculoskeletal

Slipped capital femoral epiphysis
Blount disease

Fractures
Pes planus

Skin

Acanthosis nigricans
Striae

Intertrigo
Hidradenitis suppurativa

Furunculosis

Renal Enuresis
Glomerulosclerosis

Dental Dental caries
Periodontal disease

Nervous system Idiopathic intracranial hypertension

Psychosocial

Reduced self-esteem
Depression

Anxiety
Disordered eating

Internalizing disorders

Long-term complications

Adult obesity
Coronary artery disease

Type 2 diabetes
Certain cancers

Infertility
Osteoarthritis

3.2. Neurochemical and Molecular Changes Induced by Chronic Stress

Although many studies demonstrate that chronic stress is associated with obesity [94–96],
the exact mechanisms underlying this process have not yet been fully elucidated. Molecular
and neurochemical changes associated with chronic stress can indeed exert a significant
influence on the development and progression of obesity (Scheme 1). This influence arises
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from the intricate interplay between the stress response system and a range of physiological
pathways linked to the regulation of appetite, metabolism, and energy storage.
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3.2.1. Chronic Activation of the HPA Axis

The stress system consists of the reactions of the sympathetic nervous system, which
secretes noradrenaline and adrenaline, and the hypothalamic–pituitary–adrenal (HPA)
axis, which releases cortisol, playing a major role in the physiology of stress reactions [97].
The effect of adrenal corticosteroids on the secretion of adrenocorticotropin is a complex
phenomenon because it depends on the type of stress. As a result of acute stress, gluco-
corticosteroids (GCs) directly inhibit the activity of the hypothalamic–pituitary–adrenal
axis (HPA), while as a result of exposure to chronic stress, the effect of these steroids on the
brain is stimulating [98]. Activation of the HPA axis activates the secretion of cortisol, a
steroid hormone that regulates behavior and food choices [96]. Chronic activation of the
HPA axis during chronic stress may result in prolonged cortisol effects and a subsequent
orexigenic response that may manifest itself in cravings for certain types of foods [8]. In
addition, GCs increase the expression of corticotropin-releasing factor (CRF) in the central
nucleus of the amygdala, the emotional processing center, enabling the recruitment of the
chronic stress response network. Additionally, GCs increase the perception of pleasant or
compulsive activities, which motivates the consumption of “comfort foods” [98]. In this
way, GCs act systemically to lead to an increase in body fat, which, in turn, leads to energy
storage, inhibition of catecholamines in the brainstem, and CRF expression in hypothalamic
neurons. Studies have shown that an increase in the level of the stress hormone cortisol
(glucocorticoid) plays a key role in the development of obesity. Glucocorticoid redistributes
white adipose tissue in a given area and increases hunger attacks and the desire to eat
high-energy food, consisting mainly of fat and sugars [99]. Additionally, it has been shown
that high cortisol levels can also increase appetite [100]. In turn, people with abdominal
obesity experience neuroendocrine disorders, which result in impaired functioning of the
hypothalamus, pituitary, and adrenal glands. In vivo studies have shown that exposure
to chronic stress reduces the weight gain of animals [101]. In turn, another study showed
that when rats are stressed, they are more likely to eat lard and food rich in sugar [102].
However, it has been noticed that in humans, chronic stress may have a two-way effect—it
may cause increased food consumption to ensure comfort of life, which leads to weight
gain. It may also suppress appetite, reduce food intake, and weight loss. Studies have
shown that depressed people who consume excessive amounts of food have reduced
cerebrospinal CRF, catecholamine concentrations, and hypothalamic–pituitary–adrenal
activity [98]. Disturbances in the activation of the hypothalamic–pituitary–adrenal axis are
related to the development of obesity because the primary basis for the increased activation
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of this system is hyperinsulinemia, which causes functional hypoglycemia; this, in turn,
leads to increased synthesis and release of ACTH, and then to excessive adrenal production
of cortisol. Adam and Epel [100] related the reward-based stress eating model, which
reveals the influence of cortisol on the consumption of high-calorie food and explains
the importance of potential neuroendocrine mediators in the relationship between stress
and eating. Both stress and eating stimulate the release of endogenous opioids, which, in
turn, leads to a decrease in the activity of the HPA axis and weakens the stress response.
Repeated stimulation of the reward pathway by stress stimuli induces stimulation of the
HPA axis and reaching for food. This, in turn, may lead to neurobiological adaptation of
the body and compulsive eating. Cortisol, in turn, may change the level of satisfaction
achieved as a result of eating through neuroendocrine mediators such as insulin, leptin,
and neuropeptide Y. Physiologically, the action of glucocorticoids is counteracted by insulin
and leptin; however, in chronic stress this system becomes imbalanced. This may result
in increased food intake, which may lead to the accumulation of fat tissue. Therefore, it
seems that excessive activation of the HPA axis may be one of the pathomechanisms linking
obesity and chronic stress. Chronic activation of the HPA axis can alter glucose metabolism,
promote insulin resistance, and affect many appetite-related hormones and hypothalamic
neuropeptides [103]. It has been shown that people exposed to chronic stress show a greater
preference for and consumption of tasty, energy-rich foods rich in sugar and fat, which
contributes to the development of obesity [104].

It has also been observed that the defensive reaction caused by stress leads to in-
creased activation of the sympathetic nervous system and vasoconstriction in skeletal
muscles [105]. It has been shown that increasing sympathetic activation may contribute
to the development of obesity through stress factors. Therefore, it seems that this may be
another pathophysiological link between chronic stress and obesity [105]. Because food is
an inexpensive and readily available source of reward that provides short-term pleasure
and relief from the discomfort associated with stress responses, negative reinforcement and
stress may motivate eating to regulate stress responses.

Chronic glucocorticoid exposure increases the expression and activity of lipoprotein
lipase within adipose tissue depots, facilitating fat storage, and this predominates within
visceral adipose tissue since visceral depots express more GR than subcutaneous depots.
The stromal vascular cells of visceral adipose express higher levels of 11β-hydroxysteroid
dehydrogenase (11β-HSD-1), an enzyme that regenerates glucocorticoids from their in-
active metabolites, further augmenting local glucocorticoid action in abdominal fat [106].
Moreover, cortisol can increase appetite and reduce the body’s sensitivity to insulin, which
leads to higher blood sugar levels [107]. Furthermore, cortisol plays a pivotal role in the
activation of an enzyme called lipoprotein lipase (LPL), which results in the increased
accumulation of triglycerides within fat cells, also known as adipocytes. It is essential to
underscore that the level of cortisol is closely correlated with the extent of fat tissue within
the body. What is of particular significance is the heightened sensitivity of intraabdominal
fat tissue to the influence of cortisol, owing to the abundance of receptors for this hormone
in comparison with other fat storage sites. Consequently, the adverse effects of excessive
cortisol are notably pronounced in this region, thereby facilitating fat accumulation in the
abdominal area [108].

Additionally, cortisol acts as an inhibitor of somatotropin, a growth hormone that
typically carries out a lipolytic function under normal conditions, promoting the break-
down of fat. These intricate processes appear to be especially conspicuous in individuals
afflicted by Cushing’s syndrome, characterized by elevated levels of both cortisol and
insulin, along with intra-abdominal obesity. Research conducted by Rebuffé-Scrive et al.
in 1988 corroborates the association between hypercortisolemia, hyperinsulinemia, and
intra-abdominal obesity [109]. Similarly, Rosmond et al. (1998) validated a substantial link
between postprandial salivary cortisol levels and various health parameters and obesity-
related indicators in men, such as BMI, waist-to-hip ratio (WHR), fasting glucose, insulin,
triglycerides, cholesterol, and blood pressure [110].
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3.2.2. Chronic Stress, Neurotransmitters, and Obesity

Potential mechanisms related to chronic stress and obesity include changes in the
neurotransmitter system. Neurotransmitter disorder is a neurometabolic disorder that
affects the way neurotransmitters are produced, broken down, or transported [111]. Neuro-
transmitter pathways include amino acids such as γ-aminobutyric acid (GABA), glutamate,
and glycine, and monoamines such as adrenaline, noradrenaline, dopamine, and sero-
tonin (5-HT). Chronic stress has been shown to affect brain motivation and habit-related
areas [96,112]. Therefore, it is assumed that stress and reward circuits in the brain overlap
and, by activating habit-based circuits, food cravings are increased by stress [96]. Cate-
cholamine neurotransmitters such as dopamine (DA) and norepinephrine (NE) are found
in brain neurons that are involved in the central nervous system’s response to stress. It has
been supported that stress is associated with an increase in the activity of neurons produc-
ing both DA and NE and leads to an increase in the synthesis of both transmitters [113]. It is
known that catecholamines, which are secreted by the adrenal medulla and the sympathetic
nervous system, exert a significant impact on the body’s energy processes [114]. Lipolysis is
initiated by catecholamines, which activate the process via β1- and β2-adrenergic receptors.
This stimulation results in an elevation of intracellular cyclic adenosine monophosphate
(cAMP) concentration due to cAMP-dependent activation of protein kinase [115]. HPA acti-
vation is associated with the activation of the mesolimbic dopaminergic system, a network
strongly linked to the reward system. Dopamine has been linked to reward sensitivity,
conditioning, and control of food abuse [103]. In people with obesity, the sensitivity of
α- and β-adrenergic receptors in adipose tissue is modified. In this way, catecholamines
influence the lipolytic process, leading to an increase in the storage of fat. The results of
preclinical studies indicate an ambiguous response of DA to various stressful stimuli. It
has been observed that acute, controlled physical stress causes increased DA outflow in the
brain, while during long-term and uncontrolled exposure to the same stress factors, DA
release is attenuated [116]. It is also known that chronic stress affects the neurotransmission
of serotonin (5HT) in the brain. The neurotransmission of serotonin (5HT) in the brain is
also known to be affected by chronic stress. Stress factors can activate raphe nuclei and
rapidly increase 5HT release at efferent targets, such as the cortex, hypothalamus, and
amygdala [117,118]. Therefore, chronic stress exposure may affect 5HT neurotransmis-
sion at postsynaptic targets, which may result in functional deficits in these brain regions,
which, in turn, may result in abnormal behavioral patterns. Neurotransmitters such as
serotonin and noradrenaline play an important role in the central nervous control of energy
balance, which is why they are involved in obesity-related symptomatology. Many neu-
rotransmitters have been shown to be involved in energy homeostasis by regulating food
intake and/or energy expenditure; this phenomenon changes in the case of obesity [111].
However, whether changes in neurotransmitter metabolism are the cause or perhaps a
consequence of overweight and obesity has not been fully clarified. This relationship is
partially confirmed by the observation that weight gain may be caused by drugs targeting
neurotransmission, such as atypical antipsychotics and antidepressants. This suggests that
changes in neurotransmission may precede the onset of obesity. Another confirmation of
the relationship may be the fact that the weight-loss properties of anti-obesity drugs are
related to molecules acting as monoamine reuptake inhibitors or 5-HT receptor agonists
and monoamine-releasing agents.

Chronic stressors have been shown to increase synaptic branching in the amygdala
and anterior cingulate cortex while decreasing synaptic connections to the hippocampus
and prefrontal regions [119]. Limbic regions, in turn, are involved in reward encoding and
reward-based learning and feeding [120]. Repeated stressors that keep the stress system
chronically activated can alter the brain’s reward pathways related to food seeking, which,
in turn, can lead to metabolic changes that promote fat storage. Body weight-dependent
adaptations of neural pathways may therefore enhance food preferences, appetite, and
food intake under conditions of chronic stress.
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3.2.3. The Impact of Chronic Stress on the Neurohormonal Regulation of Appetite

The regulation of appetite is a highly complex process, finely tuned by the intricate
interplay of various hormones and neurotransmitters in our body. These substances play a
crucial role in governing our appetite, dictating when hunger strikes, when we reach a point
of satisfaction, and even how our digestive system functions. Stress exerts a significant
influence on our appetite and eating behaviors. In moments of acute stress, our appetite
typically diminishes. However, the situation becomes markedly more intricate when we
are under chronic stress. The prolonged periods of stress often trigger intense cravings and
a pursuit of, as well as indulgence in, delicious, frequently high-calorie, and fatty foods.
This phenomenon is closely intertwined with weight gain and an elevated risk of obesity.

The brain plays a central role in regulating appetite. The hypothalamus is a center that
controls the feelings of hunger and satiety associated with eating. The arcuate nucleus pro-
duces various neurotransmitters such as neuropeptide Y (NPY) and agouti-related peptide
(AgRP), which increase appetite, and alpha-melanocyte-stimulating hormone (α-MSH) and
cocaine-and-amphetamine-regulated transcript (CART), which reduce appetite [121,122].
The paraventricular nucleus regulates the body’s energy expenditure and controls food
intake based on processing information received from the arcuate nucleus. Additionally,
the paraventricular nucleus produces corticotropin-releasing hormone (CRH), which affects
appetite [122].

Studies have shown that neuropeptide Y participates in the regulation of, and coping
with, stress and maintains emotional homeostasis, preventing the behavioral consequences
of stress and anxiety. Neuropeptide Y is also one of the main neuropeptides involved in
increasing appetite, the action of which is inhibited by leptin [123].

It is also worth mentioning that leptin, a hormone produced by adipocytes, exerts a
significant influence on the oxidation of fatty acids. Its concentration in the bloodstream is
closely linked to the amount of body fat. Upon entering the bloodstream, leptin reaches the
hypothalamus, where it exerts its effects on appetite regulation. Within the hypothalamus,
leptin diminishes the production of neurotransmitters that promote appetite, such as
NPY/AgRP, and enhances the production of neurotransmitters that suppress appetite, like
POMC/CART [124]. This leads to a reduction in food consumption and an increase in the
body’s energy expenditure. Moreover, leptin not only affects the regulation of appetite and
body weight but also plays an important role in maintaining the balance of blood glucose
levels by increasing the sensitivity of peripheral tissues to insulin [125]. Stress is known to
reduce leptin levels, a hormone released by adipose tissue that typically acts as a satiety
signal to the brain. When leptin levels decrease, the body’s hunger signals can intensify,
leading to excess calorie consumption [126].

Bouillon-Minois et al. (2021) showed that leptin levels decrease in response to acute
stress, mainly due to its effects on the HPA axis [127]. Experiments conducted in controlled
laboratory environments indicate that leptin has the capacity to suppress the secretion of
corticotropin-releasing hormone (CRH). This implies that the presence of leptin in the blood-
stream might act as a regulator, potentially restraining the functioning of the HPA axis [128].
It should be noted that despite higher leptin levels in people experiencing increased stress,
this does not always lead to the shutdown of the HPA axis (hypothalamic–pituitary–adrenal
system). The brain appears to become less sensitive to the signals transmitted by leptin.
This phenomenon makes it impossible to effectively inhibit the activity of the HPA axis and
control appetite [129].

Another important hormone that plays a key role in regulating appetite and influences
our eating habits is ghrelin. Ghrelin is known as the “hunger hormone” and is produced
mainly by the stomach lining. Typically, after we have eaten, the levels of ghrelin in our
bloodstream tend to decrease, which is a signal that helps promote a feeling of fullness or
satiety. However, when there is a disruption in the normal regulation of ghrelin quality
by a reduced suppression of ghrelin levels (in other words, ghrelin concentrations remain
elevated) after a meal, it can play a role in the tendency to overeat. This disruption in
ghrelin signaling may contribute to overconsumption of food [126,130]. Recent systematic
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studies have shown that ghrelin concentrations increase in response to both acute mental
and physical stress [127]. Moreover, it has been proven that changes in the levels of the
key stress hormone, cortisol, positively correlate with ghrelin levels both before and after
meals in women struggling with obesity [131]. In situations of chronic stress or when stress
reaches extremely high levels, the actions of cortisol and ghrelin may work together to
contribute to stressful eating habits. This includes excessive consumption of very appetizing
foods and eating despite not feeling hungry.

3.2.4. Chronic Stress, Inflammation, and Obesity

The relationship between chronic stress, inflammation, and obesity is complex. One
of the key mechanisms through which chronic stress contributes to inflammation is the
activation of the hypothalamic–pituitary–adrenal (HPA) axis. Prolonged exposure to el-
evated cortisol levels can disrupt the delicate balance of the immune system, resulting
in an uneven distribution of pro-inflammatory and anti-inflammatory responses. This
process involves immune cells, particularly macrophages, becoming active and producing
pro-inflammatory cytokines like interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor
necrosis factor α (TNF-α) [132]. Inflammatory processes play a disruptive role in the intri-
cate mechanisms governing the metabolism of both fat and glucose, causing interference
with the normal functioning of adipose tissue. Within the hypertrophic adipose tissue in
obese individuals, nearly 50% of all cell types present are macrophages that exhibit an
inflammatory phenotype. In the hypertrophic adipose tissue of obese individuals, almost
half of all cell types are macrophages, and these macrophages display an inflammatory
phenotype. The abundance of inflammatory macrophages within the adipose tissue sig-
nificantly amplifies the ongoing state of inflammation, thereby exacerbating the intricate
challenges linked to obesity. Consequently, this heightened inflammatory response often
leads to a shift in fat accumulation toward visceral adipose tissue, ultimately culminating
in the development of abdominal obesity, as highlighted in studies by Solinas et al. (2012)
and Jager et al. (2007) [133,134]. A study by Lutz et al. (2016) showed that in people suffer-
ing from obesity, the content of macrophages in visceral adipose tissue was significantly
higher compared with people with normal average body weight and amounted to as much
as 12%. In people with normal average body weight, the macrophage content was only
4% [135]. Wannamethee et al. in 2007 confirmed that the concentration of IL-6 in portal
veins correlates with the systemic inflammatory marker, C-reactive protein (CRP), in the
blood of patients with visceral obesity [136]. Also, Illán-Gómez has confirmed a positive
correlation between body mass index (BMI) and IL-6 levels in morbidly obese patients [137].
The results of a study by Arnardottir et al. (2012) confirm a strong correlation between IL-6
levels and BMI [138].

Regrettably, in the context of hypertrophied adipose tissue and the presence of pro-
inflammatory mediators, the ability of adipocytes to produce not only adiponectin but
also other beneficial adipokines is hampered. This, in turn, hinders the adipose tissue’s
capacity to fulfill its role in regulating anti-inflammatory, anti-hyperlipidemic, and insulin-
sensitizing processes [139]. Adiponectin is a substance that works in several different
ways to support metabolic health. One of its important actions is to inhibit the process
of lipogenesis, i.e., the creation of new lipids, by blocking the action of the sterol-binding
protein-1c. Moreover, adiponectin regulates the expression of pro-inflammatory genes by
inhibiting the activity of the NF-κB transcription factor. Adiponectin also promotes the
activity of two important transcription factors, PPAR-α(peroxisome proliferator-activated
receptor alpha) and PPAR-γ (peroxisome proliferator-activated receptor gamma). These
transcription factors are responsible for increasing the process of β-oxidation (fat burning
in cells) and glucose transport into cells via the type 4 glucose transporter [140]. A study
by Jaleel et al. (2006) showed that obese postmenopausal women have lower levels of
adiponectin compared with women with normal body weight. Additionally, the study
showed that obesity was associated with metabolic abnormalities, such as disturbances in
blood lipid levels and changes in leptin levels [141].
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3.2.5. Chronic Stress, Insulin Resistance, and Obesity

Chronic stress can negatively affect glucose homeostasis and lead to insulin resis-
tance [142,143]. Research suggests that chronic stress may influence the development of
insulin resistance in various ways. First, stress can increase the levels of hormones such as
cortisol, which affect metabolism and may impair glucose regulation. Second, a notable
link connection is observed between chronic stress and activation of the renin–angiotensin
system (RAS) and insulin resistance. When this system is stimulated as a result of stress,
there is a noticeable increase in the level of angiotensin II, a substance associated with it.
Angiotensin II’s detrimental impact extends to the inhibition of insulin-stimulated tyrosine
phosphorylation (IST) via a mechanism dependent on mitogen-activated protein kinase
(MAPK) [144]. Additionally, angiotensin II negatively affects the availability of nitric oxide
(NO), subsequently impeding insulin signaling and diminishing insulin sensitivity [145].
Furthermore, angiotensin II can diminish the activity of PI3K, a crucial component of the
insulin signaling pathway [144], and it disrupts the proper localization of Glut-4 on cell
membranes [144].

Another important factor is excessive stimulation of the immune system as a result
of chronic stress, which leads to an increase in the level of inflammatory mediators and
pro-apoptotic factors. These phenomena have the potential to damage pancreatic cells.
The consequence of this is disruption of the proper functioning of pancreatic cells, which,
in turn, is associated with the risk of developing metabolic disorders, including insulin
resistance [146]. In a 2014 study conducted by Parkulo, it was revealed that the structure
and function of pancreatic islets in mice are detrimentally affected by long-term stress,
which has detrimental effects on the structure and function of pancreatic islets in mice,
resulting in the shrinkage of these structures and an increased risk of type 1 diabetes.
Additionally, the research showed that chronic stress diminished the activity of genes
responsible for the proliferation of pancreatic beta cells [147]. Furthermore, Huffman et al.
(2013) found that individuals who experienced depression and persistent mental stress
exhibited impaired beta cell function, directly impacting insulin availability and glucose
homeostasis [148].

3.2.6. Chronic Stress, Oxidative Stress, and Obesity

In cases of chronic stress and inflammation, the equilibrium between the generation
and removal of free oxygen radicals and their derivatives is disrupted, resulting in the
onset of oxidative stress. Individuals enduring prolonged periods of stress often exhibit
shifts in their eating habits. Stress can sometimes trigger “stress eating”, leading people
to reach for high-calorie and unhealthy snacks as a way to cope with their emotional
burdens. This heightened intake of fats, carbohydrates, and unhealthy fatty acids can
heighten oxidative stress via diverse biochemical pathways. These processes involve the
overproduction of superoxide via NADPH oxidase activity, oxidative phosphorylation,
spontaneous glyceraldehyde oxidation, activation of protein kinase C, and stimulation of
polyol and hexosamine pathways [149]. These metabolic abnormalities lead to increased
oxidative damage to cells, which may manifest as mitochondrial and DNA damage, as
well as a decrease in adenosine triphosphate (ATP) levels and lipotoxicity [150]. As a
result of increased oxidative damage, there is increased production of pro-inflammatory
cytokines and acceleration of lipid peroxidation. This results in increased lipogenesis and
altered insulin signaling, further enhancing the production of reactive oxygen species, and
creating a detrimental feedback loop [151]. Consequently, oxidative stress is a significant
contributor to the excessive accumulation of body energy substances such as glucose
and fats in the liver, muscles, and adipose tissue, while stimulating mitochondrial and
peroxisomal oxidation processes [152]. It is worth noting that people with obesity are
more susceptible to oxidative damage due to depleted resources of antioxidants, such as
superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT), as well as
vitamins A, E, C, and β-carotene compared with people with normal body weight [153].
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Reactive oxygen species (ROS) not only stimulate the secretion of pro-inflammatory
cytokines, but also activate adhesion molecules and growth factors such as connective
tissue growth factor, insulin-like growth factor-1 (IGF-I), platelet-derived growth factor,
and vascular cell adhesion molecule-1. This process is possible owing to the action of
transcription factors that respond to changes in the level of oxidation–reduction, especially
by activating the NADPH (NOX) oxidase pathway and the NF-κB factor [154]. Moreover,
ROS stimulates cytokine secretion through the apurin/apyrimidin endonuclease/redox
factor-1 (APE/Ref-1-)-dependent pathway [155].

It is also important to recognize that adipose tissue serves as a source of bioactive
molecules known as adipokines, which can play a significant role in oxidation–reduction
balance. In people who are overweight or obese, changes in the level of adipokines are
often observed, especially an increase in leptin concentration. Leptin, which is secreted
mainly by adipocytes, plays a role in regulating appetite and the feeling of satiety. However,
in people with obesity, leptin levels are often elevated, which may lead to resistance to its
effects on appetite. At the same time, increased leptin can stimulate oxidative stress by
increasing phagocyte activity, inducing the synthesis of pro-inflammatory cytokines such
as TNF-α, IL-6, and IL-2, and increasing the levels of endothelial cell activation markers.
This may contribute to the intensification of oxidative stress in the body of people with
obesity [156].

In turn, adiponectin in people with obesity reaches low concentrations in blood serum,
owing to which it loses its anti-inflammatory and anti-atherosclerotic properties [157]. At
the same time, adiponectin is unable to effectively limit the release of reactive oxygen
species (ROS) by low-density lipoproteins (LDLs), which results in increased oxidative
stress in people struggling with overweight. In individuals with obesity, inflammatory
adipocytokines like visfatin and resistin are released from adipose tissue. The concentra-
tions of these adipocytokines exhibit a positive correlation with the quantity of adipose
tissue and the occurrence of oxidative stress, as evidenced by studies conducted by Moschen
et al. (2007) and Chen et al. (2010) [158,159].

3.2.7. Chronic Stress, Gut Dysbiosis, and Obesity

Stress is also a significant factor causing an imbalance in the gut microbiota home-
ostasis and gut dysbiosis [9]. The term “dysbiosis” refers to a disruption in microbiota
equilibrium, leading to alterations in the composition, function, and activity of the microbial
community [160]. Dysbiosis may be characterized as the loss of beneficial microorganisms,
an increase in the abundance of pathobionts, and a reduction in microbial diversity [160,161].
Dysbiosis can be described as the depletion of beneficial microorganisms, a rise in the preva-
lence of pathogenic microorganisms, and a decrease in overall microbial diversity [160,161].
The gut microbiota plays a critical role in multiple physiological functions, including
regulation of the HPA axis and sympathetic–adrenal medullary signaling, shaping the
stress response [27]. Consequences of exposure to prolonged or chronic stressors in rodent
models encompassed alterations in the microbiota composition and function, reduced
stability of the microbiome, and increased microbial volatility [9]. Changes in the microbial
community included in particular reduction in Lactobacillaceae Akkermansia and Bifidobac-
teriacae and an increase in pathobionts like Clostridiacae, Escherichia, and Shigella [9]. Gut
dysbiosis appears to play a significant role in the development of obesity. As it has been
described previously, stress is a significant factor affecting appetite and shaping dietary
choices [10,11], while the diet is one of the most significant modifiable factors affecting
gut microbiota homeostasis [162,163]. A high-fat diet is associated with increase in the
Firmicutes to Bacteriodetes ratio, Lactobacillus spp., Enterobacteriaceae, Bacteroidales, Bacteroides
spp., Bifidobacterium spp., and Enterococcus spp., and reduction in Clostridia, Clostridium
leptum, and Enterobacter spp. in the gut microbiota composition [162]. Another implication
of a high-fat diet is the low diversity of gut microbiota and the promotion of intestinal
permeability [10,11]. It should be highlighted that the interaction between the diet and
microbiota is bidirectional [10]. The gut microbiota with its metabolites may affect appetite
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regulation, reward system, or taste receptor expression [10]. Thus, it appears that stress,
diet, and microbiota combine to form a virtuous cycle. Potential strategies for breaking this
cycle may be focused on behavioral interventions aiming at diet modifications and stress
reduction, as well as on therapeutic interventions leading to microbiota modulation.

The composition of gut microbiota in obese individuals may vary among different
populations; however, in general, it is characterized by an elevated Firmicutes to Bacteroidetes
ratio, and a decrease in Bacteroides spp., Akkermansia spp., and Bifidobacterium spp. [162,163].
Gut dysbiosis in the gut induced by a Western diet promotes obesogenic mechanisms,
including the excessive harvesting extraction of energy from food and dysregulation of en-
ergy balance and gut hormones [160,163,164]. Moreover, alterations in gut microbiota may
be associated with increased intestinal permeability, metabolic bacteriaemia, endotoxemia,
and immune dysregulation propagating obesogenic inflammation [160,163,164]. However,
further studies are needed to fully elucidate the complex role of the gut–brain axis in the
pathogenesis of obesity.

4. Summary

The isolation policies necessary to limit the spread of SARS-CoV-2 infection have had
an impact on the physical activity and eating habits of children and adolescents. Research
has shown that the experience of chronic stress in the form of the COVID-19 pandemic
plays an important role in many stages of the complex pathogenesis of obesity. Exposure to
chronic stressors affects the neuroendocrine regulation of appetite and food preferences,
and also promotes inflammation and intestinal dysbiosis, contributing to the development
of obesity. It has also been shown that chronic stress influences the development of
overweight and obesity through many mechanisms, such as the development of oxidative
stress, neuroinflammation, insulin resistance, neurohormonal disorders, dysregulation of
the HPA axis, and disorders in neurotransmission. Exposure to chronic stressors also affects
the neuroendocrine regulation of appetite and food preferences and promotes inflammation
and intestinal dysbiosis, contributing to the development of obesity. Obesity in children
is a serious disease with serious consequences for mental, physical, and social health. It
can lead to many diseases, including depression, coronary artery disease, type 2 diabetes,
certain cancers, and osteoarthritis. Now more than ever, there is an urgent need to develop
effective strategies to prevent overweight and obesity in the pediatric population and to
develop effective multidisciplinary programs for the treatment of childhood obesity.
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