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Abstract: Ultra-processed foods (UPFs) are foods that are industrially processed and are often
pre-packaged, convenient, energy-dense, and nutrient-poor. UPFs are widespread in the current
Western diet and their proposed contribution to non-communicable diseases such as obesity and
cardiovascular disease is supported by numerous studies. UPFs are hypothesized to affect the body
in multiple ways, including by inducing changes in the gut microbiome. This review summarizes
the available research on the effect of UPFs on the gut microbiome. We also review current usage
of the NOVA food classification system in randomized controlled trials and observational studies
and how its implementation effects UPF research. Despite some differences in methodology between
studies, results often associate UPF consumption with a number of negative health consequences.
There are attempts to standardize a UPF classification system; however, reaching and implementing
a consensus is difficult. Future studies focusing on the mechanisms by which UPFs effect the body,
including through the microbiome and metabolome, will be essential to refine our understanding of
the effects of UPFs on human health.

Keywords: ultra-processed food (UPF); gut; microbiota; microbiome; food classification; diet; clinical
studies; NOVA

1. Introduction

The Western diet is a modern dietary pattern in industrialized countries characterized
as having high intake of processed and refined foods, red and processed meats, added
sugars, and saturated and trans fats. Processed food types within this diet, such as fast food
and ready-to-consume, pre-packaged foods are generally energy-dense, yet nutrient-poor,
and account for a high percentage of daily caloric intake [1]. Pre-packaged processed foods
are convenient in that they reduce the time required for cooking, are cost-effective, and
are generally enjoyable to consume. The Western diet, coupled with a sedentary lifestyle,
has been associated with chronic metabolic inflammation, which is thought to contribute
to the development of many prevalent non-communicable diseases, including obesity,
diabetes, cardiovascular disease (CVD), and cancer [2]. Studies of the health impact of
ultra-processed foods (UPFs) overlap with studies of the impact of a Western diet, as a
Western diet typically includes a high proportion of UPFs. There is growing evidence
that UPFs are contributing to the increase in non-communicable diseases, morbidity, and
mortality, through a number of potential mechanisms [3–5]. The mechanisms by which
UPFs may cause harm include (1) increased total energy intake due to increased portion
sizes and high caloric density, (2) increased glycemic response, (3) associated higher salt,
sugar, and saturated fats that have been studied extensively, (4) additives that likely affect
the gut microbiota and associated metabolism, (5) Maillard reaction products, acrolein and
acrylamide, that have been associated with insulin resistance and oxidative stress, and
(6) changes in food absorption due to altered food matrix and corresponding intestinal
inflammation [6]. An additional mechanism to consider is the effect of UPFs and food
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additives on gut health through changes in the composition and metabolism of the gut
microbiome [7]. There is accumulating evidence to suggest that a diet high in UPFs may
disrupt the normal intestinal mucus barrier and goblet cell function [8]. Few studies have
examined associations between UPFs and the gut microbiota; however, studies on the
typical Western diet are able to offer some insight. This review summarizes the findings
from studies associating the gut microbiota and (1) UPFs, (2) plant-based diets, (3) fast-
food meals, and (4) ultra-processed meals/supplements with high nutritional value. Also
included is a brief section on food additives, which are abundant in UPFs.

The most commonly used UPF classification system, NOVA, was first proposed in
2009 [9], was refined in 2016 [10], and has since been adopted by the Food and Agriculture
Organization of the United Nations [11]. NOVA categorizes foods into one of four groups
based on the extent and purpose of processing, rather than in terms of nutrients, such
that group 1 items are non-processed or minimally processed items (e.g., fresh fruits and
vegetables), group 2 are processed cooking ingredients (e.g., oil, flour, sugar), group 3 are
processed items (e.g., some canned fruits, vegetables, or meats), and group 4 items are UPFs
(e.g., packaged chips, cookies, pre-made meals, etc.) [10]. However, there has been much
discussion on the challenges faced by researchers to apply this classification system in their
clinical studies and debate on the ambiguous food items which potentially fit into more
than one category. Furthermore, the methods used in dietary studies vary by collection
tool (e.g., Food Frequency Questionnaire (FFQ), 24 h dietary recalls, food records) and
frequency, which can add an additional layer of difficulty for comparing studies because
the level of detail varies across the studies. Clinical nutritional studies with a focus on
UPFs that have used NOVA have exponentially increased over the last five years, some
of which have provided their interpretations and methods for discretionary analysis for
classifying ‘difficult’ foods, and we summarize these approaches in this review.

The epidemiological and randomized controlled trials discussed in this review are vital
to forming hypotheses for ongoing and future research; however, more studies are needed
to warrant changes in public health policies. The central aims of this article are to (1) provide
a review of the clinical evidence associating UPFs and gut microbiota alterations, and (2) to
discuss a representative sampling of the individual detailed methods of researchers using
the NOVA classification system in their clinical studies.

2. Methods
2.1. UPFs and the Gut Microbiome

For this narrative review, the articles included were chosen from searches in PubMed.
The online searches were conducted using the following keywords: ultra-processed, pro-
cessed, diet, food, Western, healthy, gut, microbiome, microbiota, fast food, meal, additive,
and combinations thereof. Additional relevant publications were found in the citations of
the articles found in our literature search. Publications were restricted to original human
studies written in the English language. Selected articles contained both a method for
classifying food processing level and reported sequencing data for the gut microbiome and
can be viewed in Table 1.

2.2. UPF Classification Methods

Articles for discussion of UPF classification methods were found by searching the
PubMed database. Searches were conducted using a set of search terms relating to food
processing and ultra-processed foods. We excluded review articles and any articles not in
the English language.

Randomized controlled trials (RCTs) were restricted to the previous 10 years and
observational studies were restricted to 2023 and 2024. The exact search terms used to find
RCTs and observational articles are detailed in Tables S1 and S2. The number of articles
found and excluded are shown in Figure 1.
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Inclusion criteria: The methodology for each article found in the searches was reviewed
and studies were included if they described classifying foods into categories based on the
degree of processing using the NOVA method. The selected articles included a measure
of health (e.g., body composition, CVD risk). Articles were also evaluated for the level
of detail in their methods of categorizing UPFs. Highly detailed articles from the list are
included in Tables 2 and 3. Articles were considered to be highly detailed in their methods
of categorizing UPFs if they included most of the following elements: (1) the classification
rules used to resolve food classification discrepancies, (2) a method to classify food items
with limited or missing information (e.g., foods prepared at restaurants), (3) a method to
classify foods as UPFs based from specific ingredients, (4) a list and discussion of specific
challenging examples, and (5) a full or sample menu of food provided in the study or
sufficient details to reproduce the methods.

Exclusion criteria: We excluded articles that were not related to classifying food
by processing level (i.e., articles related to neurological processing), articles using food
classification systems other than NOVA, and articles that were limited to a specific food
(i.e., processed meats) instead of food processing in general. Articles involving animal
subjects were also excluded.

3. UPFs and the Gut Microbiome
3.1. Analysis of the Gut Microbiome in Studies with a Focus on UPF Classification

Diet has been shown to quickly modify the gut microbiome, and the gut microbiota
play an active role in human health, ranging from metabolism to immunity to disease sus-
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ceptibility [12–14], and the microbiome has potential use in predicting the risk, progression,
and severity of disease [15]. Recent human studies that have examined the associations
between UPFs and the gut microbiome, separate from food that is part of a Western diet,
are outlined in Table 1, and their additional study characteristics can be viewed in Table S3.

These four observational studies use the NOVA classification system to identify UPFs
(two using FFQs and two using 24 h dietary recalls); however, each uses a unique sys-
tem of comparing UPFs within their populations. For example, Cuevas-Sierra et al. [16]
compare “high” UPF consumption vs. “low” UPF consumption (>5 servings/day and
<3 servings/day, respectively), while Atzeni et al. [17] compare tertiles of proportions
(percentage of total daily calorie intake) of UPF consumption (where low = first tertile,
medium = second tertile, and high = third tertile). This prompted us to examine the in-
dividualized methods within the studies that used NOVA to categorize their food items.
While Atzeni et al. and Fernandes et al. provide no details beyond the general references
for using NOVA, Cuevas-Sierra et al. included a supplemental list of all foods classified as
UPFs in their FFQ and García-Vega et al. describe details of their process for categorizing
foods from their 24 h dietary recalls [16–19]. García-Vega et al. classified all food items as
either ultra-processed or not ultra-processed. Of the 14,375 food items reported in the study,
93% (13,358 food items) were easily categorized and 7% could be classified in either group
(e.g., Colombian food called arepa, a grilled patty of soaked ground kernels of corn or corn
flour, is equally common to be prepared at home or bought in industrialized form). In the
case of uncertain foods, the authors considered items to be UPFs. A sensitivity analysis
was performed by evaluating the effect of classifying these foods as not ultra-processed,
which did not affect the results [19]. This highlights the heterogeneity of methods used
to collect and categorize food information, which makes reproducing studies difficult,
but suggests that the conclusions from multiple studies are robust despite the subset of
difficult-to-classify food items.

All four UPF studies analyzed the gut microbiome using a single fecal sample collected
per individual and 16S rRNA sequencing of various hypervariable regions. Diversity
matrices are often included in microbiome studies, and it has been shown that diversity in
the gut can be affected by both diet and body size, though the relevance of these matrices
in deciphering the interplay between diet, gut microbiome, and health remain unclear [20].
Only one of the four UPF studies showed a difference in alpha diversity, while none of
the studies observed significant differences in beta diversity. Cuevas-Sierra et al. revealed
that men consuming >5 servings/day of UPFs had lower richness compared to men
consuming <3 servings/day; however, no differences were seen in women or the whole
population [16]. This study indicates that the associations between UPFs and gut microbiota
may be sex-specific; however, other studies adjusting their analysis for sex did not observe
differences [17,19]. Two studies identified increased Prevotella spp. [17,19] and two studies
identified decreased Lachnospira spp. [16,19] and Ruminococcus spp. [18,19] with increased
UPF consumption. Interestingly, García-Vega et al. showed that Prevotella spp. (P. copri and
P. melaninogenica) were associated with increased intake of animal-derived foods, while
Ruminococcus spp. (R. bromii and R. albus) and a Lachnospira sp. were positively associated
with intake of plant-derived food groups [19]. The Firmicutes/Bacteroidetes (F:B) ratios,
which sometimes correlate with obesity, disease states, or dietary patterns [21–23], were
not significantly correlated with UPF consumption in three of the studies [16–18].

Although there are only a few studies in Table 1, there are numerous studies report-
ing changes to the gut microbiome in response to dietary changes that would affect UPF
consumption, even if UPF classification was not a focus of each study. For example, in-
dividuals switching from a Western diet to a Mediterranean diet would most likely have
a significant drop in their UPF consumption, and the gut microbiome changes in those
studies likely overlap with the changes that might be seen on a diet focused on reducing
NOVA 4 foods [24–30]. The potentially significant differences in specific UPFs and UPF
ingredients between the various dietary intervention designs is worth consideration, and
additional studies with a specific focus on UPFs and the gut microbiome are needed. UPFs
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are often associated with negative health outcomes. Some general health outcomes of the
four UPF studies are discussed here, and additional information can be found in Table S3.
The study by Atzeni et al. was a substudy of the PREDIMED-Plus trial, which analyzed
the habitual diet of older volunteers with overweight/obesity and metabolic syndrome.
They found that while UPF consumption was positively associated with a lower Mediter-
ranean diet adherence score, there were no significant differences in insulin, cholesterol,
triglycerides, body weight, or body mass index (BMI) between those consuming the low-
est (7.177 ± 2.349% kcal/day) and highest (21.4 ± 5.0% kcal/day) amounts of UPFs [17].
Cuevas-Sierra et al. also reported on the habitual diet of adults in the Obekit trial but
analyzed men and women separately from the whole population. They discovered several
sex-dependent differences in their cohort; women consuming >5 servings/day of UPFs
reported more cases of depression and anxiety and higher weight and hip circumference.
Meanwhile, men consuming >5 servings/day of UPFs had decreased levels of high-density
lipoprotein (HDL) cholesterol and higher weight and BMI [16]. The study by Fernandes
et al., which only included women, found that UPF consumption was associated with leptin
resistance after adjusting for fat mass, but no other anthropometric or clinical variables [18].
Lastly, the study by Garcia-Vega et al. recruited individuals in equal proportions by city of
origin, sex, age range, BMI, and socioeconomic status, but did not compare these variables
to UPF intake, nor did they measure other metabolites or other clinical variables [19]. Given
that there are only three studies here that examined clinical outcomes pertaining to UPF
intake, no trends can reasonably be drawn. Additional studies incorporating measurements
of food processing level, gut microbiome, and clinical data are needed before we can start
to piece together the definitive effects of UPFs on the gut microbiome and health.

These studies have several strengths and limitations. The strengths include the fact
that statistical analyses of these studies were adjusted for several potential confounding
factors, including age, BMI, sex, and others, where applicable. The sample sizes were
sufficient, with the smallest sample being 59 women [18] and the largest being 645 individ-
uals [17]. A limitation of cross-sectional observational studies is the inability to infer causal
relationships. The use of 16s rRNA sequencing analysis often limits taxonomic profiling to
genus-level data. Although widely accepted, both FFQs and 24 h dietary recalls are limited
in their usefulness to assess UPFs due to generalized food categories and limited sampling
frequency. While two of the four studies used dietary quality indices (Healthy Eating Index
and Colombian Food-Based Dietary Guidelines [19] and Mediterranean Diet Score [16]),
neither adjusted for these in their statistical analysis, so the influence of diet quality cannot
be ruled out as a confounder. Lastly, the differences in how UPFs are categorized and com-
pared within each study make comparing the data between studies challenging. Changing
the cut-off values for servings per day or tertiles of UPFs may change the study results.
Although there are few studies that have specifically examined the associations between
UPFs and the gut microbiome, these are fairly detailed studies, and we expect to see data
from several more observational and randomized controlled trials (i.e., Capra et al. [31])
within the next decade. Additional information can be gained from studies that were not
specifically identified as being UPF studies, as is described below.
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Table 1. Methods and outcomes of clinical studies examining UPFs and the gut microbiome.

References
Gut Microbiome

Collection Method and
Frequency

Alpha Diversity Beta Diversity
Microbiome Sequencing Analysis:

Bacterial Composition Changes in Relation to UPFs Composition Changes Related to
Specific UPFs

Increase ↑ Decrease ↓

Atzeni, 2022 [17]
One stool sample collected

by volunteers at home
and frozen

M
ET

H
O

D
S

Chao1, Shannon, and
Simpson indices

analyzed with one-way
ANOVA.

Euclidean distance
analyzed by

PERMANOVA.
16S rRNA analysis of the V4 variable region using Novaseq

No significant differences between
bacterial taxa and UPF

item categories.

R
ES

U
LT

S
No significant

differences.
No significant

differences.

Positive association between Alloprevotella spp.
(p = 0.041) and Sutterella spp. (p = 0.116) vs.

tertile 2.

Positive association between Alloprevotella spp.
(p = 0.065), Negativibacillus spp. (p = 0.096), and

Prevotella spp. (p = 0.116) vs. tertile 3.

Cuevas-Sierra,
2021 [16]

One fecal sample
self-collected by volunteer
using OMNIgene. GUT kits

from DNA Genotek
(Ottawa, ON, Canada)

M
ET

H
O

D
S

Chao1 and Shannon
indices analyzed

using a paired
non-parametric test.

Bray–Curtis index
analyzed using

PERMANOVA test.
16S rRNA analysis of the V3–V4 variable regions using MiSeq

Women: dairy and pizza positively
correlated with Actinobacteria
(p < 0.05), and pizza positively

correlated with Bifidobacterium spp.
(p < 0.05)

Men: meat positively correlated
with Bacteroidetes (p < 0.05)

R
ES

U
LT

S

Men consuming >5
servings/day of UPFs
showed lower richness

compared to men
consuming <3

servings/day (observed
p = 0.03, Shannon

p = 0.01, Chao1 p = 0.04),
yet no differences in

women or whole
population.

No significant
differences.

Whole population:
Gemmiger spp. (p < 0.001),

Granulicatella spp. (p < 0.001),
Parabacteroides spp. (p < 0.001),

Shigella spp. (p < 0.001),
Bifidobacterium spp. (p < 0.001),

Anaerofilum spp. (p = 0.001),
Cc_115 spp. (p = 0.007),

Oxalobacter spp. (p = 0.008),
Collinsella spp. (p = 0.008)

Women:
Acidaminococcus spp. (p < 0.001),

Butyrivibrio spp. (p < 0.001),
Gemmiger spp. (p < 0.001),

Shigella spp. (p < 0.001),
Anaerofilum spp. (p = 0.001),

Parabacteroides spp. (p = 0.002),
Bifidobacterium spp. (p = 0.006)

Men:
Granullicatella spp. (p < 0.001),

Blautia spp. (p = 0.002)

Whole population:
Lachnospira spp. (p = 0.003),

Roseburia spp. (p = 0.003)

Women:
Melainabacter spp. (p = 0.002),

Lachnospira spp. (p = 0.003)

Men:
Anaerostipes spp. (p < 0.001)
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Table 1. Cont.

References
Gut Microbiome

Collection Method and
Frequency

Alpha Diversity Beta Diversity
Microbiome Sequencing Analysis:

Bacterial Composition Changes in Relation to UPFs Composition Changes Related to
Specific UPFs

Increase ↑ Decrease ↓

Fernandes, 2023
[18]

One fecal sample collected
at home; one aliquot was

stored in a tube containing
3.5 mL of guanidine for

genomic DNA conservation
M

ET
H

O
D

S Chao1, Shannon,
Simpson, and Observed
Species indices analyzed

using Pearson’s
correlation coefficients.

N/A 16S rRNA analysis of the V2–V4 + V6–V9 (excluding V1 and V5) variable regions using
Ion Torrent Personal Genome Machine™

N/A

R
ES

U
LT

S

No associations between
food processing level
and alpha diversity.

N/A

Clostridium butyricum,
Odoribacter splanchnicus,

Barnesiella intestinihominis
Alistipes onderdonkii,
Alistipes indistinctus,

Ruminococcus sp.,
[Ruminococcus] gnavus,

Bacteroides vulgatus,
Bacteroides plebeius

García-Vega,
2020 [19]

One fecal sample
self-collected by volunteer
at home, refrigerated, and

brought to the lab
within 12 h

M
ET

H
O

D
S

Estimates calculated with
BiodiversityR 2.11.

Shannon and Shannon
evenness (Jevenness)

indices calculated using
Vegan 2.5 and tested

with ANOVA.

Estimates calculated with
GUniFrac 1.1 and

tree-based UniFrac
distances tested with

PERMANOVA.

16S rRNA analysis of the V4 variable region using MiSeq OTUs from Oscillospira sp.,
unclassified Ruminococcaceae,

Ruminococcus sp., Lachnospira sp.
positively associated with intake

of plant-derived food groups, rich
in dietary fiber; Bifidobacterium

adolescentis associated with
plant-derived food groups;

bile-tolerant Bilophila sp., Prevotella
copri, and the opportunistic

pathogen Prevotella melaninogenica
were associated with increased
intake of animal-derived foods

R
ES

U
LT

S

Higher in females than
males (Shannon,

p = 0.046), higher in
middle-aged than

younger individuals
(Shannon, p = 0.012). No

significant association
between diet quality

(including UPF intake)
and alpha diversity.

Differences according to
participants’ city of

origin (p = 0.001), sex
(p = 0.001),

socioeconomic level
(p = 0.024) and BMI

(p = 0.002). No
significant association
between diet quality

(including UPF intake)
and beta diversity.

Bifidobacterium adolescentis,
Prevotella melaninogenica,
Subdoligranulum variabile,

Veillonella dispar,
Ruminococcus sp.,

Bilophila sp.,
Oscillospira spp.

Prevotella copri,
Clostridium hathewayi,

Ruminococcaceae unclassified sp.,
Gemella sp.,

Lachnospira sp.,
Oscillospira spp.

Abbreviations: UPF = ultra-processed food; BMI = body mass index; OTUs = operational taxonomic units; PERMANOVA = permutational multivariate analysis of variance; N/A = not
applicable.
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3.2. Plant-Based Diets: Health Conseqences and Effects on the Gut Microbiome

While the term “ultra-processed foods” may be relatively new to the nutrition field,
researchers, clinicians, and nutritionists have been studying these types of food categories,
along with the benefits of whole-food diets and anti-inflammatory diets, for many years.
For example, foods high in added sugars, salts, and food additives, which very often are
classified as NOVA 4 ultra-processed foods, are generally recognized as foods that should
be limited in several healthy diets such as the Mediterranean diet, the Dietary Approaches
to Stop Hypertension (DASH) diet, and the World Cancer Research Fund and the American
Institute for Cancer Research (WCRF/AICR) dietary recommendations, among others.
Multiple studies have been conducted in cohorts who follow a healthy plant-based diet.
A recent cross-sectional analysis of baseline data from 596 participants enrolled in the
Mediterranean healthy Eating, Aging and Lifestyle (MEAL) study showed that high UPF
consumption correlated with low adherence to the Mediterranean diet and higher odds of
having depressive symptoms [32]. The DASH diet, which emphasizes intake of fruits and
vegetables, whole grains, and low-fat dairy, is one of the most widely prescribed diets for
reducing blood pressure and risk of CVD [33]. A 12-week randomized low-calorie DASH
diet intervention in adults with obesity (N = 120) resulted in a decreased F:B ratio compared
to an alternative low-calorie diet, and reduced LPS levels compared to the control group
(not calorie-restricted, counseled to plan meals, to minimize over-eating and high-fat foods,
and to exercise to achieve weight loss) [34]. The WCRF/AICR diet is considered an anti-
inflammatory diet and limits the consumption of fast foods and processed foods. Colorectal
adenoma patients (n = 97) and healthy volunteers (n = 54) who adhered to the WCRF/AICR
diet had reduced relative abundance of unidentified Enterobacteriaceae spp. compared to
subjects with low adherence. Interestingly, restricting fast-food intake was associated with
high Bacteroidaceae and Bacteroides spp. abundance, and reduced inflammatory biomarker
immunoglobulin G (IgG) levels in men, while limiting sugary drinks was associated
with reduced Lachnospiraceae [35]. The population-based Milieu Intérieur study of 862
healthy French adults showed that bacterial diversity (Simpson’s index) was negatively
associated with food items that are generally recommended for limited consumption, such
as fried foods, sodas or sugar-sweetened beverages, ready-cooked meals, and desserts.
Assessment of the relative abundance of the gut microbiome using 16S rRNA sequencing
and multivariate association with linear models found that Streptococcus parasanguinis and
Prevotella oulorum negatively correlated with sodas or sugary drinks, while there was a trend
toward positive associations between Blautia luti (p = 0.06) and Ruminococcus gauvreauii
(p = 0.07) and sweets, and Bifidobacterium adolescentis (p = 0.07) and fatty sweet products [36].
These healthy plant-based dietary interventions are a few examples of many studies that
can be used to make general hypotheses for the effects of UPFs on the gut microbiome and
health outcomes, and are useful for designing future studies.

In contrast, the Western diet, which is a diet prevalent in most industrialized nations, is
high in saturated fats, salt, animal proteins, and UPFs. Studies of the health impact of UPFs
overlap with studies of the impact of a Western diet, as a Western diet typically includes a
high proportion of UPFs [1]. The effects of a Western diet on the human microbiome have
been reviewed elsewhere [1,2,8,37].

Upon review of the numerous published studies on the gut microbiome and dietary in-
terventions, the complexity of the microbiome is beyond question. There are some bacterial
modifications that recur in multiple studies as associations with dietary change (i.e., in-
creased Roseburia spp., decreased Ruminococcus spp., and decreased Firmicutes/Bacteriodes
ratio in response to a Mediterranean diet). However, there are many more examples of
species changes that are only seen in one or a few studies to date. This emphasizes that we
do not yet know which species might be critically important, or which have substitutes that
are equally functional in a particular pathway, or if the bacterial community composition
(not specific species) and non-bacterial microbiota might be the key. We refer the reader to
other comprehensive reviews on this topic and look forward to future scientific advances
in the area of gut microbiome changes with specific dietary components.
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3.3. Fast-Food Meals: Effects on Gut Microbiota and Metabolites

According to the Centers for Disease Control and Prevention (CDC), during 2013–
2016, approximately 37% of adults consumed fast food each day, reported as “restaurant
fast food/pizza” in 24 h dietary recalls collected by the National Health and Nutrition
Examination Survey (NHANES) study [38]. Fast-food meals are categorized as UPFs, are
typically high in saturated fat, sugar, salt, and calories, are a usual part of the Western diet,
and have been shown to modify the gut microbiome. A randomized cross-over trial of ten
healthy subjects consuming a fast-food (i.e., burgers and fries) or Mediterranean diet for
4 days each, with a 4-day washout period between diets, showed increases in bile-tolerant
bacteria, including Collinsella spp., Parabacteroides spp., and Bilophila wadsworthia, and
decreased fiber-fermenting bacteria, including Lachnospiraceae spp. and Butyricicoccus spp.,
after the fast-food diet [39]. A prospective observational study of 25 healthy individuals
provided fast-food meal options (i.e., burgers, French fries, chicken nuggets, pizza, pasta,
beverages, and dessert/ice cream) from two major international franchises, a local pizza
kitchen, and non-diet sodas ad libitum for two hours did not find differences in fecal
bacterial diversity (Shannon and Simpson indices) and communities from before and the
day after the fast-food binge. Indeed, changes in gut microbiota might not be expected to be
measurable in fecal specimens in such a short period of time. However, there were several
significant changes in serum total and individual primary and secondary bile acids [40].
Although both of these studies were very short (1–4 days), they provide evidence that
fast-food meals may impact the gut environment compared to both baseline and healthy
(Mediterranean) diets.

3.4. UPF Meals/Supplements with High Nutritional Value: Effect on the Gut Microbiota and Metabolites

The long shelf life and stability of ready-to-consume rations make them advantageous
for providing nourishment to the hundreds of thousands of U.S. military personnel and
civilians each year involved in natural disasters. These meals are similar to the average
American diet in micronutrient proportions and fiber density and are fortified to comply
with micronutrient requirements from the U.S. military dietary intake reference [41,42];
these meals are also highly processed with no fresh foods [43]. These ready-to-eat meals
comprise an entrée, a starch, a spread (cheese, peanut butter, jam/jelly), a dessert and/or a
snack, a beverage powder, instant coffee or tea, and chewing gum, and average 1250 kcal.
For example, one menu may include meatballs in marinara sauce, blueberry cobbler, a
chocolate chip cookie, a jalapeno cheddar cheese spread, Italian bread sticks, a teriyaki meat
snack stick, an electrolyte beverage powder, and chewing gum. Except for the beverages,
the entire meal is ready to eat and can be consumed cold or heated by submerging in
hot water or using a flameless ration heating device, which is also provided with meals,
along with other toiletries (i.e., hand and body wipe, toilet tissue). The meals have an
average shelf life of three years at 80 ◦F, and shelf life can be expanded through the use of
cold storage facilities prior to distribution [44]. A secondary analysis of a controlled trial
examining healthy subjects randomized to eat their usual diet (n = 30) or a Meal, Ready-to-
Eat™ (Ameriqual Packaging, Evansville, IN, USA, n = 30) military ration diet for 21 days
found no significant changes in diversity (observed OTUs, Shannon, Bray–Curtis), but some
significantly increased (Ruminococcus spp., Veillonella spp., Clostridium spp. and Sutterella
spp.) and decreased (Leuconostoc spp., Lactococcus spp. and Lactobacillus spp.) relative
abundance of bacteria following the Meal, Ready-to-Eat diet [41]. The same group found a
significant impact on the fecal metabolome, including increased concentrations of multiple
dipeptides and long-chain saturated fatty acids, while plant-derived compounds and bile
acid metabolism were decreased in the Meal, Ready-to-Eat™ group. The differences in
diet groups were driven by several primary and secondary bile acids and caffeine-derived
metabolites, which correlated with changes in the relative abundance of Megasphaera spp.,
Clostridium spp., Sutterella spp., Prevotella spp., and Collinsella spp. [45].

Another situation when long-shelf-life convenient foods might be consumed in asso-
ciation with otherwise health-conscious activity, beyond rations for the military forces, is
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food consumption by athletes during training or competitions. Similarly, sports nutrition
supplements, which contain food additives such as artificial sweeteners, emulsifiers, preser-
vatives, and acidity regulators, are used by athletes to improve performance and recover
faster. A recent review by Alvarez-Herms, Gonzalez-Benito and Odriozola [46] outlined
the gastrointestinal issues experienced by some athletes, which they explain are directly
related to loss of gut equilibrium, microbiota dysbiosis, and leaky gut, and may be due in
part to the elevated intake of UPFs. Although meal rations and athletic supplements are
often high in nutritional value, they are also considered UPFs, and the long-term effects of
eating these types of foods are not yet clear.

3.5. Food Additives

There is a wide range of food additives in UPFs, and given space limitations, we have
chosen to not include an in-depth discussion on food additives. Although not our focus,
food additives must be considered when investigating the effects of UPFs because most
UPFs contain food additives, and these have been proposed to contribute to the deleterious
effects of UPFs on health [7,47]. A large (N = 92,000) prospective study of the French
NutriNet-Santé cohort found that higher intake of emulsifier mono- and diglycerides of
fatty acids (E471) were associated with increased risk of overall cancer, breast cancer, and
prostate cancer, while higher intake of carrageenans (E407 and E407a) was associated with
increased risk of breast cancer [48]. One mechanistic route by which food additives may
affect health is through the gut microbiome, as has been shown in clinical studies using
artificial sweeteners [49], guar gum [50], and carboxymethylcellulose [51]. In contrast, some
clinical studies of food additives have shown no or minimal effects on the gut microbiota,
including studies using tart cherry concentrate [52], sugar beet pectin [53], and artificial
sweeteners [54–57], or have been even shown to improve health [58]. In a randomized
cross-over exploratory analysis, Berding et al. investigated the effects of polydextrose, a
dietary fiber, on cognitive performance and acute stress response in eighteen women over
4 weeks. Polydextrose treatment resulted in increased abundance of Ruminiclostridium 5
and a modest improvement in cognitive performance (measured by a decrease in errors
made in the Intra-/Extra-Dimensional Set Shift task and higher number of correct responses
and rejections in the Rapid Visual Information Processing task) compared to placebo [58].
These studies highlight the huge number of different food additives and the complexity of
the effects of many food additives on human health. Clearly, not all food additives, just like
UPFs, should be grouped together.

4. Methods for Classifying UPFs

The methods used in dietary studies vary both by collection tool (e.g., FFQs, 24 h
dietary recalls, food records) and frequency, and each method has strengths and limitations
for identifying UPFs. While FFQs lack the ability for researchers to categorize foods based
on ingredients, they can offer a more systematic way of categorizing foods using com-
puter codes. However, not all mixed-dish foods or packaged items entered into nutrition
databases can be broken down by ingredients, and ingredients can vary greatly between
food brands. Thus, research teams often need to come to some consensus to make decisions
on how to categorize certain foods for their studies. One of the current challenges with
using the NOVA classification system for categorizing UPFs is the ambiguity of how to
best classify some methods of food processing and ingredients. NOVA, like most other
food classification systems, considers the extent (how different the food is from the core
unprocessed food), nature (e.g., use of food additives or changing food properties), purpose
(e.g., preservation, appearance, texture, etc.), and location (homemade vs. commercially
made) of processing, which can be hard to define, especially when information is unavail-
able to the investigator [10,59]. An article published in 2022 featured a discussion related
to the conceptualization of processed foods and challenges for communication amongst
27 professionals in the fields of nutrition, food technology, policy making, industry, and
civil society in an online discussion group, who agreed that consensus is important but chal-
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lenging [60]. In 2023, an interdisciplinary, multi-stakeholder workshop of professionals in
government, academia, and industry convened to develop a research roadmap of research
priorities about processed food intake and health risk in U.S. populations. Discussion on
the subjectivity in UPF classification and the heterogeneity of foods/beverages classified
as such warrant the need for advances in classification and food intake assessments for
researchers [61].

Many of the studies that we reviewed in our initial search were excluded from our
tables due to a lack of sufficient details in their food classification system methods, instead
only citing the original NOVA definitions. Lack of detail in classification methods makes
comparing the data between studies even more challenging. With a goal in the field to come
closer to a mechanistic understanding of UPFs’ effect on health, we asked the following
questions: (1) how many UPF studies provided very detailed methods? and (2) how much
uncertainty might result from the missing details? The second half of this review will
discuss our analysis of recent UPF clinical studies and the findings from a representative
sampling of clinical randomized controlled trials and observational studies that include
detailed methods for using the NOVA classification system. We sought to provide useful
information for those designing and interpreting UPF dietary clinical trials.

4.1. Randomized Controlled Trials

Out of the 77 RCTs identified from our initial PubMed search, 10 studies with the most
detailed methods were included in our analysis (Figure 1). The discussion in this section
will refer primarily to the study methods described in Table 2, of which their additional
study characteristics can be viewed in Table S4. To date, only one study (resulting in at
least two publications) has been completed that compares a study-provided UPF diet to
an unprocessed diet [62,63]; however, at least two additional studies are currently under-
way [31,64]. For the studies not providing a UPF diet, two used 24 h dietary recalls [65,66],
three used FFQs [67–69], and one used food records [70] to collect food information. Gener-
ally, the RCT studies that include information on discrepancy resolution describe either
a majority-rule or consensus method between study team members about unclear food
and beverage items [66,67,69,70]. More RCT studies are needed with a focus on UPFs to
bring us closer to identifying causality and not merely associations of these foods with
human health.

RCT designed studies have many benefits, including that they (1) can control for
specific variables, (2) generally require smaller sample sizes to obtain meaningful results,
(3) have higher granularity in the data collected, (4) often collect more comprehensive
patient health information (e.g., stool, blood, and urine metabolomics, immune analyses,
gut microbiome, host genetics, etc.), (5) have better knowledge of meta-data (e.g., physical
activity), (6) more easily allow for comparison between studies, and (7) can be designed
to dissect possible causality in humans to inform the design of animal models. Of note,
but outside the scope of this review, there have been several studies that examined specific
types of food processing such as processed meats or milk alternatives, which are also
valuable to understand the differences in processed versus ultra-processed foods [71–73].
The limitations for these RCT studies include that (1) they often only follow individuals
for a short period of time (days to weeks), which does not allow researchers to assess the
stability of the study findings and limits the generalizability of the data; (2) they mostly
rely on self-reporting of information from volunteers (e.g., 24 h dietary recalls or food
records); (3) they are time-consuming and expensive to conduct; and (4) the lower number
of participants can limit the statistical power of the results. Below, we discuss RCT studies
that provide food (Section 4.1.1) or that use food collection methods (Section 4.1.2) to
examine the effects of UPFs on diet and health. We compare their detailed methods for
classifying UPFs and their sensitivity analyses, and summarize their findings of the effect
of UPFs on health.
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4.1.1. RCTs That Provided All Food

Providing food is beneficial in that it eliminates some of the ambiguity surrounding
food classifications, such as whether food is homemade or commercially/industrially made,
and can limit the burden of work for the volunteer, who may not need to report details
or amounts of food consumed. Providing food also reduces the need for volunteers to
self-report their diet, which can be prone to error [74]. However, RCTs, especially those
that provide food (such as the three interventions described below), are difficult to conduct,
mostly limited by the cost to conduct the study and/or provide food. Very few RCTs
comparing UPF vs. non-UPF diets, without some additional dietary component (i.e.,
Western diet or Mediterranean diet), have been conducted. However, these studies have
the added benefit of formulating comparable diets and considering other confounding
dietary factors. For example, the study by Hall et al. designed meals to be matched
for calories, energy density, macronutrients, sugar, sodium, and fiber intake. In order to
match for fiber, the UPF diet required fiber (NutriSource) supplementation in 20 out of the
21 meals [62]. The diets designed by Capra et al. controlled for fiber, added sugars, mono-
and poly-unsaturated fats, saturated fat, sodium, glycemic index and load, and overall
diet quality via the Healthy Eating Index (HEI)-2015 [31]. Similarly, the diets designed by
Rego et al. were matched in nutrients, fiber, added sugars, mono- and poly-unsaturated
fats, saturated fat, sodium, glycemic index, and overall diet quality via the HEI-2015 [64].
Because the NOVA 4 category can include any type of food and can range from a food with
no nutritional value to a food with perhaps only one additive and significant nutrients,
controlling for other dietary factors, as described above, is vital for teasing apart the effects
of different components of a diet high in UPFs to better understand which components are
biologically most important for health.

RCT studies presenting their full [62,63] or partial [31,64] meal choices show a high
level of transparency for categorizing foods. These also allow for the assessment and
consideration of exact nutrients and food additives that are otherwise estimated or un-
known. For example, Capra et al. counted the number of food additives included in their
menus and found that the most commonly consumed food additives (eaten ≥10 times per
week) were high-fructose corn syrup, soy lecithin, citric acid, sodium citrate, annatto color,
artificial flavors, and sorbic acid [31]. These studies also allow for a critical comparison
of UPF categorization. Below are some examples of foods that often require discrepancy
discussions amongst study team members that are included in RCT studies providing food
and illustrate the differences between study designs and classification. Some of the food
items classified as non-UPFs below are classified as NOVA 4 in other studies.

• Cheeses:

a. Hall et al. included parmesan cheese (Roseli, Rosemont, IL, USA), American
cheese (Glenview Farms, Rosemont, IL, USA), provolone cheese (Roseli, Rose-
mont, IL, USA), Monterey Jack cheese (Glenview Farms, Rosemont, IL, USA),
cream cheese (Philadelphia, Chicago, IL, USA), and shredded cheddar and
Monterey Jack cheese (Glenview Farms, Rosemont, IL, USA) on their UPF menu,
while no cheese was included on their non-UPF menu [62].

b. Capra et al. listed parmesan, cheddar, and American cheese as examples on
their UPF menu, while parmesan and cheddar cheese were also featured on
their non-UPF menu [31].

c. Rego et al. showed Kraft (Northfield, IL, USA) American Cheese on their sample
UPF menu, and Kroger (Cincinnati, OH, USA) natural cheddar cheese on their
non-UPF menu [64].

• Bread:

a. Hall et al. included white bread (Ottenberg, Bethesda, MD, USA), croissants
(Chef Pierre, Oatbrook Terrace, IL, USA), English muffins (Sara Lee, Downers
Grove, IL, USA), hoagie rolls (Ottenberg, Bethesda, MD, USA), and plain bagels
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(Lender’s, Horsham, PA, USA) on their UPF menu, while the non-UPF menu
featured other types of grains (rice, bulgar, oatmeal, quinoa, farro, etc.) [62].

b. Capra et al. listed commercial white buns and commercial whole-wheat buns
as examples on their UPF menu, while homemade bread was included on their
non-UPF menu [31].

c. Rego et al. showed Wonder bread (Thomasville, GA, USA) as an example on
their UPF menu, while homemade bread was part of their non-UPF menu [64].

• Sweet snacks:

a. Hall et al. included blueberry muffins (Otis Spunkmeyer, San Leandro, CA,
USA), Fig Newtons (Nabisco, East Hanover, NJ, USA), honey buns (Little Debbie,
Collegedale, TN, USA), Graham crackers (Nabisco, East Hanover, NJ, USA),
applesauce (Lucky Leaf, Peach Glen, PA, USA), oatmeal raisin cookies (Otis
Spunkmeyer, San Leandro, CA, USA), and shortbread cookies (Keebler, Battle
Creek, MI, USA) on their UPF menu, while only fresh, frozen (without added
sugar), or dried (raisins) fruits were provided in the non-UPF diet [62].

b. Capra et al. listed Skittles (Mars Wrigley, Chicago, IL, USA) and Chips Ahoy!
Cookies (Nabisco, East Hanover, NJ, USA) as snack examples in their UPF diet,
and natural fruit licorice candy in their non-UPF diet [31].

c. Rego et al. also showed Skittles (Mars Wrigley, Chicago, IL, USA) and Chips
Ahoy Cookies (Nabisco, East Hanover, NJ, USA), along with Pop Tarts (Kel-
lanova, Battle Creek, MI, USA), Keebler (Battle Creek, MI, USA) Old Fashioned
Sugar Cookies, and Welch’s (Concord, MA, USA) Fruit Snacks in their UPF
diet, while homemade sugar cookies, homemade banana muffins, and Panda
(Vaajakoski, Finland) Natural Raspberry Licorice were included in the non-UPF
diet [64].

• Savory snacks:

a. Hall et al. included potato chips (Lay’s, Plano, TX, USA), baked potato chips
(Lay’s, Plano, TX, USA), baked Cheetos (Frito-Lay, Plano, TX, USA), tortilla
chips (Tostitos, Dallas, TX, USA), dry roasted peanuts (Planters, Austin, MN,
USA), cheese and peanut butter sandwich crackers (Keebler, Battle Creek, MI,
USA), and Goldfish crackers (Pepperidge Farm, Norwalk, CT, USA) in their
UPF diet, while savory snacks were replaced with raw nuts (almonds, walnuts)
in the non-UPF diet [62].

b. Capra et al. listed Ritz Crackers (Nabisco, East Hanover, NJ, USA) in their
UPF diet, compared to Good Thins rice crackers (Mondelez International, East
Hanover, NJ, USA) in their non-UPF diet [31].

c. Rego et al. showed plain Pringles (Kellanova, Battle Creek, MI, USA) and Ritz
Crackers (Nabisco, East Hanover, NJ, USA) in their UPF diet, compared to Cape
Cod Kettle Cooked Chips (Charlotte, NC, USA) and Good Thins rice crackers
(Mondelez International, East Hanover, NJ, USA) in the non-UPF diet [64].
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Table 2. Methods of clinical randomized controlled trials using the NOVA system to categorize UPFs.

References Food Collection Method
and Frequency

Nutritional Program for
Data Entry Classification Method Discrepancy Resolution

Examples of ‘Difficult’ Food
Categorization/UPF Brands Used in

Menus/Comments

Capra,
2024 [31]

N/A (Plan to collect three
24 h dietary recalls of

habitual diet, then study food
will be provided)

NDS-R 2022, Nutrition
Coordinating Center,

University of Minnesota

Nutrition label for each food item
was used to classify menu foods

manually using NOVA. Recipes for
non-UPFs were developed to provide

alternatives for commercial items
like bread. Ingredient and menu

examples provided in original article.

Not described

UPF breakfast menu contains Eggo waffles vs.
non-UPF menu contains homemade waffles

UPF snack menu contains apple slices with
peanut butter vs. non-UPF menu contains

natural fruit licorice candy

Most common food additives
(eaten ≥ 10 times per week) in the UPF

menus: high-fructose corn syrup, soy lecithin,
citric acid, sodium citrate, annatto color,

artificial flavors, sorbic acid

Fagherazzi,
2021 [65]

Two 24 h recalls administered
during the third and fifth
appointments (6–8 and

12–14 weeks of intervention)

Microsoft Office Excel®

spreadsheet validated by
Campos et al. [75]

Foods were classified according to
NOVA and Dietary Guidelines for

the Brazilian Population. When
inadequate details provided, foods

were categorized based on the typical
form in which they are consumed.

Not described Processed fruit juices and yogurts categorized
as UPFs when brands were not provided

Fangupo,
2021 [67]

FFQ completed by parent on
at least one of three occasions:
12, 24, and 60 months of age

N/A

Foods were classified based on the
NOVA system. Product/recipe

ingredients taken into consideration.
Less straightforward items were

disaggregated when able or
discussed.

Consensus reached by
researchers regarding

how to disaggregate and
categorize unclear foods

Categorized bacon, peanut butter, and cheese
as NOVA 3

Categorized bread, commercial hummus,
chocolate as NOVA 4

Items requiring disaggregation or discussion:
porridge, canned fruits, pasta or tomato sauce,

other fresh or canned fish, yogurt, Subway
sandwich, kebabs or wraps, sushi, etc.
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Table 2. Cont.

References Food Collection Method
and Frequency

Nutritional Program for
Data Entry Classification Method Discrepancy Resolution

Examples of ‘Difficult’ Food
Categorization/UPF Brands Used in

Menus/Comments

Gonzalez-
Palacios,
2023 [68]

FFQ collected at baseline and
6 and 12 months N/A

Specialized working group of
experts in nutritional epidemiology

and dieticians classified all FFQ
items using NOVA. Supplementary

Table S1 of original article shows
classification of the 143 items in FFQ
into each NOVA group, 36 of which
were classified as UPFs. UPFs were

further subdivided into
six subgroups.

Not described

Coffee classified as NOVA 1, but decaffeinated
coffee classified as NOVA 3

Items classified as NOVA 3: bacon or similar,
homemade potato chips, homemade pastries,

jams, dessert wine

Items classified as NOVA 4: breakfast cereal,
pastries or similar, chocolates and chocolate,

cocoa powder

Hall,
2019 [62]

Study-designed diets
provided for two weeks each

(inpatient) without a
washout period

ProNutra software
(version 3.4, Viocare, Inc.,

Princeton, NJ, USA)

Food and beverages categorized
according to NOVA. Detailed 7-day

rotating menus with food brands
provided in supplement.

Not described

UPF snack menu contains baked potato chips
(Lay’s), dry roasted peanuts (Planters) and

applesauce (Lucky Leaf) vs. non-UPF menus
contain raisins (Monarch), fresh fruits, and

raw nuts (Giant & Diamond)

Konieczna,
2021 [69]

FFQ collected at baseline, 6
and 12 months N/A

Two dietitians independently
classified all FFQ items using NOVA,

then reviewed by nutritional
epidemiologists.

Discrepancies in
categorizations of food

and drinks were
discussed and

consensus reached

The FFQ does not differentiate between plain,
sweetened, or flavored yogurts and

whole-grain cereals so they were grouped
together as NOVA 1

Fruit juices, milkshakes, meatballs,
hamburgers, and pizza, regardless of whether

they are artisanal or industrial, were
categorized as NOVA 4

O’Connor,
2023 [63]

Refers to
Hall, 2019

[62]

Study-designed diets
provided for two weeks each

(inpatient) without a
washout period

ProNutra software
(version 3.4, Viocare, Inc.,

Princeton, NJ)

Food and beverages categorized
according to NOVA. Detailed 7-day

rotating menus with food brands
provided in supplement.

Not described Refer to Hall, 2019 [62], above



Nutrients 2024, 16, 1738 16 of 33

Table 2. Cont.

References Food Collection Method
and Frequency

Nutritional Program for
Data Entry Classification Method Discrepancy Resolution

Examples of ‘Difficult’ Food
Categorization/UPF Brands Used in

Menus/Comments

Phillips,
2021 [70]

Smartphone app
(myCircadianClock) used to
record food and drink, and

upload photos of food, drink,
and medications daily

myCircadianClock entries
categorized using

Python scripts

Text entries classified by
4 independent reviewers. Food

collected in German was classified by
one reviewer due to language

barriers. Some foods categorized by
assumptions on base recipes and
ingredients. Foods were assumed

homemade unless stated otherwise
or when processing was more
common. Mixed dishes were

classified to the highest NOVA group
based on base recipe.

Added new categories for beverages
grouped into “Alcohol-containing

drinks” (A), “Caffeinated drinks” (C),
“Sweet drinks” (S), and “Other

drinks” (D). Each drink could be
assigned to multiple categories (e.g.,
soda Coca-Cola was ultra-processed,
caffeinated, and sweet, abbreviated

NOVA4-CS).

Consensus was reached
for entries by at least 3 of

4 reviewers

Foods were assumed to be homemade with
limited exceptions (i.e., chocolate-containing

food and drinks, biscuits, toast and soft bread,
croissants, pizza, burgers, plant-based drinks)

Rego,
2023 [64]

Study-designed diets
provided (breakfast eaten in
lab daily, remaining meals

provided in portable cooler)

Habitual diet determined
using three 24 h
dietary recalls

Open Food Facts app and
NDS-R 2022, Nutrition
Coordinating Center,

University of Minnesota

Menus developed by a research
dietician to meet UPF and other

nutritional requirements and
reviewed by a second dietician.

Habitual diet UPF intake determined
manually by trained evaluators using
NDS-R output files and recall forms.

Not described

Breakfast cereal in UPF (Lucky Charms cereal)
vs. non-UPF (Nature’s Path Organic Fruit

Juice Corn Flakes Cereal) diet

Snacks in UPF (Pringles, plain; Keebler Old
Fashioned Sugar Cookie) vs. non-UPF (Cape
Cod Kettle Cooked Chips; homemade sugar

cookie) diet
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Table 2. Cont.

References Food Collection Method
and Frequency

Nutritional Program for
Data Entry Classification Method Discrepancy Resolution

Examples of ‘Difficult’ Food
Categorization/UPF Brands Used in

Menus/Comments

Sneed,
2023 [66]

Three 24 h recalls each
collected at baseline, 12, 24,

and 36 months

NDS-R, Nutrition
Coordinating Center,

University of Minnesota

Some foods categorized by one
expert coder to start, then six pairs of
trained coders using NOVA and a set

of decision rules adapted by the
study team. Discrepancies resolved

by defaulting to the higher
processing level. Classification of
mixed dishes were based on the

processing level of the main
ingredient contributing the highest
calorie content and/or the methods

used to prepare the food such as
frying and not disaggregated.

Weekly meeting to
discuss and resolve

questions; study team
made final decision to

resolve coding
discrepancies

Fast-food items typically considered
minimally processed (e.g., 2% milk, apple

slices, white rice, etc.) were further evaluated
using ingredient label for industrial

processing/food additives

Difficulty distinguishing processed fruits (e.g.,
canned with added sugar) vs. ultra-processed

fruits (e.g., canned with high-fructose corn
syrup or sweeteners)

Breads were generally classified as
“industrial” and labeled as UPF unless

explicitly noted as homemade or artisanal

Abbreviations: UPF = ultra-processed food; FFQ = food frequency questionnaire; NDS-R = Nutrition Data System for Research; N/A = not applicable.
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4.1.2. RCTs Using FFQ, Recalls, or Records

We will discuss six RCTs that utilized various dietary collection methods. The RCT
studies in Table 2 utilizing FFQs provided detailed tables with food categorization [67–69].
The most common discrepancies from FFQ are either for categorizing mixed dishes, or
when there is a lack of clarity for whether an item is homemade vs. commercially made.
Unknown details for items can be handled in several ways, such as (1) assuming the highest
category, (2) assuming the lowest category, or (3) disaggregating mixed dishes by their
ingredients. For example, Konieczna et al. assumed fruit juices, milkshakes, meatballs,
hamburgers, and pizza, which could be homemade or industrially made, to be the latter and
categorized these as UPFs. However, yogurts and whole-grain cereals, which could be plain,
sweetened, or flavored, were categorized as unprocessed or minimally processed foods [69].
Fangupo et al. listed all items on the FFQ that they considered as requiring disaggregation
across categories (items that could not be categorized within only one of the four NOVA
categories). Examples of these foods included canned fruits, potato salad, canned tomato
sauce, jam, muffins or scones, yogurt, cream or sour cream, Subway sandwiches, kebabs or
wraps, and sushi. Food was disaggregated using weighted criteria based on previous data
or the relative market share in New Zealand, or using the researchers knowledge of New
Zealander food purchasing and consumption habits [67]. While these studies provide a
useful list of examples for food categorization, the typical person’s diet is not limited to a
certain number or type of foods as captured on FFQs, so compromises must be made to fit
the dietary data into the provided format.

Food records and 24 h dietary recalls provide the most specific and individualized
accounts of food information. To our knowledge, no RCT studies using these methods
have been designed to examine UPFs vs. non-UPFs in free-living individuals as the
primary outcome; however, several have examined intake of UPFs as a secondary analysis
to other dietary or health-related interventions [65,66,70]. Because these are secondary
analyses, information relevant to categorizing UPFs may be missing in some cases. For
example, when insufficient details were provided in 24 h dietary recall logs, Fagherazzi et al.
classified foods according to the form in which the food was most usually consumed [65].
Philips et al. chose to be conservative with assigning the UPF category and categorized
items as homemade, with few exceptions (e.g., pizza, burgers, plant-based drinks) [70].
Sneed et al. classified mixed dishes as homemade only if the phrase “from recipe or
prepared from recipe” was listed in the food description; otherwise, foods were considered
“ready-to-eat” [66]. Because food records and recalls typically require manual entry from
the research team, there is an increased possibility of discrepancy in the way the food
information is both entered and interpreted. To account for this, Sneed et al. adopted a
rigorous training process for their NOVA coders to ensure the accuracy and consistency of
the food categorization. Coders were also asked to rate the difficulty of categorizing each
food independently on a scale of 1–4 (where 1 = “very easy” and 4 = “very hard”). The
average self-rated difficulty was 1.4 (SD 0.55). Inter-rater reliability, based on the initial
categorization attempts of coder pairs prior to final study team resolution, showed that
84.5% of foods had concordant categorizations, 11.2% had discordant categorizations, and
4.3% were initially coded as “I don’t know” by one or both coders. Food groups with
the highest rates of discordance were fruits, condiments/spices, ready-to-eat foods, and
grains. Validity of the study method’s approach was demonstrated using the finalized recall
dataset to confirm that the NOVA categories aligned with expectations (e.g., UPFs generally
had higher added-sugar-to-calorie and lower protein-to-calorie ratios and made up a high
proportion of total daily calories) [66]. RCT studies analyzing UPF intake in free-living
individuals offer insight to the most true-to-life situations of dietary and UPF consumption
habits and are vital to our understanding of the effects of UPF on human health.

One of the most significant issues facing public health today is minimizing obesity and
many obesity-related disorders due to the Western lifestyle (i.e., excess calorie consumption
and lack of physical activity). Overweight/obesity has many potential negative health
effects, and several RCTs included in our analysis suggest a link between UPFs and weight
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gain. In a controlled feeding trial, a high-UPF diet was associated with higher energy
intake and increased weight compared to an unprocessed diet [62], and a secondary
analysis revealed that 21 known and 9 unknown metabolites differed between diets [63].
Another study evaluating UPF intake in children found that higher added-sugar-to-calorie
ratios and lower protein-to-calorie ratios correlated with UPF consumption [66]. UPF
intake was associated with higher amounts of visceral fat in middle-aged (55–75 years)
adults with overweight/obesity and metabolic syndrome [69]. Healthy diets such as the
DASH and Mediterranean diet restrict the intake of UPFs [65,68]. In a Mediterranean diet
intervention study, volunteers consuming the highest amounts of UPFs had increased risk
for cardiometabolic risk factors (i.e., weight, BMI, waist circumference, and fasting glucose)
compared to those consuming low amounts of UPFs [68]. Therefore, encouraging diets
that are low in UPFs will likely play a major part in reducing obesity and its comorbidities.
However, currently this is quite challenging as UPFs are ubiquitous, comprising up to
51% of the diet of children under 5 years [67], and they are generally less expensive than
non-UPFs [31].

4.2. Observational Studies

Out of the 154 observational studies identified from our PubMed search, 17 were
included in our analysis (Figure 1). This section will refer primarily to the methods
described in Table 3, and additional study characteristics can be found in Table S5. More
observational studies have been conducted compared to RCTs, as observational studies
are often less resource-intensive, and the sharing of large datasets make them available for
additional analyses beyond the primary analysis. Observational studies primarily rely on
volunteers self-reporting food information, which is associated with errors (e.g., precision
of food amount measurements, memory recall), may not capture other relevant health
elements (e.g., physical activity, medications), cannot be used to compare UPF results
precisely across studies, and cannot separate the different dietary elements of a Western-
type or UPF diet such as salt, added sugar, and food additives. However, observational
studies have the advantage of a generally larger sample size, longer time periods that data
are collected, and can capture many different types of non-communicable diseases in a
single study. For example, several studies in Table 3 utilize data from large cohort studies
such as the European Prospective Investigation into Cancer and Nutrition (EPIC) and
NHANES, which allows for analysis of thousands of individuals over many years [76–80].

Of the studies in Table 3, eight used FFQs [81–88], seven used 24 h dietary
recalls [77,79,80,89–92], and two used a combination of methods (FFQs and food
records) [76,78] to collect food information. Each of these methods have been validated
for use in dietary research, but limitations exist that make food processing classification
difficult in some cases. When there was ambiguity in the classification of foods, studies
resolved these items by several methods: group discussion and consensus [83,86,90–92],
discussion and defaulting to a lower level of processing [77,81,82,85,86,88,89], expanding
discussion to an external group [87], and utilizing external resources such as grocery store
labels [84,87,90,91]. As shown, some studies used a combination of these methods, while
others did not describe how they worked to resolve discrepancies.

For instances of unclear NOVA categorization, it is necessary to have a set of study
rules that researchers can refer to in order to make decisions. For example, Sullivan et al.
had two researchers classify each food from an FFQ independently. When there were
disagreements, the less-processed category was chosen [88]. Another research team in
Australia collected food data using FFQs and determined the processing level for some
difficult items such as bread, pasta, low-fat cheese, yogurt, and fruit juice using previous
data collected from other Australian surveys, the National Nutrition Survey 1995 and the
National Nutrition and Physical Activity Survey (NNPAS) 2011-12. When classification was
still unclear, they used a conservative approach where the food was classified as non-UPF
and disaggregated if it was a mixed dish [85]. A third group had two evaluators classify
all foods from 24 h dietary recall data; then, a second set of two researchers verified the
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classifications. Decisions were made utilizing lists of ingredients from food packaging
or company websites and discussion went on until consensus was reached [90]. These
difficult cases highlight the lack of consensus on the application of the NOVA system. Some
examples and how these were resolved by different studies are listed below:

• Bread:

a. Bonaccio et al. categorized all bread as NOVA 3 [81].
b. Cordova et al. assumed bakery breads from Italy and the UK to be NOVA 3 and

commercial packaged bread to be NOVA 4 [76].
c. Houshialsadat et al. categorized commercial white bread as NOVA 4, while

other breads were NOVA 3 [90].
d. Kityo et al. categorized most loaf bread (‘sikppang’) as NOVA 4 [84].
e. Lane et al. called some breads NOVA 3 (e.g., focaccia, ciabatta, baguette, corn

bread) while others were NOVA 4 (e.g., bagels, breadcrumbs, all light breads
with added fiber, vitamins, and minerals) [85].

f. Park et al. categorized all bread as NOVA 4 [91].
g. Wolfson et al. called some breads, excluding restaurant breads, NOVA 3 (e.g.,

sourdough, Italian, naan) [80].
h. Zancheta Ricardo et al. counted traditional Chilean bread as NOVA 3 and

industrially produced and packaged bread as NOVA 4 [92].

• Tomato Sauce:

a. Cordova et al. categorized cooked tomato (as an Italian pizza ingredient) as
NOVA 1 if it was fresh, but NOVA 4 if on a commercial pizza [76].

b. Pant et al. counted tomato sauce and tomato paste as NOVA 4 [86].
c. Samuthpongtorn et al. called tomato sauce without sufficient detail non-ultra-

processed in their main analysis [87].

Depending on how food items were classified, this could cause over- or underestima-
tion of UPF consumption for study participants, for example, where Bonaccio et al. [81]
classified all breads as NOVA 3 and Park et al. [91] classified all breads as NOVA 4, regard-
less of other details. Most situations of difficult classification, such as those described in
Table 3, were the result of a lack of information (e.g., lack of known food origin, ingredients,
preparation). The information collected in the observational studies was typically less
granular than the RCTs, resulting in more possible ambiguity. Furthermore, larger cohort
studies may overlap between different countries or continents where food regulations,
brand names, and typical food ingredients differ. It is important to recognize that food
preparation and ingredient assumptions should be considered within each different re-
gion and culture. The EPIC cohort, for example, includes participants from ten Western
European countries. Therefore, when classifying data from these participants, different
rules were applied based on where the data originated. For example, most breads in France
and Italy were considered artisanal and therefore not UPF, whereas breads in the UK were
classified as UPFs [93]. The EPIC cohort study, which started collecting data in the 1990s,
has the additional challenge of classifying foods with the consideration that formulations
have changed over time. To confront this, researchers have used three different scenar-
ios to classify foods according to the NOVA system. The main analysis, which used the
“middle-bound” scenario, considered the most likely level of processing for each food.
However, foods may be more or less processed so they also calculated “upper-bound” and
“lower-bound” scenarios, respectively [76,78].

A guide was published to describe best practices for applying the NOVA classification
system, along with an approach to conducting a careful sensitivity analysis to estimate the
potential impact on study outcomes from any uncertainty in the classification decisions
for each food item [94]. Several studies have recognized the challenges associated with
accurately classifying foods and utilized sensitivity analyses to account for possible bias.
Hang et al. assigned ambiguous items (i.e., popcorn, soy milk, pancakes or waffles, pie,
beef, pork or lamb sandwiches, and tomato sauce) as non-UPFs in the main analysis and
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as UPFs in a separate sensitivity analysis. This alternative classification, however, did
not significantly impact the results [95]. Cho et al. also conducted a sensitivity analysis
including foods that were difficult to classify (i.e., pizza/hamburger, chicken, canned tuna,
dumpling, yogurt, coffee, and soy milk). The authors reported that the results of the
sensitivity analysis were similar to the main results [82]. Cordova and colleagues used data
from the EPIC cohort “lower-bound”, “middle-bound”, and “upper-bound” scenarios to
repeat analyses and perform a sensitivity analysis. The sensitivity analyses yielded similar
results to the main analysis [76]. Although only a small subset of studies conducted a
sensitivity analysis, it is important to note that the results of the sensitivity analyses aligned
with the main findings. This suggests that results may be comparable between studies even
with differences in classification methods, which further supports the body of evidence
associating the consumption of UPFs and adverse health effects.

Observational studies cannot determine causal relationships, but large-scale studies
can reveal trends in data related to health outcomes. Similar to RCTs, several observational
studies included in our analysis found that UPF consumption was associated with obesity
and higher BMI [79,87,91], as well as higher sugar intake [89]. The observational studies
tracking participants over a long period of time were able to detect associations between
UPFs and adverse health outcomes that are not captured in shorter RCT studies. For exam-
ple, higher intake of UPFs was found to correlate with type 2 diabetes [82], CVD [76,81],
and cancer [76,78]. In addition to physical health effects, high UPF consumption was
associated with an increased risk of depression and psychological distress [85,87]. Interest-
ingly, high UPF consumption has been associated with inadequate consumption of several
micronutrients [83,90], which may partially explain some of the adverse health effects
associated with UPFs.
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Table 3. Clinical observational studies published within the last year using the NOVA system to categorize UPFs.

References Food Collection Method
and Frequency

Nutritional Program
Used Classification Method Discrepancy Resolution Examples of ‘Difficult’ Food Categorization

Ashraf, 2024 [89] 24 h dietary recall using
ASA24

ASA24-Canada-2016,
Canadian Nutrient File

2015 and
FNDDS

Food items were classified according to the NOVA
system manually using primarily the “Food
Description” variable within the ASA24. The

“Food Source” variable (e.g., fast food or vending
machine) was also used to identify UPFs. In cases

of ambiguity, the least processed category was
chosen. Zero kcal foods (e.g., water) not classified

and excluded from analysis.

Not described

Cheese was considered NOVA 3, but cheese products
categorized as NOVA 4

Mass-produced bacon called NOVA 4

Bonaccio,
2023 [81] 188-item FFQ

Specifically designed
software linked to Italian

Food Tables

Two researchers independently coded each food
into one of four categories. Conservative

classification was used for challenging items.
Only unequivocal foods were classified as NOVA

4 (e.g., margarine, sweet or savory packaged
snacks, etc.). Some uncertain foods were classified

using the most common brands in the Italian
Food composition Database with the Open Food

Facts database.

Discrepancies in
classification were discussed
with a third researcher and
conservative classification

was used

Bread was categorized as NOVA 3

Breakfast cereal and biscuits classified using the most
consumed brands in the Italian Food composition

Database with the Open Food Facts database

Cho, 2024 [82] 103-item FFQ N/A

Three study researchers classified food items on
the FFQ into NOVA categories. The senior author

supervised and checked for accuracy. Limited
information was available to determine if some

items were UPFs, so in this case, they were called
non-UPFs and then sensitivity analysis was

performed with them as UPFs.

Not described

Items called non-UPFs then UPFs in sensitivity
analysis: chicken (e.g., drumstick and wing), canned

tuna, dumpling, yogurt, coffee, and soy milk

Another sensitivity analysis excluded
pizza/hamburgers from the UPF category since they

can be made without UPF ingredients

Cordova,
2023 [76]

Referred to
Huybrechts,

2022 [93]

Country-specific FFQ;
combination of FFQ and

7- and 14-day food
records were used in
Sweden and the UK,

respectively

EPIC database

Generic or multi-ingredient foods were
decomposed into ingredients. Because data
collection started in the 1990s and the food
environment has changed over the years,

“middle-bound” scenario or the most likely
environment was used for food processing.

Not described

Bread in Italy: lower and middle bound assumed
NOVA 3—bakery; upper bound assumed NOVA

4—commercial

Bread in UK: lower bound assumed NOVA 3—bakery;
middle and upper bound assumed NOVA

4—commercial

Cooked tomato (as pizza ingredient in Italy): lower
and middle bound assumed NOVA 1—fresh; upper

bound assumed NOVA 4—commercial pizza
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Table 3. Cont.

References Food Collection Method
and Frequency

Nutritional Program
Used Classification Method Discrepancy Resolution Examples of ‘Difficult’ Food Categorization

García-Blanco,
2023 [83] 147-item FFQ N/A

Two researchers independently coded each food
into one of four categories based on the

NOVA system.

Discrepancies resolved
by consensus

Foods that were unknown if they are homemade or
industrialized (e.g., pizza, popcorn, lasagna) were

classified as UPFs because most traditional foods have
been replaced by industrial food products

in supermarkets

Houshialsadat,
2023 [90]

Referred to
Machado,
2019 [96]

Two 24 h dietary recalls,
second recall was

≥8 days after the first

Australian Food
Composition Database

Two expert evaluators classified foods into one of
four categories based on the NOVA system, then a
second set of two experts checked classifications.
Decisions were made based on lists of ingredients

from food packages or company websites.
Homemade recipes were disaggregated and

classified by underlying ingredients.

Discrepancies
were discussed until

consensus reached among
all researchers

When classification not clear (e.g., cake or cupcake,
honey, commercial or homemade), the conservative

alternative was chosen (e.g., homemade
and disaggregated)

In Australia, many commercially produced breads are
processed rather than ultra-processed, so coded two

commercial white breads as NOVA 4 and the rest
as NOVA 3

Kityo, 2023 [84]

Referred to
methods by
Khandpur,
2021 [97]

106-item FFQ N/A

A nutritionist classified each FFQ item using the
NOVA system with slight modification developed

by Khandpul et al., then a registered dietitian
validated each classification. Mixed dishes or

aggregated foods were disaggregated and weights
were applied using Korean food

recipe information.

When a consensus was not
reached, the nutritionist

visited stores and websites to
verify food labeling

information and
manufacturing processes

and/or referred to previous
publications

Most loaf bread (‘sikppang’), toast bread, and buns
consumed in Korea are mass-produced, packaged,

contain additives, and are commonly sold in
convenience stores/marts, so categorized as NOVA 4

The major brand of yogurt consumed in Korea is
‘Yoplait’, which is sweetened, flavored, colored, and

has artificial additives according to the labeling
information, so categorized as NOVA 4

Dumplings, black bean and spicy seafood noodles
were disaggregated into basic ingredients and called

NOVA 1 or 3

Kong, 2024 [77] Two 24 h dietary recalls FNDDS and NNDSR

NHANES food codes were obtained which
categorized foods according to NOVA.

Homemade dishes with unknown ingredients
were classified according to their expected

components. Foods lacking sufficient information
to determine the degree of processing was usually
solved by selecting a lower degree of processing.

Not described

“Yogurt, NFS” was classified as NOVA 1

“Restaurant, Chinese, Sesame Chicken” was coded as
“Orange chicken” and classified as “meat”

and NOVA 1
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Table 3. Cont.

References Food Collection Method
and Frequency

Nutritional Program
Used Classification Method Discrepancy Resolution Examples of ‘Difficult’ Food Categorization

Lane, 2023 [85]

Referred to
methods by
Machado,
2019 [96]

121-item FFQ Nutrient Data Table for
Use in Australia 1995

Two authors with Australian food and dietary
intake knowledge classified all FFQ food items

into NOVA categories. For items that could not be
discriminated (e.g., ‘bread’, ‘pasta or noodles’,

‘low fat cheese’, ‘yoghurt’, ‘fruit juice’), the
authors referred to the National Nutrition Survey
1995-96 and NNPAS 2011-12 for comparison and

decision making. When lacking details, foods
were disaggregated and the conservative
alternative was chosen (i.e., homemade or

processed vs. UPF).

Not described

When classification not clear (e.g., cake or cupcake,
honey, commercial or homemade), the conservative

alternative was chosen (e.g., homemade
and disaggregated)

NOVA 3 breads: focaccia, ciabatta,
baguette, pane di casa, sour dough, flats (naan,

paratha, chapatti, roti, injera, and pita), pumpkin
bread, corn bread and tortillas

NOVA 4 breads: bagel, breadcrumbs, hot dog breads,
fast-food breads, pizza bases, all light breads and with

addition of fiber, vitamins, and minerals

Morales-
Bernstein,
2024 [78]

Country-specific FFQ;
combination of FFQ and

7- and 14-day food
records were used in
Sweden and the UK,

respectively

N/A

Food items were categorized using the NOVA
system. Food preparations using traditional

methods (e.g., homemade) were disaggregated
using standardized recipes.

Not described

Preserved vegetables, legumes and fruits categorized
as NOVA 3

Potato products, vegetable spreads and fizzy drinks
were categorized as NOVA 4

Pant, 2023 [86]

Referred to
Machado,

2019 [96] and
Lane, 2023 [85]

101-item FFQ N/A

Food items from the FFQ were classified into one
of the four NOVA groups and cross-checked

between two independent reviewers. If
classification was unclear, the NNPAS 2011-12
was consulted or lesser degree of processing

was selected.

Discrepancies were resolved
by group consensus

Pizza and peanut butter were classified as NOVA 1

Tomato sauce and tomato paste were classified
as NOVA 4

Park, 2024 [91] One 24 h dietary recall

Standard Food
Composition Table by

the National Institute of
Agricultural Sciences

Two researchers classified each food item using
the NOVA system. Product names, manufacturer,
and nutritional information used to classify food

as accurately as possible.

Items with discrepancies
were discussed and resolved

by consensus

Most or all fruit jams and canned fruits categorized as
NOVA 3

Most or all bread and bakery products categorized as
NOVA 4

Price, 2024 [79] Two 24 h dietary recalls

NHANES Nova
2015–18 database

Food coded for
NHANES using FNDDS

and NNDSR

Food classifications made using underlying
ingredients. Foods were categorized using NOVA
as UPFs in three ways: (1) using original NOVA
methods, (2) excluding ≥25% whole grains from

UPFs, and (3) excluding ≥50% whole grains
from UPFs.

Not described
Commercial whole-grain bread and ready-to-eat

cereals categorized as NOVA 4 reanalyzed
as non-UPFs
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Table 3. Cont.

References Food Collection Method
and Frequency

Nutritional Program
Used Classification Method Discrepancy Resolution Examples of ‘Difficult’ Food Categorization

Samuthpongtorn,
2023 [87]

Referred to
Hang, 2023 [95]

One FFQ every 4 years
between 2003 and 2017 N/A

Three researchers independently assigned each
food item to a NOVA group. Foods lacking

consensus were discussed with an expert group
and additional resources (research dieticians,

cohort-specific documents, and online grocery
store scans) were used.

Items lacking consensus
were discussed with an

expert group and additional
resources used

Foods lacking sufficient detail (i.e., “popcorn”; “soy
milk”; “pancakes or waffles”; “pie, home-baked or

ready-made”; “beef, pork, lamb sandwich”; “tomato
sauce”) were assigned to a non-UPF group, then later

to a UPF group for sensitivity analysis

Sullivan,
2023 [88]

124-item FFQ completed
at baseline, year 2, and

year 4

Diet History
Questionnaire nutrient

and food group database;
Diet*Cal Analysis

Program (version 1.4.3,
NCI Epidemiology and

Genomics Research
Program)

Two researchers independently categorized all
items using the NOVA system. Discordantly

assigned items were placed in the less-processed
group. Sensitivity analysis performed with items

assigned to more-processed group.

Not described
Tofu and honey were grouped into UPF categories

because they could not be disaggregated from
mixed foods

Wolfson,
2024 [80]

Refers to
Martinez Steele,

2016 [98] and
2023 [99]

Two 24 h dietary recalls,
3-10 days apart on
different days of

the week

Food coded using
FNDDS and NNDSR

Food items were classified according to the NOVA
system using a unique 8-digit food code. Foods

likely to be homemade or artisanal were linked to
scratch ingredients while foods likely purchased

ready-to-eat were not disaggregated.

Not described

Several uncertain breads, such as sourdough, Italian,
and naan, excluding from fast-food restaurants,

categorized as NOVA 3

Some uncertain breakfast cereals such as corn flakes,
frosted corn flakes, puffed rice, and raisin bran

categorized as NOVA 3

Some uncertain salty snacks such as chips, crackers,
and popcorn categorized as NOVA 3

Zancheta
Ricardo,
2023 [92]

24 h dietary recall SER-24 (CIAPEC)

Three different methods used to identify UPFs
based on the NOVA system: (1) using the usual

NOVA categories, (2) if they contained at least one
ingredient not commonly used in home cooking,
and/or (3) cosmetic additives. Food was classified

by one dietitian and reviewed by a second
dietitian. A third person classified a small random

subset of records to verify. Homemade recipes
were disaggregated into their components

and classified.

Disagreements were
discussed and resolved by

consensus

Unbranded traditional Chilean bread assigned NOVA
3, while industrially produced, packaged, and

branded bread assigned to NOVA 4

Abbreviations: ASA24 = National Cancer Institute’s web-based Automated Self-Administered 24-h Dietary Assessment Tool; UPF = ultra-processed food; FFQ = food frequency
questionnaire; NHANES = National Health and Nutrition Examination Survey; EPIC = European Prospective Investigation into Cancer and Nutrition; UK = United Kingdom;
NNPAS = Australian National Nutrition and Physical Activity Survey; FNDDS = Food and Nutrient Database for Dietary Studies; NNDSR = National Nutrient Database for Standard
Reference; NCI = National Cancer Institute; CIAPEC = Center for Research in Food Environments and Prevention of Nutrition-Associated Diseases; N/A = not applicable.
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5. Future Directions
5.1. Future Directions for Food Classification

The need for further research on UPFs is well recognized, as illustrated by a recent
interdisciplinary workshop to define gaps in knowledge and to propose key research
questions for future study [61]. Recently, several groups have tackled the challenge of
standardization. For example, to enhance the ability to compare results across studies
and to increase the quantitative nature of the data, online surveys and databases have
been developed, such as a database to estimate food additive intake based on The Food
Agricultural Organization/World Health Organization (FAO/WHO) International Food
Standards Codex Alimentarius CXS 192e International Food Standards [100]. Zancheta Ricardo
et al. used 24 h dietary recall data to compare three different methods: (1) the classic method
of NOVA based on the extent and purpose of processing, (2) an ingredient method linking
lists of ingredients from packaged foods to computer software, and (3) a food additive
method as defined by Codex Alimentarius. They found that the foods labeled as UPF
varied from 65% (classic method) to 73% (food additive method), and that considering the
specific list of ingredients increased the proportion of food products counted as UPF [92].
Canella et al. proposed an alternative approach to defining UPFs as those with cosmetic
additives (e.g., flavor enhancers, colors, emulsifiers) and/or critical nutrients (i.e., sugars,
sodium, total fat, and saturated fat) in excess on food labels. The agreement between this
approach and the NOVA classification was quite high, as 98.8% had a cosmetic additive
and/or a nutrient in excess. This promising approach may help to reduce ambiguity in the
classification of UPFs and make cross-study comparisons easier [101]. Additional studies
are needed that use these techniques along with a measurement of effects on health.

Researchers are also starting to develop web-based tools for food processing clas-
sification which should help with study comparability. In 2023, Neri et al. introduced
a web-based self-completed 24 h recall tool (called Nova24h) designed to assess dietary
intake according to the NOVA food classification system. One-hundred and eighty-six
participants of the NutriNet Brasil cohort study completed the Nova24h assessment, which
was found to be comparable to the standard 24 h dietary recall method. This is an excellent
start to obtaining reproducible categorization, but further studies with more participants,
more food items, and in additional countries are needed to determine the full utility of this
tool [102]. Martinez Steele et al. presented a reference approach method for the NOVA
classification system using 24 h dietary recalls from the 2001–2018 cycles of What We Eat in
America (WWEIA), NHANES data, and conducted four sensitivity analyses comparing
alternative approaches, to improve standardization across studies. Using the reference
approach, they found that UPFs accounted for 58% of dietary energy contribution, while
sensitivity analysis showed this ranged from 53% to 60% across approaches [99].

The NOVA classification system has been criticized by some for the uncertainty in the
definitions of the four categories and it has been suggested that more traditional nutrient
profiling may be more useful [103]. Consumer-friendly web-based nutrition tools have
been designed to help individuals make healthier food choices. The Nutri-Score, a front-
of-package nutrition labeling system implemented in France and several other European
countries, is a user-friendly way to inform consumers of healthy food choices [104]. The
NOVA classification system and Nutri-Score have been compared and, although they both
provide valuable information, the specific categories do not completely align [105].

5.2. Future Directions for Determining UPFs’ Impact on Gut Microbiome and Other Health Outcomes

The sample of RCT and observational studies included in our analysis show a trend
of UPFs associated with a number of non-communicable diseases such as obesity, cancer,
and CVD [65,67–69,76,78,81,82,91]. The purpose and composition of UPF ingredients vary
greatly; therefore, different types of UPFs are expected to have different effects on the
body (i.e., all UPFs are not equivalent). UPFs often contain high salt and sugar content,
which are also associated with the Western diet, so it is difficult to distinguish possible
effects of processing itself and other negative traits of UPFs or the Western-style diet [1,106].
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Another complication is that UPFs do not exclusively contain unhealthy ingredients. In
a cross-sectional analysis by Price et al. using data from over 11,000 individuals in the
NHANES study, they distinguished between UPFs that contained whole grains and those
that did not and found that UPFs high in whole grains may not significantly contribute
to cardiometabolic risk factors [79]. The next steps in our understanding of the effects of
UPFs on health is to identify the direct causation and underlying mechanisms. This will
require more randomized controlled studies in humans and controlled studies in animals
using more standardized food classification methods such as those proposed above, along
with sensitivity analyses and detailed methods, so that studies can be easily reproduced.
Future studies should also include gut microbiome data, metagenomics, and metabolomics
data to identify potential biological signatures for the effects of UPFs.

6. Conclusions

In this narrative review, we discuss four original publications that have examined the
effects of UPFs on the gut microbiome. There are very few clinical studies in humans with
a focus specifically on UPFs and the gut microbiome, as distinguished from other poten-
tially overlapping dietary patterns. Two studies each identified associations between UPF
consumption and increased Prevotella spp. [17,19] and decreased Lachnospira spp. [16,19]
and Ruminococcus spp. [18,19]. While more studies are needed to draw definitive results
on the impact on the gut microbiome, we can also consider the well-known effects of a
Western-style diet on the gut microbiome, as the Western diet contains high amounts of
processed foods and UPFs. One of the largest barriers to UPF study reliability and repro-
ducibility is overcoming the ambiguity surrounding the NOVA food classification system,
so studies that provide very detailed descriptions of their food processing categorization
are valuable. Of the studies included in our analysis, approximately 63% and 86% of
RCT and observational studies, respectively, did not provide the level of detail included
in the publications with the most comprehensive methods. How does that impact our
consideration of the broader literature regarding potentially harmful effects of UPFs?

Even with the limitations we have described, it is hard to deny accumulating evidence
of some harmful health effects of some UPFs, but there is quite a gap in the understanding
of which UPFs matter the most and what amount of NOVA 4 foods, if any, might be
included in a diet otherwise composed of mostly NOVA 1–3 foods without harm. This
is an important question when considering ultra-processing that improves food stability,
especially in areas of limited resources. Careful meta-analyses that weigh the controls
of each study when developing broad conclusions from many studies will be essential.
To determine causation and to fully understand mechanisms by which UPF ingredients
affect biological functions and microbiota, whose pathways intricately intertwine with host
cellular pathways, the details of the methods and classification approaches will matter.
Animal studies will provide data that cannot be obtained from human studies. On a positive
note, even without understanding all of the effects of all ingredients, a switch to more
NOVA 1 foods is likely to improve the health of many individuals in real time, if they can
be convinced to switch, while science proceeds at a slower pace. To increase reproducibility,
we propose utilizing the methods reviewed here, such as considering food additive types
and/or the nutrient content of packaged foods. Studies should also share information
about foods that they had difficulties classifying and perform sensitivity analyses to reduce
bias. Overcoming these food categorization challenges is imperative for the field to move
forward in our understanding of the true biological impacts of UPFs on the gut microbiome
and health.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/nu16111738/s1: Table S1: PubMed search strategy for observational
studies; Table S2: PubMed search strategy for randomized controlled trials; Table S3: Characteristics
of clinical studies examining UPFs and the gut microbiome; Table S4: Characterization of clinical
randomized controlled trials using the NOVA system to categorize UPFs; Table S5: Characteristics of
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clinical observational studies published within the last year using NOVA system to categorize UPFs.
Ref. [107] is cited in Supplementary Materials.
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