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Abstract: Introduction: Arterial hypertension is a major contributor to a wide range of health
complications, with cardiac hypertrophy and chronic kidney disease being among the most prevalent.
Consequently, novel strategies for the treatment and prevention of hypertension are actively being
explored. Recent research has highlighted a potential link between hypertension and the gut-brain
axis. A bidirectional communication between the microbiota and the brain via the vagus nerve,
enteric nervous system, hypothalamus—pituitary—adrenal axis, secreted short-chain fatty acids, and
neurotransmitter metabolism. Materials and methods: A comprehensive literature search was
conducted using databases such as PubMed to identify studies exploring the relationship between
gut microbiota and hypertension, along with the effects of dietary interventions and probiotics
on blood pressure regulation. Discussion: Studies in both animal models and human subjects
have demonstrated a strong correlation between alterations in gut microbiota composition and the
development of hypertension. By influencing blood pressure, the gut microbiota can potentially affect
the progression of cardiovascular and kidney disorders. Modulating gut microbiota through dietary
interventions and probiotics has shown promise in regulating blood pressure and reducing systemic
inflammation, offering a novel approach to managing hypertension. Diets such as the Mediterranean
diet, which is rich in polyphenols and omega-3 fatty acids and low in sodium, promote the growth
of beneficial gut bacteria that support cardiovascular health. Additionally, probiotics have been
found to enhance gut barrier function, reduce inflammation, and modulate the Renin—Angiotensin
System, all of which contribute to lowering blood pressure. Conclusions: Further research is needed
to determine the mechanisms of action of the microbiota in hypertension. The aim of this study
was to evaluate the influence of gut microbiota on blood pressure regulation and the progression of
hypertension-related complications, such as cardiovascular and kidney disorders.
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1. Introduction

Hypertension, commonly referred to as elevated blood pressure (BP), is a chronic
condition characterized by persistently increased arterial BP [1]. Guidelines recommend
for hypertension to be diagnosed during repeated examination in the medical facility when
the patient’s systolic blood pressure (SBP) is >140 mm Hg and/or their diastolic blood
pressure (DBP) is >90 mm [2,3]. Ambulatory BP measurement (ABPM) is an out-of-office
technique that allows for BP to be automatically measured, usually over a 24 h period
at preselected intervals [4]. Hypertension can be diagnosed when the 24 h mean SBP is
>130 mmHg and/or DBP is >80 mmHg. Furthermore, hypertension can be confirmed
when the awake (daytime) SBP is >135 mmHg and/or DBP >85 mmHg and nighttime
(sleep) SBP is >120 mmHg and/or DBP >70 [5].
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Hypertension remains a growing health and social burden, affecting an estimated
1.56 billion adults, with its prevalence projected to reach 60% of adults worldwide by
2025 [6]. It is recognized as the largest contributor to the global disease burden, with
its increasing prevalence attributed to aging populations, sedentary lifestyles, and poor
dietary choices [7,8]. According to the World Health Organization (WHO), the occurrence
of uncontrolled hypertension reached 26% in 2019, failing to meet the voluntary global
target of 21% [9].

Globally, untreated or suboptimally controlled hypertension remains one of the lead-
ing causes of coronary heart disease [10,11]. Elevated BP is the cause of other cardiac
complications, presented in Figure 1 [12,13]. Chronic BP elevation is associated with cere-
bral vasculature atherosclerosis and endothelial dysfunction, which can lead to neurological
complications, summarized in Figure 1 [14,15]. Moreover, hypertensive nephropathy is a
frequent finding in patients with hypertension, potentially leading to chronic kidney dis-
ease (CKD) [16]. Chronically elevated BP is also related to ophthalmological complications
such as hypertensive retinopathy which can potentially lead to vision loss [17]. A summary
of the complications of hypertension is depicted in Figure 1.
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Figure 1. Complications of hypertension.

The pathophysiology of hypertension is complex and multifactorial, involving many
interrelated mechanisms. The classic pathophysiology mechanism of hypertension involves
dysregulation of the Renin—-Angiotensin-Aldosterone System (RAAS), overactivity of the
Sympathetic Nervous System (SNS), endothelial dysfunction, dysregulation of BP renal
regulation, and disruption of neurohumoral factors [18]. Recent research has also high-
lighted the role of chronic inflammation and immune system activation in the pathogenesis
of hypertension, as immune cells release pro-inflammatory cytokines which exacerbate
endothelial dysfunction [19].

These interconnected mechanisms offer therapeutic targets for hypertension manage-
ment, with most current drugs targeting currently well-known mechanisms. The rising
health burden pushes for the development of new hypertension management strategies [20].
Recently, a connection between gut microbiota and hypertension has been proposed with a
mechanism through which the host’s microbiome regulates the development and progress
of hypertension, allowing for a new path in hypertension management [21,22].

The microbiota refers to microorganisms, including commensal bacteria, that reside in
the human gastrointestinal tract. It is estimated that a single individual’s gut microbiome
contains more than 100 trillion bacteria, increasing progressively from the stomach to



Nutrients 2024, 16, 4079

30f19

the intestines and colon with around 10?714 bacteria per gram of tissue [23,24]. These
microbes possess genetic material 100 times greater than the human genome, and their
total mass within the body is thought to range between 1 and 3 kg [25,26]. The human
gut microbiota and host maintain a symbiotic connection, in which both benefit from
each other. The host offers a habitat and nourishment for the microorganisms, which in
return support the host’s health by enhancing disease resistance and improving nutrient
absorption from digested food [23]. This balanced, cooperative state is known as eubiosis,
in contrast to dysbiosis, which refers to an imbalance in the composition and function
of the intestinal microbiota [27]. Due to the presence of the microbiota—gut-brain axis
(GBA), which facilitates bidirectional communication between the human gut microbiota
and itself, eubiosis is essential for human functioning [28]. The GBA can be characterized
as interactions that involve the gut-associated immune system, the enteric nervous system
(ENS), the vagus nerve, and the gut microbiota that secretes neurotransmitters, tryptophan,
or short-chain fatty acids (SCFAs) [29-31].

The aim of this study was to comprehensively evaluate the influence of gut microbiota
on blood pressure regulation and the progression of hypertension-related complications,
including cardiovascular diseases and kidney disorders. Research aims to explore the po-
tential mechanisms underlying these relationships, such as the modulation of inflammatory
responses, hormonal regulation, and the production of microbiota-derived metabolites.
Ultimately, this investigation aspires to provide insights that could inform novel therapeutic
strategies for managing hypertension and its associated complications.

2. Materials and Methods
2.1. Literature Search Strategy

A comprehensive literature search was conducted using databases such as PubMed.
The search focused on studies examining the relationship between gut microbiota and
hypertension, as well as the impact of dietary interventions and probiotics on blood
pressure regulation. Efforts were made to include the most recent studies to ensure up-to-
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date findings. Keywords used in the search included “hypertension”, “gut microbiota”,
“gut-brain axis”, “probiotics”, “diet”, “blood pressure”, “cardiovascular”, and “kidney”.
Both animal and human studies were considered to provide a broad understanding of

the topic.

2.2. Inclusion and Exclusion Criteria

Inclusion Criteria: Studies were included if they

1.  Investigated the association between gut microbiota composition and hypertension;

2. Evaluated the effects of dietary interventions (e.g., Mediterranean diet) or probiotics
on blood pressure regulation;

3.  Discussed the mechanisms of the gut-brain axis in relation to hypertension;

4.  Included both animal and human studies to provide a comprehensive understanding
of the topic.

Exclusion Criteria: Studies were excluded if they

1.  Focused on non-hypertensive populations or did not assess blood pressure outcomes;
2. Lacked a clear link to gut microbiota or failed to provide relevant mechanistic insights.

2.3. Data Analysis

In this review study, data were extracted from selected studies to assess the relationship
between gut microbiota and hypertension. We concentrated on key information, including
sample size, study design, and population characteristics, as well as specific details of
dietary interventions and the types and dosages of probiotic strains employed, along with
outcomes related to blood pressure and other relevant cardiovascular health indicators. This
review aimed to synthesize the findings from the included studies, highlighting the role
of the gut-brain axis and the mechanisms connecting the gut microbiota to hypertension
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and hypertension-related complications. Additionally, this review aimed to identify gaps
in the current literature and suggest future research directions to further explore these
important connections.

3. Microbiota and the Gut—Brain Axis

The microbiota’s composition is unique to each person and changes over time, reach-
ing a relatively stable state during adulthood. The microbiota begins forming in the fetal
stage, and the method of birth—whether vaginal or cesarean—plays a key role in its early
development. Additionally, an infant’s diet, particularly whether they are breastfed or
formula-fed, significantly influences the composition of their microbiota [32,33]. The mi-
crobiota’s composition is distinct, yet in healthy people, the proportions are relatively
consistent. Typically, Firmicutes account for 60% to 80% of the total, Bacteroidetes make up
20% to 40%, while Proteobacteria and Actinobacteria each represent about 5%. Research shows
that 20% of microbiota diversity can be attributed to short-term dietary changes; however,
long-term changes in diet have a greater influence on microbiota composition [34-36].
We distinguish three main enterotypes of microbiota depending on the predominance of
bacteria genera, as shown in Table 1 [37,38]. Overall, other factors that affect the type
and number of bacteria present in the gut are environmental pollution, medications and
antibiotics taken, place of residence, and origin [39,40]. Medical conditions also signifi-
cantly influence microbiota composition, with abnormalities noted in cases of in type 2
diabetes, gastroenterological diseases (irritable bowel syndrome, chronic constipation, and
gastroesophageal reflux disease), hypertension, cardiovascular diseases, chronic kidney
disease, and psychiatric disorders, among others [29,41-48].

Table 1. Enterotypes of microbiota in humans.

Enterotype Abundant Bacteria Species Type of Diet
1 Bacterioides high-fat diet and low fiber intake, industrialized food
2 Prevotella high fiber intake, low meat and dairy intake
3 Ruminococcus high-fat and -protein diet

As previously mentioned, the GBA facilitates bidirectional communication between the
human gut microbiota and itself, and its main pathways are presented in Figure 2 [29-31].
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The autonomic nervous system, especially through the vagus nerve, along with the
ENS, made of enteric neurons and glial cells, play key roles in regulating gut secretion,
motility, and immune responses. This allows the body to influence the gut microbiota’s
composition [49,50]. In turn, gut microbes can communicate with the central nervous
system (CNS) through neuronal, hormonal, and immune pathways, impacting various
bodily functions. SCFAs, like butonate and propionate, produced by gut bacteria from fiber
fermentation, can regulate human gene expression via histone hyperacetylation. SCFAs also
exert systemic effects, including immunomodulation, appetite control, calcium absorption,
and glucose regulation [51-54]. Additionally, the gut microbiota influences CNS activity
through alterations in the production and metabolism of neurotransmitters and molecules
such as acetylcholine, catecholamines, histamine, adenosine, and tryptophan [55-57]. For
instance, norepinephrine slows overall transit and lowers the number of migratory motor
complexes in the gut. Furthermore, it has anti-inflammatory properties and has a role in
behavior and cognition, including learning, memory, and attention [55,56]. Adenosine
similarly exhibits local anti-inflammatory and immunomodulatory effects [58].

The proper functioning of the GBA relies on the integrity of the intestinal barrier,
which separates the inner environment of the intestinal lumen from the rest of the human
body, thereby limiting solute and fluid exchange between the lumen and tissues [59]. When
dysbiosis occurs, barrier function is compromised, causing increased intestinal perme-
ability, commonly referred to as “leaky gut” syndrome (LGS). LGS is associated with the
translocation of microbial components such as lipopolysaccharide (LPS), toxic metabolites,
and inflammatory agents into the circulatory system. In the body, LPS is detected by
Toll-like receptors (TLRs), especially TLR4. Bacterial toxins also activate nuclear factor
kB, which, together with TLR4, regulates the expression of cytokines. This activation
triggers the release of pro-inflammatory molecules and interleukins (IL), including tumor
necrosis factor-alpha (TNF-«x), IL-6, IL-8, and IL-12, resulting in both local and systemic
inflammation [60-62]. Interestingly, the loss of ENS cells may induce increased intestinal
permeability even if there is no inflammation in the tissue [63]. On the other hand, Polysac-
charide A, a microbial-derived substance produced by Bacteroides fragilis, is detected by
TLR2, which initiates a protective anti-inflammatory response in the CNS [64].

The assessment of intestinal barrier function in LGS is performed by using a multi-
sugar test involving five different sugar probes: sucrose, lactulose, L-thamnose, erythri-
tol, and sucralose. However, novel approaches for assessing permeability have recently
emerged, focusing on blood biomarkers such as LPS, lipopolysaccharide-binding protein
(LBP), intestinal fatty acid-binding protein (I-FABP), zonulin, and calprotectin [29].

The chronic, systemic inflammation associated with LGS disrupts the hypothalamus—
pituitary—adrenal (HPA) axis, crucial for providing high-energy fuels like glucose, amino
acids, and free fatty acids to support immune responses. This dysregulation leads to
increased glucocorticoid and catecholamine release and triggers hypercortisolemia and
overactivity of the HPA axis, which is associated with impaired glucocorticoid receptor
function [65]. Moreover, in the case of increased intestinal permeability, T-cell activation
can occur. This can lead to the development of autoimmune disorders in the gut or other
organs if activated lymphocytes are transmitted further [66].

Additionally, low-grade systemic inflammation in LGS impairs the brain-blood barrier
(BBB), which is critical for maintaining brain homeostasis and normal neuronal function by
restricting the passage of chemicals, ions, and cells into the brain [67,68]. Increased BBB
permeability reduces the quantity and function of astrocytes and increases the activity of
microglia [69,70]. Research indicates that these alterations increase the risk of developing
psychiatric disorders, including depression and Alzheimer’s disease [62,71].

As previously noted, dysbiosis, LGS, and GBA dysfunction are common in various
disease states. The mechanisms behind these associations are complex and still being
studied. However, they are linked to bacterial translocation, low-grade inflammation,
and microbiota-derived substances. Their role will be discussed in more detail later in
this article.
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4. Alterations in Gut Microbiota Composition in Hypertension
4.1. Hypertension and Gut Microbiota in Animal Models

In recent years, multiple studies on humans and various animal models have demon-
strated a strong correlation between hypertension and gut microbiota.

One of the first studies to suggest the influence of microbial composition on BP reg-
ulation was conducted by Mell et al. Using the Dahl rat model, which includes both
salt-sensitive (S) and salt-resistant (R) strains on a high-salt diet (HSD), they observed
significant differences in the microbial content of S and R rats [72]. The microbiota of S rats
was characterized by an increased prevalence of bacteria from the phylum Bacteroidetes,
particularly with the greater abundance of the family S24-7 within this phylum, as well as
the higher abundance of the family Veillonellaceae from the phylum Firmicutes, compared
to R rats. Another study on the Dahl salt-sensitive rats found a positive association be-
tween BP and the abundance of six taxa, including taxa of the Pseudomonadales order, the
Christensenellaceae, Barnesiellaceae, Eubacteriaceae families, and the Erwinia and Anaerofustis
genera. Conversely, the abundance of the Anaerostipes genus displayed a negative cor-
relation with BP. Moreover, the microbial profile of the HSD-fed animals contained an
increased number of taxa from the genus Erwinia and the families Christensenellaceae and
Corynebacteriaceae and a lower number of taxa from the genus Anaerostipes compared to the
control group fed with regular chow [73]. In a murine model, high salt intake led to the
depletion of Lactobacillus species [74]. Treatment with Lactobacillus spp. supplementation in
HSD-fed mice diminished salt-induced hypertension, presumably by the modulation of
the activity of pro-inflammatory Th17 cells [74].

Studies on another genetic model of spontaneously hypertensive rats also revealed
differences in the composition of gut microbiota compared to normotensive controls,
including reduced microbial richness and diversity, alower number of acetate- and butyrate-
producing bacteria, and an increased Firmicutes-to-Bacteroidetes ratio [75,76].

A close relationship between dysbiosis and BP regulation has been confirmed in two
other models of laboratory-induced hypertension: the deoxycorticosterone acetate (DOCA)-
salt model and angiotensin II (Ang II)-induced hypertension. In hypertensive DOCA-salt
rats, an increase in the Bacilli class of Firmicutes and Lactobacillales family was detected,
while the bacteria genera of Sutterella, Actinobacteria, and Oscillospira were observed to be
reduced [77]. Using germ-free (GF) mice, Karbach et al. assessed the role of intestinal
microbiota in the pathogenesis of Ang II-induced hypertension, along with its effects on
inflammatory markers and resulting organ damage [78]. They evidenced that treatment
with Ang Il resulted in increased BP in both researched groups; however, the effect was
notably muted in GF mice compared to the conventional animals. Furthermore, the GF
mice were protected from vascular oxidative stress and inflammation and showed less
cardiac fibrosis and immune cell infiltration in the kidneys, suggesting the involvement of
microbiota in these pathological processes. In related research, Yang et al. demonstrated
alterations in gut microbiota composition following Ang II infusion, observing a notable
decrease in microbial richness and an elevated Firmicutes-to-Bacteroidetes ratio compared
to the control group [75]. Subsequent treatment with minocycline, an anti-inflammatory
antibiotic, was able to alter the microbiota composition by reducing the Firmicutes-to-
Bacteroidetes ratio, simultaneously attenuating high blood pressure and suggesting a
connection between these two processes [75].

In summary, the findings from all experimental models, as presented in Table 2,
showed that hypertensive animals exhibit altered microbiota compared to their normoten-
sive counterparts, suggesting a complex yet undeniable interplay between microbiota and
the diverse pathophysiological mechanisms underlying hypertension.
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Table 2. Composition of intestinal microbiota in hypertensive animal models. HSD—high-salt diet,
SHR—spontaneously hypertensive rats, DOCA—deoxycorticosterone acetate, Ang Il—angiotensin II,
T— increase |— decrease.

Reference

Model Intestinal Microbiota Alterations in Hypertensive Animals

Mell et al. [72]

HSD-fed rats 1 Bacteroidetes, Veillonellaceae,

1 Pseudomonadales, Christensenellaceae, Barnesiellaceae, Eubacteriaceae,

Bier et al. [73] HSD-fed rats Erwinia, Anaerofustis
1 Anaerostipes
Wilck et al. [74] HSD-fed rats } Lactobacillus

Yang et al. [75]
Adnan et al. [76]

| microbial richness and diversity
SHR | acetate- and butyrate-producing bacteria
1 Firmicutes-to-Bacteroidetes ratio

Robles-Vera et al. [77]

1 Firmicutes, Lactobacillales

DOCA-salt rats 1 Sutterella, Actinobacteria, Oscillospira

Yang et al. [75]

Ang II-induced hypertension

1 microbial richness
1 Firmicutes-to-Bacteroidetes ratio

4.2. Microbiota and Hypertension in Clinical Studies

Numerous clinical studies have established a strong association between dysbiosis
and hypertension, as shown in Table 3. In a 2017 study by Li et al., the analysis of the
metabolome and metagenome in a cohort of primarily hypertensive, pre-hypertensive, and
healthy patients revealed a significant decrease in microbial richness and diversity among
hypertensive patients, along with a distinct metagenomic profile, including an overgrowth
of bacteria such as Prevotella and Klebsiella [79]. Interestingly, the microbiome characteristics
in pre-hypertensive patients closely resembled those in hypertensive individuals. Subse-
quent fecal transplantation of the microbiota from hypertensive human donors to germ-free
mice resulted in the elevation of blood pressure in the recipient animals, suggesting a
direct role of microbiota in BP regulation [79]. This finding was later supported by the
large cohort study Coronary Artery Risk Development in Young Adults (CARDIA), which
confirmed an inverse correlation between gut microbial diversity and both hypertension
and systolic BP [80]. More specifically, the data revealed a correlation between hypertension
and 18 different genera, including Anaerovorax, Clostridium IV, Oscillibacter, and Sporobacter,
and the distribution of Veillonelnotably aligned with hypertensive patients. In addition,
Anaerovorax, Catabacter, and Robinsoneilla have been positively correlated with hyperten-
sion [80]. In a cohort study on 6953 Finnish participants, Palmu et al. observed 45 microbial
genera positively associated with BP, 27 of which belonged to the phylum Firmicutes [81].
In another study, the intestinal microbiota of patients with hypertension has been identified
by an elevated quantity of opportunistic pathogens, such as Klebsiella, Streptococcus, and
Parabacteroides [82]. In contrast, the number of SCFA producers, including Roseburia and
Bacillus freundii, was notably reduced.

Table 3. Composition of intestinal microbiota in hypertensive patients. T— increase |— decrease.

Reference

Population Intestinal Microbiota Alterations in Hypertensive Patients

Lietal. [79]

99 hypertensions
56 pre-hypertensions
41 controls

1 Prevotella, Klebsiella
| microbial richness and diversity

Sun et al. [80] 529 subjects T Anaerovorax, Clostridium IV, Oscillibacter, Sporobacter,
' (183 hypertensions) Catabacter, Robinsoneilla
Palmu et al. [81] 6953 subjects 1 Firmicutes
60 hypertensions T Klebsiella, Streptococcus, Parabacteroides

Yan et al. [82]

60 controls 1 Roseburia, Bacillus freundii
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stroke/ heart failure

atrial fibrillation

coronary heart disease

Significantly, certain bacteria have been suggested to influence blood pressure fluctua-
tions. A positive correlation was observed between greater variability and the abundance
of Clostridium and Prevotella, while lower variability was associated with higher levels of
Alistipes finegoldii and Lactobacillus [83].

5. Impact on Kidney and Cardiovascular Health

Hypertension is one of the most important risk factors for cardiovascular disease
(CVD) and CKD. The cardiovascular consequences of high blood pressure are extensive
and include atrial fibrillation, valvular heart disease, cardiomyopathy, coronary artery
disease, peripheral arterial disease, and chronic kidney disease, as well as stroke, heart
failure, and cardiovascular death. Each condition underscores the critical importance of
managing blood pressure to reduce the risk of severe health outcomes [84]. A summary of
various mechanisms leading to CVD and CKD is shown in Figure 3.

Arrhythmia/ Heart
failure

hypertensive
cardiomyopathy

valvular disease

Hypertension

myocardial ischemia

RAAS activation,
salt and water impalance,

et inflammatory cytokines

infarction

Chronic kidney disease

periphereral arterial
disease

Figure 3. Hypertension results on CVD.

The microbiome, acting as a mediator of oxidative stress and chronic inflammation,
also contributes to the pathophysiology and risk of developing CVD [85].

Several mechanisms may be responsible for this, with one of the most critical being the
binding of lipopolysaccharide to TLR4, causing the secretion of pro-inflammatory molecules
and enhancement of pro-atherogenic receptors. This mechanism has been shown to con-
tribute to atherosclerosis, atrial fibrillation, and heart failure. Other microbiota-derived
products, such as trimethylamine N-oxide (TMAO) and bile acids, also influence the pro-
gression of CVD. These molecules are linked to increased inflammatory states promoting
atherogenesis, fibrosis, and foam cell formation. Conversely, SCFAs inhibit inflammation
and play a cardioprotective role [86]. Their roles and mechanisms are illustrated in Figure 4
and discussed in further detail later in this article.
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Figure 4. Microbiota products and their actions.

5.1. Damaged Endothelium and Atherosclerosis

Atherosclerosis is the buildup of plaques within arterial walls, leading to serious com-
plications that affect not only the cardiovascular system but also other organs. It can cause
coronary artery disease, reducing blood flow to the heart muscle and potentially leading
to ischemia and myocardial infarction. Plaques in other arteries may lead to peripheral
artery disease, strokes, or chronic kidney disease. Hypertension adds mechanical stress to
the artery walls, damaging the endothelium over time and promoting the inflammatory
process, which is a key factor in plaque buildup. This process results in atherosclerosis [87].
Hypertension is also linked to the activation of the RAAS and Sympathetic Nervous System,
promoting the release of pro-inflammatory cytokines (e.g., IL-6, IL-1(3, TNF-alpha) from
vascular cells [88].

Microbiota changes also play an important role in the development of atherosclerosis,
acting not only as a modulator of the inflammation process and oxidative stress but also
through various different mechanisms. SCFAs can activate G-protein-coupled receptors
such as GPR41 and GPR43, reducing the inflammation process and influencing enteroen-
docrine regulation to suppress insulin-mediated fat accumulation [89]. They also affect
renin secretion and modulate blood pressure. Therefore, SCFAs lower the overall risk of
CVD. On the other hand, there are microbiota products such as branched-chain amino acids
(BCAAs) and LPS that influence glucose metabolism and insulin sensitivity [48]. They also
cause disturbed lipid metabolism and contribute to atherosclerotic plaque formation [90].

Some nutrients are metabolized by gut bacteria into trimethylamine (TMA), which
the liver then oxidizes to Trimethylamine N-oxide. TMAO promotes the accumulation of
cholesterol in macrophages, thus fostering the formation of foam cells and atherosclerosis.
Additionally, TMAO alters platelet calcium signaling and enhances platelet aggregation,
contributing to endothelial dysfunction and CVD [91-93].

Gut bacteria are responsible for primary bile acids’ conversion and therefore for lipid
metabolism, glucose homeostasis, and inflammatory processes. Dysregulation in bile acid
metabolism can contribute to cardiovascular disease by promoting inflammation, altering
lipid profiles, and impacting vascular function [94,95]. Additionally, gut microbiota may be
a source of bacteria that accumulates in the arteriosclerotic plaque and may impact plaque
stability and the development of other cardiovascular conditions [89,96]. It is suggested
that symptomatic atherosclerosis is associated with different microbiota genus and that
the bacterial metagenome may contribute to development of this disease. The presence of
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bacteria such as Collinsella may be more typical for individuals affected by symptomatic
atherosclerosis [97].

5.2. Structural Myocardial Changes

Increased blood pressure forces the left heart chamber to work harder to pump blood
to the rest of the body. Over time, this additional strain activates intracellular signaling
cascades and the synthesis of actin and myosin that compose the sarcomeres, added
parallelly in the cardiomyocyte and increasing its size [98].

This condition, known as left ventricular hypertrophy (LVH), leads to structural
changes in the heart, fibrosis, and reduced blood flow to the heart muscle. It impairs
the heart’s ability to function properly, increasing the risk of congestive heart failure or
myocardial infarction [98].

Microbiota also adds to this process: the higher amount of N, N,N-trimethyl-5-
aminovaleric acid (TMAVA) produced by gut bacteria, the lower is fatty acid oxidation,
and higher the risk of cardiac hypertrophy [99,100].

However, animal model experiments do not always support the theory that diet may
influence hypertrophy. One study found that when a probiotic composed of Lactobacillus
plantarum was added to the rat’s diet, the process of developing LVH and heart failure after
myocardial infarction was attenuated [101]. On the other hand, an experiment examining
the impact of a high-fiber and high-acetate diet showed no preventative effect, despite
these factors being significant modulators of gut microbiota that release SCFAs. The diet
did not prevent cardiac remodeling, hypertrophy, or overall dysfunction in animals with
dilated cardiomyopathy [102].

5.3. Increased Ventricular and Atrial Pressure and Diastolic Dysfunction

Mitral regurgitation (MR), one of the most prevalent valvular heart diseases, involves
the retrograde flow of blood from the left ventricle (LV) into the left atrium due to improper
closure of the mitral valve during systole. [103]. It can be caused by structural deformities
such as degenerative changes in the leaflets or damage that prevent the valve leaflets
from closing properly during systole. Chronic volume overload from MR can lead to
left atrial and ventricular dilation, adversely affecting ventricular filling and relaxation.
Hypertension exacerbates these effects by increasing myocardial wall stress, contributing to
left ventricular remodeling and worsening MR. Conditions such as ischemic cardiomyopa-
thy or left ventricular remodeling, such as dilated cardiomyopathy, can also cause mitral
regurgitation. The stiffening of the ischemic ventricle requires higher filling pressures to
maintain adequate preload, which in turn increases pressure in the left atrium and leads to
mitral regurgitation. In dilated cardiomyopathy, the enlargement of the left ventricle further
exacerbates the issue by impairing the proper closure of the mitral valve, contributing to
the regurgitation and potentially leading to progressive heart failure [104].

Gut dysbiosis causes hypertension, contributes to LVH, and therefore also links to
valvular diseases. Together with environmental factors, it can lead to chronic, subclinical
inflammation in the body. This inflammation promotes the infiltration of inflammatory cells
into the heart valves, which, along with pro-inflammatory molecules, triggers a cascade of
reactions that cause the valves to calcify, become fibrotic, and eventually malfunction [86].
TMAO is proven to influence valve fibrosis by initiating endoplasmic reticulum stress
mechanisms involving the activation of PERK/ATF-4 and IRE-1o/XBP-1s pathways, which
may particularly affect the aortic valves [105]. Therefore, hypertension and changes in gut
microbiota may contribute to the development of mitral regurgitation, aortic stenosis, or
aortic regurgitation.

The combination of increased left atrial pressure and volume leads to atrial dilation.
This process promotes fibrosis and structural remodeling, which disrupts the normal
conduction pathways within the atria, predisposing to rhythm disorders such as atrial
fibrillation (AF). Studies also suggest a link between gut microbiota and AF. TMAO has
been associated with an increased risk of AF. Additionally, certain bacterial genera, such as
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Enorma and Bifidobacterium, have been associated with both the prevalent and incidence
forms of AF [106].

5.4. Hypertension and Chronic Kidney Disease

CKD is characterized by a gradual loss of kidney function over time, and it is a precur-
sor to end-stage renal disease. It is also associated with an increased risk of cardiovascular
disease. Hypertension, which is a huge risk factor for CVD, may be encountered during
the progression of kidney disease and is also a leading cause of its progression [107].

There are several interconnected factors influencing both of those diseases, including
volume expansion, the RAAS, oxidative stress, inflammatory states, endothelial dysfunc-
tion, and vascular remodeling [107].

Diabetes leads to endothelial damage and increased cytokine secretion [108] and
is a strong predictor of incident CKD and the rapid decline of kidney function [109].
Dyslipidemia and oxidative stress, present in inflammation, contribute to atherosclerosis.
Vessel thickening, a reduction in the availability of small blood vessels in the kidney, and
decreased perfusion can lead to a decline in renal blood flow (RBF), glomerular filtration
rate (GFR), and tubular function [110]. This reduces the ability to accurately filter waste and
fluid from the blood. When sodium is not filtered and excreted properly, the extracellular
expansion provokes hypertension and edema [107].

The RAAS, which controls the water and salt homeostasis in the human organism, is
highly influenced by hypertension and kidney disease. The synthesis of renin is stimulated
when renal scarring occurs [111]. It may also be stimulated by oxidative stress, gut micro-
biota dysbiosis, and nitric oxide deficiency [112], which are present in various CVD. The
activated RAAS contributes to both systemic and glomerular capillary hypertension [113],
a vicious cycle where proper blood pressure and renal function become interdependent.

6. Gut Microbiota and Hypertension: Clinical Implications and Future Perspectives for
Kidney and Cardiovascular Health

Recent research has greatly advanced our understanding of the intricate role of gut
microbiota in hypertension and its implications for kidney and cardiovascular health.
Understanding this dynamic interplay is crucial as it offers new avenues for prevention,
diagnosis, and treatment of hypertension-related complications. This chapter explores fu-
ture research directions, clinical implications, and current insights into how gut microbiota
affects hypertension and, consequently, overall health.

6.1. Microbiome Profiling: A New Approach to Hypertension Prevention

Integrating gut microbiota screening for individuals at high risk of hypertension
may significantly enhance early detection and prevention efforts. Research suggests that
specific microbial patterns are associated with hypertension, such as a reduced diversity of
beneficial bacteria (Lactobacillus and Bifidobacterium) and an increase in potentially harmful
bacteria (Firmicutes and Proteobacteria). 1dentifying gut microbiota patterns may aid in
early identification of individuals at risk for hypertension. Integrating these microbiota
profiles into risk assessments may enable clinicians to more accurately predict hypertension
susceptibility, potentially allowing for targeted interventions for those at higher risk.

Microbiota profiles could also support personalized dietary recommendations de-
signed to restore a healthy gut microbiome. Additionally, lifestyle modifications, including
physical activity and stress management, could be tailored based on microbiota findings to
further support gut health and blood pressure regulation.

6.2. Advancing Hypertension Management with Microbiota-Focused Interventions

Integrating gut microbiota modulation into standard hypertension treatment protocols
offers a promising enhancement to therapeutic outcomes. Dietary interventions play a key
role in both managing hypertension and modulating gut microbiota. By tailoring dietary
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plans to individual gut microbiota profiles, it is possible to significantly influence blood
pressure regulation.

The Mediterranean and Dietary Approaches to Stop Hypertension (DASH) diets are
renowned for their cardiovascular benefits and their positive impact on gut microbiota
composition. These diets emphasize the consumption of polyphenol-rich foods, omega-3
fatty acids, and reduced sodium, which together contribute to both lowering blood pressure
and enhancing cardiac health [114,115]. Polyphenols found in foods such as berries, olive
oil, and nuts regulate the gut microbiota by being metabolized into SCFAs [116]. SCFAs,
in turn, increase beneficial bacteria like Bifidobacteria and Lactobacilli while suppressing
harmful ones like Clostridium [117], reducing systemic inflammation and supporting
endothelial function, which helps lower blood pressure [116,118]. Omega-3 fatty acids,
found in fatty fish, seeds, and nuts, enhance the growth of beneficial bacteria such as
Lactobacillus and Akkermansia muciniphila, improve gut barrier function [119], and may
reduce pro-inflammatory cytokines like TNF-«, IL-6, and IL-1$3 by increasing SCFA pro-
duction [120,121]. A reduced sodium intake contributes to blood pressure regulation by
decreasing fluid retention and easing cardiovascular stress [122]. Although sodium’s direct
effects on the gut microbiota are less studied, high dietary sodium consumption can lead to
gut dysbiosis by altering the composition and diversity of gut microbiota and negatively
affecting intestinal permeability. This disruption increases the production of inflammatory
cytokines, which can, in turn, directly elevate blood pressure [123].

A meta-analysis conducted by Zhao et al. examined the effects of long-term (>8 weeks)
probiotic use on office and ambulatory BP. The meta-analysis included 26 trials with a
total of 1624 participants, demonstrating that probiotic consumption significantly reduced
office systolic BP by 2.18 mmHg and diastolic BP by 1.07 mmHg. Additionally, analysis
of ambulatory BP from three trials showed a similar reduction of —2.35 mmHg in sys-
tolic BP and —1.61 mmHg in diastolic BP. Subgroup analyses revealed that hypertensive
and diabetic patients experienced significant reductions in both systolic and diastolic BP
(p <0.02). Interestingly, the study found that factors such as increasing age, baseline body
mass index (BMI), treatment duration, and baseline systolic BP did not lead to significant
enhancements in the antihypertensive effects of probiotics [124].

Specific probiotic strains, notably Lactobacillus and Bifidobacterium, have shown promis-
ing antihypertensive effects [125]. These probiotics may help regulate blood pressure
through several key mechanisms. They enhance gut barrier function by increasing the
production of tight junction proteins, such as occludin and claudin, which prevents the
translocation of inflammatory molecules from the gut into the bloodstream. This process
reduces systemic inflammation, a known contributor to hypertension [126]. The studies
show that probiotics may inhibit pro-inflammatory cytokines like IL-1, IL-6, and TNF-o
and produce anti-inflammatory cytokines like IL-4, IL-10, IL-11, and IL-13, reducing the
overall inflammatory state in the body, which may help in lowering blood pressure [127].
Additionally, probiotics modulate the RAAS, which plays a crucial role in blood pressure
regulation. For instance, Lactobacillus helveticus produces bioactive peptides during protein
fermentation, which can inhibit angiotensin-converting enzyme (ACE), reducing the pro-
duction of angiotensin I, a potent vasoconstrictor [128,129]. This action may contribute to
blood pressure reduction. Probiotic supplementation has also been shown in many studies
to reduce total cholesterol, LDL-C, and triglycerides and increase HDL-C, consequently
improving vascular health and potentially lowering blood pressure [130].

Potentially, another microbiota-targeted intervention may be fecal microbiota trans-
plantation (FMT). Xu et al. studied the effects of FMT on blood pressure in spontaneous
hypertensive rats (SHRs) in comparison to normotensive Wistar Kyoto (WKY) rats. Their
research involved transplanting fecal microbiota from WKY rats to SHRs and vice versa,
measuring blood pressure and analyzing gut microbial composition through 165 rDNA
gene amplicon sequencing. The results indicated that after FMT, blood pressure decreased
in SHRs and increased in WKY rats. Significant differences in gut microbial composition
were observed, particularly in the abundance of lactic and butyric acid-producing bacteria.
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Furthermore, FMT influenced intestinal mucosal barrier integrity, affecting the expression
of tight junction proteins and indicating altered mucosal permeability [131].

There are also human studies focusing on microbiota transplantation which further
support the potential of this intervention in managing hypertension. In a study conducted
by Zhong, patients who underwent washed microbiota transplantation (WMT) demon-
strated a reduction in both systolic and diastolic blood pressure. Specifically, systolic blood
pressure decreased by —5.09 £ 15.51 mmHg (p = 0.009), while diastolic blood pressure
showed a reduction of —7.74 + 10.42 mmHg (p < 0.001). Additionally, the study identified
factors influencing the antihypertensive response to WMT. Patients who underwent the
procedure via the lower gastrointestinal tract experienced a greater reduction in systolic
blood pressure. Notably, those not taking antihypertensive medications also demonstrated
a more pronounced decrease in both systolic and diastolic blood pressure [132]. Given
these results, FMT may represent a novel strategy for addressing hypertension through
microbiota modulation, paving the way for future research into its clinical applications in
human populations.

Well-designed clinical trials are crucial to determine the most effective probiotic
strains and their optimal dosages for different patient populations. These trials can help
establish standardized guidelines for using probiotics as part of hypertension management
and provide insights into the long-term safety and efficacy of probiotic supplementation,
ensuring that these treatments can be tailored to individual needs and integrated into
comprehensive care plans.

Moreover, lifestyle changes may significantly impact hypertension management by
enhancing gut microbiota balance and overall health. For example, a study showed that
moderate exercise led to a significant increase in SCFAs and lactic acid producers, also
increasing the relative abundance of Akkermansia muciniphila, which is associated with
improved metabolic health and reduced inflammation [133,134]. Additionally, stress man-
agement is crucial for maintaining gut microbiota balance, as chronic stress can lead to
dysbiosis and increase intestinal permeability [29]. Such changes in gut health are asso-
ciated with systemic inflammation, which can disturb blood pressure regulation [135].
Mind-body interventions, including yoga and meditation, may potentially counteract
these effects by reducing stress-induced cortisol secretion [136], thereby supporting gut
microbiome stability and improving gastrointestinal barrier function.

6.3. Future Directions in Microbiota-Based Hypertension Interventions

Regular gut microbiota screening could enable the continuous monitoring of microbial
composition changes in response to interventions, helping to evaluate the effectiveness of
personalized treatments and facilitate adjustments as needed. For example, if initial inter-
ventions do not produce the desired results, clinicians might modify dietary or probiotic
strategies based on updated microbiota profiles. Furthermore, integrating gut microbiota
screening and targeted therapies with conventional hypertension treatments could opti-
mize antihypertensive medication choices and potentially reduce side effects. Enhancing
gut health may improve the efficacy of medications or allow for reduced dosages.

Ongoing research will be crucial to clarify the precise mechanisms through which gut
microbiota influences blood pressure. Large-scale longitudinal studies may be necessary to
validate the efficacy of microbiota-based interventions and assess their long-term effects on
hypertension. Future research should prioritize clinical trials to identify the most effective
strains and dosages for different patient populations, ensuring that probiotic interventions
are both safe and efficacious. Such studies will help refine treatment protocols and integrate
probiotic therapies into standard hypertension management practices.

Advances in microbiome analysis technologies and data interpretation are likely to
continue refining personalized treatment strategies. As research advances, the development
of novel biomarkers and diagnostic tools based on gut microbiota profiles may become fea-
sible. These tools could facilitate the early detection of individuals at risk for hypertension
and guide the implementation of personalized, microbiota-targeted interventions.
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7. Conclusions

Emerging evidence suggests that gut microbiota may play a significant role in regulat-
ing blood pressure. Although initial studies are promising, the findings remain preliminary
and require further investigation. Dietary adjustments, the use of probiotics, and other
lifestyle modifications have shown potential benefits, but these interventions need to be
validated through larger and more rigorous studies. Future research should focus on con-
firming the specific mechanisms by which gut microbiota influence blood pressure, refining
and optimizing treatment protocols based on these insights and integrating microbiota-
based strategies into clinical practice. This comprehensive approach could potentially
enhance hypertension management and provide more personalized treatment options.
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