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Simple Summary: In this opinion paper, we advocate the reuse and sharing of data supporting
cancer science. We highlight artificial intelligence methods based on open data for insight generation
and present use cases in glioma research.

Abstract: Supporting data sharing is paramount to making progress in cancer research. This includes
the search for more precise targeted therapies and the search for novel biomarkers, through cluster
and classification analysis, and extends to learning details in signal transduction pathways or intra-
and intercellular interactions in cancer, through network analysis and network simulation. Our
work aims to support and promote the use of publicly available resources in cancer research and
demonstrates artificial intelligence (AI) methods to find answers to detailed questions. For example,
how targeted therapies can be developed based on precision medicine or how to investigate cell-level
phenomena with the help of bioinformatical methods. In our paper, we illustrate the current state
of the art with examples from glioma research, in particular, how open data can be used for cancer
research in general, and point out several resources and tools that are readily available. Presently,
cancer researchers are often not aware of these important resources.
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1. Introduction

What are the currently known biomarkers and cancer driver genes for a selected sub-
disease? Which genetic aberrations can be used diagnostically? Have survival-associated
patterns been already identified? Which overall survival can be predicted? Are there
any gender and age specifics about certain cancer subtypes? Are there any targeted drug
recommendations for certain genomic variations? Numerous questions are being raised
regarding cancer research every day and, partly, data already exist that help find answers.
Yet, it is still not generally acknowledged to reuse and share data in cancer research [1,2].

Biomolecular data types range from genomic, proteomic, and metabolomic, up to
radiomic and clinical data. These include cancer-related whole genome and large-scale
genomic sequencing data, copy number alterations, DNA methylation, different types of
mutations, microarray data, microRNAs, RNA sequencing data, protein-protein interaction
(PPI) probing, protein mass spectrometry, drug-target relationships, and further biological
and pharmacological data, as well as cancer incidence, mortality rates, prevalence, and
survival rates [3].

2. Open Data for Cancer Research

This section is structured as follows:
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1. Why open data research?—from open to FAIR (findable, accessible, interoperable,
and reusable).

2. General biomedical data providers.
3. Cancer specific data initiatives and resources.
4. Metadata for AI in cancer research.
5. Explainability and causability.
6. Fostering exchange and use cases for glioma research.

2.1. Ad 1. Why Open Data Research?

In the year of 1957, the International Council of Scientific Unions (ICSU) prepared the
International Geophysical Year, amongst other reasons, to overcome the many data locks of
the cold war times [4]. Recently, the ICSU was merged with the International Social Science
Council (ISSC) to form the International Science Council (ISC) [5]. In the last quarter of the
past century, the idea of worldwide data exchange grew, which resulted in the necessity
of the standardization of metadata for exchange [6]. In the 1970s, National Aeronautics
and Space Administration (NASA) had to cooperatively work with international partners
to operate ground control stations, leading to the implementation of a standardized way
of data exchange [7]. By now, NASA has its very own open data portal [7]. In 1995,
the national academy of sciences published a report “On The Full And Open Exchange Of
Scientific Data”. Within this report, the committee on the geophysical and environmental
data of national research council, Washington, D.C., demanded the disclosure of data and
promoted open exchange between different countries [8]. It was the end of 2005 when
common endeavours to collect and share the genomic analysis of 33 different cancer types
with The Cancer Genome Atlas (TCGA) was launched, 2006, followed by Therapeutically
Applicable Research to Generate Effective Treatments (TARGET), concerned with childhood
cancer research [9] and International Cancer Genome Consortium’s (ICGC) in 2008 [10].
Local initiatives followed, such as the German cancer consortium (DKTK) in 2012 [11].
Additionally, other global initiatives followed. In 2014, the Global Alliance for Genomics
and Health (GA4GH) was founded, in order to enable responsible genomic data sharing.
Soon after, global corporations throughout the world joined, supporting data sharing
initiatives in cancer research [12].

Biomedical databases provide both open, as well as controlled, access data, depending
on data type, such as for the ICGC data portal [10]. Open (access) data are data that can be
used by anyone, without technical or legal restrictions. The use encompasses both access
and reuse. Still, open data is less common than open access publications, which are two of
many important research stages in open(ing) science [13]. AI development requires diverse,
publicly available, and annotated data, in regard to quality, validation, and reproducibility.
This aspect becomes more and more important, with an increased amount of data being
produced every day. The recent year has proven that open science can save lives [14].
Besides open data, the FAIR principles developed as a concept to ensure the reproducibility
and quality of research. FAIR does not only apply to data but also to tools and services
(e.g., repositories). FAIR data makes data findable (e.g., through a digital object identifier),
accessible (e.g., through repositories), interoperable (e.g., through the use of open formats
and technologies), and re-usable (e.g., through adequate documentation with metadata),
while still protecting individuals privacy, which is essential, in case of sensitive patient
data. In order to adhere with FAIR principles, it is crucial to have access to technological
solutions (e.g., repositories) but also to have discipline-specific know-how for the adequate
documentation or use of metadata standards [15–17].

2.2. General Biomedical Data Providers

In the area of biomedicine, vast amounts of data are produced; meanwhile, inter-
national institutions exist that provide data and tools openly by, and to, the scientific
community. There are two big institutions that provide open data for bioinformatic re-
search, including cancer data. Famous worldwide is the National Center for Biotechnology
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Information (NCBI), located in the United States. Another key player in providing resources
for bioinformatic research is the European Bioinformatics Institute (EMBL–EBI), located
in the United Kingdom. NCBI provides many national resources but also participates
in international projects, including EMBL–EBI projects and vice-versa [18]. Additionally,
EMBL–EBI provides many internationally curated, high-quality data resources, including
data from teams worldwide, following a coherent strategy [7].

There are many resources available online, from old and outdated ones to highly
curated, disease-specific data repositories, providing data with full open access, semi-free
access, and some that require data requests to grant access. One of the most famous
open access data providers is Pubmed Central (PMC), which provides many full abstracts
and both free full-text publications, as well as information that links to publishers with
restrictions. PubChem is a freely accessible chemical information database with infor-
mation about chemical and physical properties, biological activities, safety and toxicity
information, patents, literature citations, and more. Gene Expression Omnibus (GEO) is a
functional genomics data repository with querying tools and download options for array-
and sequence-based data. PMC, PubChem, and GEO, among others, are services from
the before-mentioned NCBI [18]. Ensembl, UniProt, Protein Data Bank in Europe (PDBe)
(but also the larger content provider Europe PMC), ChEMBL, ArrayExpress (currently
being migrated to BioStudies), and the Expression Atlas are some of the more famous
data resources provided by EMBL–EBI [19,20]. Ensembl currently supports data from
more than 50,000 genomes across the different websites. Uniprot is a comprehensive,
high-quality database of protein sequences and functional information. PDBe is the Euro-
pean descendant of the worldwide Protein Data Bank (PDB) [21], collecting, organising,
and disseminating data on biological molecular structures. ChEMBL combines chemical,
genomic, and bioactivity data of drug-like molecules. ArrayExpress collects data from high-
throughput functional genomics experiments. Expression Atlas makes use of ArrayExpress
data. There are also joint repositories next to the worldwide PDB, such as the Consensus
Coding Sequence Database (CCDS) [22] or GLOBOCAN cancer statistics, provided by
International Agency for Research on Cancer (IARC), a specialized cancer agency of the
World Health Organization (WHO) [23]. Smaller local, and more specific resources, are
also available, such as the Chinese Glioma Genome Atlas (CGGA) [24]. PDB provides
access to structural data for biologial molecules. CCDS collects high-quality annotated
protein coding regions in human and mouse genomes. GLOBOCAN provides global cancer
statistics for cancer control and research. CGGA is a resource with functional genomic
data from Chinese gliomas. Most of these resources provide information on which data
is available but also how to contribute to the projects. For instance, regarding BioStudies,
which data and how to submit is described in https://www.ebi.ac.uk/biostudies/submit
(accessed on 12 December 2021). There are also several imaging data repositories from
EMBL–EBI, providing images of different molecular scales, ranging from macro-molecular
subcellular structures, up to large tissue masses: EMPIAR, Cell-IDR, Tissue-IDR, BioImage
Archive, and many more [25]. In the area of life science, one can find comprehensive lists
for research data management practice, f.i. in https://github.com/elixir-europe/rdmkit
(accessed on 12 December 2021). A table of data resources, with causal information in
biological databases, can be found in [26]. However, disease-specific, in particular, on a
certain cancer types, data availability varies. The next subsection describes cancer-specific
resources. We try to summarize most important resources in Table 1 and relate to specific
use case examples in Table 2.

https://www.ebi.ac.uk/biostudies/submit
https://github.com/elixir-europe/rdmkit
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Table 1. Overview of general biomedical and cancer-specific resources.

Name Type of Data Provider
general biomedical data resources

Pubmed Central (PMC) publications, references NCBI (NIH)
PubChem molecule information NCBI (NIH)

Gene Expression Omnibus (GEO) gene expression NCBI (NIH)
Europe PMC publications, references EMBL–EBI

Ensembl genomic information EMBL–EBI
UniProt protein information EMBL–EBI

Protein Data Bank in Europe (PDBe) protein structures EMBL–EBI
ChEMBL molecule information EMBL–EBI

ArrayExpress/Biostudies from functional genomics to a variety of study data EMBL–EBI
Expression Atlas gene expression EMBL–EBI

BioImage Archive (BIA) images of all scales EMBL–EBI
Protein Data Bank (PDB) protein structures joint, worldwide

Consensus Coding Sequence Database (CCDS) genome sequences joint, worldwide

cancer-specific resources
GLOBOCAN cancer statistics IARC (WHO)

The Cancer Genome Atlas (TCGA) cancer genomics NCI (NIH)
The Cancer Imaging Archive (TCIA) cancer images NCI (NIH)

Surveillance, Epidemiology, and End Results (SEER) cancer incidences NCI (NIH)
International Cancer Genome Consortium (ICGC) cancer genomics joint, worldwide

Catalogue Of Somatic Mutations In Cancer (COSMIC) cancer somatic mutations WSI (England)
cBio Cancer Genomics Portal (cBioPortal) cancer genomics joint, worldwide
Chinese Glioma Genome Atlas (CGGA) glioma genomics Beijing Neuro-surgical

Institute
Pediatric Cancer Genome Project (PCGP) cancer genomics joint, worldwide

Cancer Cell Map Initiative (CCMI) cancer cell maps joint (UCSC a.o.)
kipoi cancer genomic models joint, worldwide

Table 2. Use case examples using mixed and open resources for cancer research with focus on glioma.

Example USE Cases Mixed Open
modeling and simulation tumor growth, migration, angiogenesis [27,28] [29,30]

clustering and network analysis biomarker discovery, grading, subtype,
drug and pathway analysis [31–33] [34–40]

radiomic analysis diagnosis and survival [28,41] [42–44]

information retrieval and science
communication

epidemiology, education, investigation,
bibliometrics [45–47] [23,48,49]

2.3. Cancer Specific Data Initiatives and Resources

Regarding the topic of cancer research, there are also some disease-specific resources
provided by the US National Cancer Institute (NCI). To name some of the most important
ones, TCGA is available via the Genomic Data Commons Portal at https://portal.gdc.
cancer.gov/ (accessed on 12 December 2021). The Cancer Imaging Archive (TCIA), also
sponsored by NCI, provides radiomics data [50] via https://www.cancerimagingarchive.
net/ (accessed on 12 December 2021). Radiomics data can be submitted to TCIA, fol-
lowing the guide in https://www.cancerimagingarchive.net/primary-data/ (accessed on
12 December 2021). The Pan Cancer Analysis of Whole Genomes (PCAWG) is one of the
ICGC initiatives that provides common patterns of mutation among different cancer types.
PCAWG data is available via several databases, such as the ICGC data portal but also the
Expression Atlas and the University of California Santa Cruz (UCSC)’s Xena Functional
Genomics Explorer [51]. For instance, differential network analysis can be applied using
the Expression Atlas and PCAWG data [34]. The cBio Cancer Genomics Portal (cBioPortal)
is another collaborative effort that provides open genomic data, including TCGA pancancer
studies, as well as open source software for local instances [52]. Data from cBioPortal, and
its pediatric-specific instance, pedcBioPortal, can be used for clustering and classification
analysis [35]. The multi-institutional systems biology center Cancer Cell Map Initiative
(CCMI) supports NDEx, providing data commons for biological networks [53]. To over-
come the lack of data from young patients, the Pediatric Cancer Genome Project (PCGP)
provides data via https://pecan.stjude.cloud/pcgp-explore (accessed on 12 December
2021) [36]. The Catalogue of Somatic Mutations in Cancer (COSMIC) can be accessed via
https://cancer.sanger.ac.uk/cosmic (accessed on 12 December 2021). COSMIC is provided

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.cancerimagingarchive.net/
https://www.cancerimagingarchive.net/
https://www.cancerimagingarchive.net/primary-data/
https://pecan.stjude.cloud/pcgp-explore
https://cancer.sanger.ac.uk/cosmic
https://cancer.sanger.ac.uk/cosmic
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by Wellcome Sanger Institute (WSI), located in the United Kingdom. COSMIC uses data
from ICGC, TCGA, and others. Several other resources can be found and are discussed
elsewhere [54]. Glioma-specific web resources, partly making use of data provided by
these initiatives, are further described in Section 2.6. To support the scientific community, a
notable example for in silico resources is Kipoi, a repository of reusable predictive genomic
models, where researchers are able to both contribute, as well as reuse and compare [55].
Additionally, datasets dedicated to finding suitable AI methods are growing [42]. Generally,
data sharing is named as one key limitation in AI research [56].

2.4. Metadata for AI in Cancer Research

Reports on machine learning applications in medical science often lack accessibility or
reproducibility and describe only selected aspects of the models; still, trust in biomedical
applications is of particular importance in medical science [57]. The clinical utility of AI
applications would require the evaluation of external cohorts and documentation in online
repositories [58]. Next to the challenges of finding sufficiently large, diverse, and well-
annotated datasets for AI training, there is the issue of data privacy and ownership that
significantly hampers model development in medicine. This aspect makes transfer learning
and, moreover, federated learning approaches, based on distributed model-training to
data-owners, more and more prominent [59,60]. Additionally, the EU recently published a
regulatory framework on AI, to propose a list of high-risk applications, set requirements,
and define specific obligations for AI users and providers of high-risk applications [61].

2.5. Explainability and Causability

Although explainable AI (xAI) has only recently become popular as a field, the prob-
lem of explainability is practically the oldest field of science and is well anchored in the
philosophy of science [62]. Actually, the problem has arisen due to the great successes of
statistical machine learning and the non-linear models, such as complex neural networks
(deep learning), that make it practically impossible to track all steps to a result. However,
this traceability is now necessary for legal reasons, and xAI is now developing a series
of post-hoc models that make it possible for results of so-called black-box models to be
understood, comprehended, and interpreted by the end users [63,64]. These methods can
be very useful in biology, medicine, and the life sciences, e.g., [65,66]. However, in certain
domains, especially in the medical domain, there is a need for causability, referring to
a human model, instead of the technical approach of explainability [65,67]. Causability,
introduced in reference to usability, corresponds to the measurable extent to which an
explanation, resulting from an xAI method to a human expert, reaches a certain level of
causal understanding, measured with the system causability scale [68], causal, in Judea
Pearl’s sense, as the relationship between cause and effect [69]. Understanding can be
reached if explainability is mapped with causability, which requires new human-AI inter-
faces that allow domain experts to interactively ask questions and counterfactuals to gain
insights into the underlying explanatory factors of an outcome [70], likewise supporting
reproducibility [71].

2.6. Fostering Exchange and Use Cases for Glioma Research

Modeling brain tumor-related studies exist that allow for the simulation of tumor
growth [29] and resection [30], making use of open data, as well as providing open source
implementations to reproduce and further refine model parameters. Moreover, using open
data for cancer research can support biomarker prediction [72]. With the help of the pan
cancer analysis of TCGA data, the evaluation of the mRNA level of traditionally used
reference genes revealed novel ones for specific cancer types [38]. Brain tumor subtype
classification has been based on TCGA brain cancer multi-omics data [37].

Network analysis and clustering benefit from several open cancer resources [34,35].
The combination of various data sets and types can further lead to novel findings of signal
transduction events, leading to new therapy possibilities. This has been done, for exam-
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ple, in the case of using publicly available gene expression data by GEO, transcriptomic
sequencing data by CGGA, and RNA-sequencing data by TCGA [40]. Another notable
example for targeting cancer studies is the immune landscape of cancer [49]. An exemplary
glioma-specific web resource uses raw and annotated data from several sources including
TCGA, GEO, COSMIC, ClinVar, FDA, etc., for network visualizations [33]. Another exam-
ple is described by a web resource on metabolomic data [73,74]. Metabolic data has likewise
been used for molecular classification and biomarker discovery in glioma research [75].
Additionally, several metabolic alterations have been highlighted in glioma patients [32].
Another example use case is described by combining metabolic profiles with transcriptomic
and proteomic data [39].

Radiomics constitutes the discipline on medical image analysis, in regard to harness-
ing radiomic features, which are extracted quantitative metrics, using methods, such as
feature calculation, selection, dimensionality reduction, and data processing [76]. Non-
invasive imaging is readily used for monitoring tumor mass and treatment resistance and
can be included in patient-specific models on tumor growth and response to chemora-
diation [28]. Open access tools and medical image repositories already exist to support
radiomic approaches [77]. Moreover, open data is used for solving brain tumor segmen-
tation challenges [41,42]. Classification can be based on various data types, also using
radiomics [44]. The combinatory use of medical images and genomic features, described
by radiogenomics, can be used for clinical outcome prediction and guiding therapy [78].

In both public and scientific communication, it is the goal to foster understand-
ing [79], such as the dissemination of cancer inequities [23] or facing challenges as uncer-
tainties [80]. Benefits of mapping and visualization are used to tackle varying informational
needs [48,81]. Specific glioma gene expressions can be visually analyzed with the tool
Glioblastoma Bio Discovery Portal (GBM-BioDP) [48], next to other more general cancer
TCGA visualization tools [72]. Prognostic markers, as well as genetic risk factors, can be
reviewed, with the help of molecular epidemiology [47]. The surveillance, epidemiology,
and end results (SEER) data can be used to study risks that may occur after radiation
therapy of pediatric LGG [82]. Bibliometrics can show trends for specific research topics.
Figure 1 shows the growing number of published documents on open data, related to
cancer, as well as open access share on publications. Bibliometric analyses related to glioma
exist, which make use of Scopus, ranking both open access and closed access publica-
tions [45,46]. Data from the past years were used to report estimations on new cases and
deaths globally for the upcoming year. Challenges arise for cancer registries to exchange
incidence data, regarding national regulations concerned with data privacy [23]. Examples,
such as the proportional increase in open access publications on glioma, illustrated in
Figure 1, show a tiny, but recognizable, trend towards opening science.
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Figure 1. Pubmed Central (PMC) publication results on search for “open data cancer” per year,
comparing the number of all results and filtered by open access.
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3. Conclusions

Regarding all the opportunities that come with open data, as a part of open science, it
is still essential to further publish data with free access.
Among top limitations are data privacy laws, technology, and lack of expertise [83]. Chal-
lenges, regarding data privacy, include re-identification risks [10]. In contrast to legal issues
with privacy, computer science methods are concerned with data protection, which brings
us to technological challenges and, up to now, certain limitations. The more, the better is
not always true. Regarding the application of ML models in cancer, large datasets may
result in overfitting and/or bias; therefore, training data sets should be diverse, as well as
representative [58]. Thus, next to quantity, data quality is of particular importance, since
data sets used for AI approaches require thorough curation and processing [84]. This aspect
includes several factors, such as expert labeling [85], completeness, harmonization, and
standardization [86], just as validation [87].

There is a discipline-specific tendency to share data openly, as is common for biology
researchers but to a lesser extent for medical or pharmaceutical scientists, based on several
drivers and inhibitors for sharing and using open research data, including aspects such
as the researchers background and experience, intrinsic motivation, trust facilitating con-
ditions, social influence and affiliation, expected performance, effort, requirements and
formal obligations, legislation, and regulation, next to data characteristics [2].

The growth of image repositories is suggested to have a great impact on AI, with
clinical relevance, in the future [56]. Unfortunately, many examples in radiomics lack
openness, both in data and source code and, therefore, reproducibility. While radiomics is
becoming more interdisciplinary, not only including medicine but also computer science,
reports also emerge that already include accessible links to source code within the publica-
tion, such as in radiomic studies [41–43], as well as other related cancer research [29,35,52].
Another issues concern long-term financing. Examples, such as GliomaDB [33], show that
small projects, with limited funding, can only offer temporary solutions. To pursue such
solutions, it is essential to broaden thought beyond distribution and maintenance.

More openness across institutes will help us to exchange research with others and
foster novel outreach and engagement activities. Therefore, we propose to share and reuse
research output towards decoding diseases, such as cancer, together [8,9,14,25,50,72,88].
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Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
CCDS Consensus Coding Sequence Database
CCMI Cancer Cell Map Initiative
CGGA Chinese Glioma Genome Atlas
COSMIC Catalogue of Somatic Mutations in Cancer

DKTK
German Cancer Consortium: Deutsches Konsortium für Translationale
Krebsforschung

EMBL–EBI European Molecular Biology Laboratory - European Bioinformatics Institute
FAIR Findable, Accessible, Interoperable, and Reusable
GA4GH Global Alliance for Genomics and Health
GDC Genomic Data Commons
IARC International Agency for Research on Cancer
ICGC International Cancer Genome Consortium
ICSU International Council of Scientific Unioins
ISC International Science Counsil
ISSC International Social Science Counsil
NASA National Aeronautics and Space Administration
NCBI National Center for Biotechnology Information
NCI National Cancer Institute
PPI Protein Protein Interaction
PCAWG Pancancer Analysis of Whole Genomes
PCGP Pediatric Cancer Genome Project
PDB(e) Protein Data Bank (in Europe)
PMC PubMed Central
PPI protein-protein interaction
SEER Surveillance, Epidemiology, and End Results
TARGET Therapeutically Applicable Research to Generate Effective Treatments
TCGA The Cancer Genome Project
TCIA The Cancer Imaging Archive
UCSC University of California Santa Cruz
WHO World Health Organization
WSI Wellcome Sanger Institute
xAI Explainable Artificial Intelligence
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