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Simple Summary: Molecular network pathways are activated or inactivated under various condi-
tions. Previously, we revealed that epithelial–mesenchymal transition (EMT) is a feature of diffuse-
type gastric cancer. Here, we modeled the activation states of EMT in the development pathway using
molecular pathway images and artificial intelligence (AI). The regulation of EMT in the development
pathway was activated in diffuse-type gastric cancer (GC) and inactivated in intestinal-type GC. AI
modeling with molecular pathway images generated a highly accurate Elastic-Net Classifier models
that was validated with 10 additional activated and 10 inactivated pathway images.

Abstract: Because activity of the epithelial–mesenchymal transition (EMT) is involved in anti-cancer
drug resistance, cancer malignancy, and shares some characteristics with cancer stem cells (CSCs),
we used artificial intelligence (AI) modeling to identify the cancer-related activity of the EMT-
related pathway in datasets of gene expression. We generated images of gene expression overlayed
onto molecular pathways with Ingenuity Pathway Analysis (IPA). A dataset of 50 activated and
50 inactivated pathway images of EMT regulation in the development pathway was then modeled
by the DataRobot Automated Machine Learning platform. The most accurate models were based
on the Elastic-Net Classifier algorithm. The model was validated with 10 additional activated and
10 additional inactivated pathway images. The generated models had false-positive and false-negative
results. These images had significant features of opposite labels, and the original data were related to
Parkinson’s disease. This approach reliably identified cancer phenotypes and treatments where EMT
regulation in the development pathway was activated or inactivated thereby identifying conditions
where therapeutics might be applied or developed. As there are a wide variety of cancer phenotypes
and CSC targets that provide novel insights into the mechanism of CSCs’ drug resistance and cancer
metastasis, our approach holds promise for modeling and simulating cellular phenotype transition,
as well as predicting molecular-induced responses.

Keywords: artificial intelligence; epithelial–mesenchymal transition; Ingenuity Pathway Analysis;
machine learning; molecular pathway network
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1. Introduction

Molecular network pathways are activated or inactivated under many different condi-
tions. Previously, we found that diffuse-type gastric cancer (GC) has a feature of epithelial–
mesenchymal transition (EMT) [1–3]. EMT is involved in anti-cancer drug resistance,
cancer malignancy, metastasis, and cancer stem cells (CSCs) [4–7]. Experiments in anti-
cancer drug-resistant cancer cell lines indicate that EMT is involved in cancer cell drug
resistance [8], highlighting the significance of EMT targeting in cancer treatment [6].

Several signaling pathways involved in EMT contribute to drug resistance [6]. Tu-
mor growth factor beta (TGFβ) signaling activates SMAD2/3, which then complexes with
SMAD4 to form a trimetric SMAD complex, leading to the transcription of EMT transcrip-
tion factors [9]. Wnt/β-catenin signaling activates Snail transcription to induce EMT [6,10].
Recent studies have also revealed the role of EMT in autophagy and CSCs during metas-
tasis [11,12]. However, the relationship between the EMT pathway activation state and
therapeutic responsiveness is not fully understood.

Understanding the activity state of the EMT pathway in cancer cells may be an impor-
tant clue for identifying therapeutic targets in malignant cancers. To effectively predict EMT
activity and potential therapeutic responsiveness, molecular pathway images were used to
capture activity of EMT-related pathways of datasets in Ingenuity Pathway Analysis (IPA),
followed by artificial intelligence (AI) modeling with images of gene expression activity in
the pathway.

2. Materials and Methods
2.1. Data Analysis of Diffuse- and Intestinal-Type GC

We used RNA sequencing data of diffuse- and intestinal-type GC, which are publicly
available in The Cancer Genome Atlas (TCGA) of the cBioPortal for Cancer Genomics
database at the National Cancer Institute (NCI) Genomic Data Commons (GDC) data
portal [13–17]. Publicly available data on stomach adenocarcinoma in the TCGA, Stomach
Adenocarcinoma (TCGA, PanCancer Atlas), [13–16] were compared between diffuse-type
GC, which is genomically stable (n = 50), and intestinal GC, which has a feature of chro-
mosomal instability (n = 223), in TCGA Research Network publications, as previously
described [1,14,18].

2.2. Network Analysis

Data on intestinal- and diffuse-type GC from the TCGA cBioPortal for Cancer Ge-
nomics were uploaded and analyzed using IPA (Qiagen, CA, USA) [19,20]. The datasets
of gene expression in diseases were searched in IPA, and datasets with absolute values in
z-score in the top 60 for activated state and inactivated state (total of 120) in regulation of
EMT in the development pathway were extracted for AI prediction modeling and evalu-
ation. Among 120 analyses in the activity plot of regulation of EMT in the development
pathway, 50 activated and 50 inactivated analyses (total of 100) were used to generate AI
models and 10 activated and 10 inactivated analyses (total of 20) were withheld for use in
validating the generated model. The 100 analyses (50 activated and 50 inactivated states)
found in the database of IPA and newly used to generate AI-based models are summarized
in Table 1.
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Table 1. Analyses in the regulation of EMT in the development pathway for AI prediction modeling.

Analysis Name Disease State Target Gene Treatment EMT

996-Breast ductal carcinoma torin 2 28190 Breast ductal carcinoma Mtor Torin 2 TRUE

16332-Fibrocystic breast disease neratinib 7038 Fibrocystic breast disease Her2; egfr Neratinib TRUE

16885-Fibrocystic breast disease erlotinib 7651 Fibrocystic breast disease Egfr Erlotinib TRUE

116-Bone osteosarcoma (OS) MK2206 2727 Bone osteosarcoma (OS) MK2206 TRUE

1766-Breast ductal carcinoma brivanib 8512 Breast ductal carcinoma Vegfr; fgfr Brivanib TRUE

47-Huntington’s disease (HD) haloperidol 12804 Huntington’s disease (HD) Haloperidol TRUE

4874-Melanoma crizotinib 22540 Melanoma Alk and ros1 Crizotinib TRUE

6785-Non-small cell lung carcinoma ZSTK474 24663 Non-small cell lung carcinoma PI3K ZSTK474 TRUE

7-Normal control differentiation medium 10230 Normal control Differentiation
medium TRUE

13972-Prostate adenocarcinoma (PRAD) PI103 4415 Prostate adenocarcinoma (PRAD) PI3K PI103 TRUE

16046-Prostate adenocarcinoma (PRAD) MK2206 6720 Prostate adenocarcinoma (PRAD) AKT MK2206 TRUE

7063-Breast adenocarcinoma linifanib 24973 Breast adenocarcinoma Rtk; vegf; pdgf Linifanib TRUE

7923-Breast adenocarcinoma PF3758309 25928 Breast adenocarcinoma PAK4 PF3758309 TRUE

2-Breast carcinoma beta-estradiol (E2) 3915 Breast carcinoma B-estradiol (E2) TRUE

10974-Breast ductal carcinoma KIN001-043 1084 Breast ductal carcinoma GSK3β KIN001-043 TRUE

1116-Breast ductal carcinoma QL-X-138 1291 Breast ductal carcinoma BTK; MNK QL-X-138 TRUE

29-Colon cancer GSK525762A; trametinib 3009 Colon cancer GSK525762A;
trametinib TRUE

35-Colon cancer active JQ1 1658 Colon cancer Active JQ1 TRUE

13176-Colorectal adenocarcinoma BGJ398 3531 Colorectal adenocarcinoma FGFR BGJ398 TRUE

12948-Colorectal adenocarcinoma AZ628 3277 Colorectal adenocarcinoma
BRAF;
BRAFV600E;
C-RAF-1

AZ628 TRUE

12715-Colorectal adenocarcinoma AT7519 3019 Colorectal adenocarcinoma CDK AT7519 TRUE

6-Disease control IL-1 beta 15814 Disease control IL-1β TRUE

17104-Fibrocystic breast disease canertinib 7896 Fibrocystic breast disease Egfr; her2; erbb4 Canertinib TRUE

17239-Fibrocystic breast disease torin 1 8045 Fibrocystic breast disease Mtor Torin 1 TRUE

16449-Fibrocystic breast disease AZD8330 7167 Fibrocystic breast disease MEK AZD8330 TRUE

17590-Fibrocystic breast disease mitoxantrone 8435 Fibrocystic breast disease Topoisomerase Mitoxantrone TRUE

7-Fibrosis DMSO 7394 Fibrosis DMSO TRUE

20894-Hepatocellular carcinoma (LIHC) chelerythrine
chloride 12106 Hepatocellular carcinoma (LIHC) PKC Chelerythrine

chloride TRUE

59-Huntington’s disease (HD) nortriptyline 12817 Huntington’s disease (HD) Nortriptyline TRUE

2-Lung adenocarcinoma (LUAD) Transfection_HOXC6
631 Lung adenocarcinoma (LUAD) Transfection_HOXC6 TRUE

3-Major depressive disorder differentiation medium
3130 Major depressive disorder Differentiation

medium TRUE

5612-Melanoma AT7867 23361 Melanoma AKT1/2/3;
p70s6k/PKA AT7867 TRUE

5173-Melanoma lapatinib 22873 Melanoma Her2; egfr Lapatinib TRUE

91-Non-small cell lung carcinoma BGT226 27235 Non-small cell lung carcinoma PI3K; mtor BGT226 TRUE

14456-Normal control WYE125132 4953 Normal control Mtor WYE125132 TRUE

28175-Normal control glesatinib 20196 Normal control C-met; tek; vegfr;
ron Glesatinib TRUE

60-Normal control 567 Normal control TRUE

2-Normal control culture medium 1187 Normal control Culture medium TRUE



Onco 2023, 3 16

Table 1. Cont.

Analysis Name Disease State Target Gene Treatment EMT

9914-Normal control EX527 28140 Normal control SIRT1 EX527 TRUE

4-Normal control suberoylanilide hydroxamic acid
(SAHA) 2204 Normal control

Suberoylanilide
hydroxamic acid
(SAHA)

TRUE

27560-Normal control BMS509744 19513 Normal control ITK BMS509744 TRUE

14256-Normal control AZD8055 4731 Normal control Mtor AZD8055 TRUE

19-Normal control no serum 3447 Normal control No serum TRUE

5-Parkinson’s disease (PD) differentiation medium 4389 Parkinson’s disease (PD) Differentiation
medium TRUE

23661-Prostate adenocarcinoma (PRAD) AZD5438
15181 Prostate adenocarcinoma (PRAD) CDK AZD5438 TRUE

25661-Breast adenocarcinoma omipalisib 17403 Breast adenocarcinoma Pi3k Omipalisib TRUE

90-Prostate adenocarcinoma (PRAD) monolayer culture
4346 Prostate adenocarcinoma (PRAD) Monolayer

culture TRUE

8-Normal control lipopolysaccharide (LPS) 4907 Normal control Lipopolysaccharide
(LPS) TRUE

2-Acute myeloid leukemia (LAML) lipopolysaccharide
(LPS) 9357 Acute myeloid leukemia (LAML) Lipopolysaccharide

(LPS) TRUE

25084-Breast adenocarcinoma CGP60474 16762 Breast adenocarcinoma CDK1; CDK2 CGP60474 TRUE

20-Non-small cell lung carcinoma IFN gamma 13421 Non-small cell lung carcinoma Ifnγ FALSE

7-Normal control co-culture 3087 Normal control Co-culture FALSE

5-Normal control hypoxia 13911 Normal control Hypoxia FALSE

1-Normal control IFN alpha 4636 Normal control Ifnα FALSE

11-Normal control differentiation medium 10205 Normal control Differentiation
medium FALSE

3-Normal control Infection_human betaherpesvirus 5
(HHV5) 15858 Normal control

Infection_human
betaherpesvirus 5
(HHV5)

FALSE

31-Bone osteosarcoma (OS) 1,9-pyrazoloanthrone 2804 Bone osteosarcoma (OS) 1,9-
pyrazoloanthrone FALSE

57-Coronavirus disease 2019 (COVID-19) 96 Coronavirus disease 2019
(COVID-19) FALSE

17503-Fibrocystic breast disease HG6-64-1 8339 Fibrocystic breast disease B-RAF HG6-64-1 FALSE

11-Genetic disease 444 Genetic disease FALSE

4-Glioblastoma (GBM) differentiation medium 6303 Glioblastoma (GBM) Differentiation
medium FALSE

23448-Hepatocellular carcinoma (LIHC) imatinib 14944 Hepatocellular carcinoma (LIHC) BCR-ABL Imatinib FALSE

86-Huntington’s disease (HD) sodium butyrate 12847 Huntington’s disease (HD) Sodium butyrate FALSE

21-Mantle cell lymphoma DMSO 3032 Mantle cell lymphoma DMSO FALSE

5-Non-alcoholic steatohepatitis (NASH) none 11484 Non-alcoholic steatohepatitis
(NASH) None FALSE

10431-Normal control RAF265 482 Normal control C-RAF; B-RAF;
B-RAFV600E RAF265 FALSE

11-Normal control differentiation medium 4490 Normal control Differentiation
medium FALSE

14744-Normal control dasatinib 5273 Normal control Src family Dasatinib FALSE

65-Normal control IL-3 17225 Normal control IL-3 FALSE

14639-Normal control saracatinib 5156 Normal control Src; bcr-abl Saracatinib FALSE

3-Normal control DHA-5-HT 4554 Normal control DHA-5-HT FALSE
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Table 1. Cont.

Analysis Name Disease State Target Gene Treatment EMT

28-Prostatic intraepithelial neoplasia
(PIN) plumbagin 49

Prostatic intraepithelial
neoplasia (PIN) Plumbagin FALSE

4-Normal control differentiation medium 3415 Normal control Differentiation
medium FALSE

9-Huntington’s disease (HD) meclizine 12851 Huntington’s disease (HD) Meclizine FALSE

6-Normal control culture medium 593 Normal control Culture medium FALSE

22597-Normal control GSK429286A 13998 Normal control ROCK1; ROCK2 GSK429286A FALSE

8-Normal control 3-D culture; co-culture;
differentiation 3017 Normal control

3D culture;
co-culture;
differentiation
medium

FALSE

110-Normal control 109 Normal control FALSE

26-Bone osteosarcoma (OS) nilotinib 2798 Bone osteosarcoma (OS) Nilotinib FALSE

26025-Breast adenocarcinoma saracatinib 17808 Breast adenocarcinoma Src; bcr-abl Saracatinib FALSE

11577-Breast ductal carcinoma crizotinib 1754 Breast ductal carcinoma Alk and ros1 Crizotinib FALSE

17316-Fibrocystic breast disease KIN001-043 8131 Fibrocystic breast disease GSK3β KIN001-043 FALSE

2-Fibrosis SB525334 7389 Fibrosis SB525334 FALSE

52-Huntington’s disease (HD) meclizine 12810 Huntington’s disease (HD) Meclizine FALSE

1-Normal control culture medium 1186 Normal control Culture medium FALSE

17-Normal control differentiation medium 4496 Normal control Differentiation
medium FALSE

6-Normal control hypoxia 13912 Normal control Hypoxia FALSE

2-Major depressive disorder
differentiation medium 3129 Major depressive disorder Differentiation

medium FALSE

11-Disease control none 4051 Disease control None FALSE

10-Normal control 3-D culture; co-culture;
differentiation 2995 Normal control

3D culture;
co-culture;
differentiation
medium

FALSE

5-Normal control lipopolysaccharide (LPS) 15704 Normal control Lipopolysaccharide
(LPS) FALSE

1-Normal control differentiation medium 1246 Normal control Differentiation
medium FALSE

6-Normal control 151 Normal control 3d culture; none FALSE

10-Normal control differentiation medium 4489 Normal control Differentiation
medium FALSE

13-Normal control co-culture 3079 Normal control Co-culture FALSE

13051-Colorectal adenocarcinoma BMS777607 3393 Colorectal adenocarcinoma C-MET; AXL;
RON; TYRO3 BMS777607 FALSE

27-Huntington’s disease (HD) meclizine 12782 Huntington’s disease (HD) Meclizine FALSE

8-Normal control GW3965 10098 Normal control GW3965 FALSE

11-Normal control 368 Normal control FALSE

6-Normal control culture medium 1191 Normal control Culture medium FALSE

2.3. AI Prediction Modeling

To create a prediction model using multi-modal data including images and text descrip-
tions of molecular networks, an enterprise AI platform (DataRobot Automated Machine
Learning version 7.2; DataRobot Inc. (Boston, MA, USA) was used. For the modeling,
the 100 molecular networks on the regulation of EMT in the development pathway were
collected and input as image data in the DataRobot (50 images in the activated state and
50 images in the inactivated state), which automatically created and tuned prediction



Onco 2023, 3 18

models using various machine-learning algorithms (e.g., eXtreme gradient-boosted trees,
random forest, regularized regression such as Elastic Net, Neural Networks) [21–23]. Fi-
nally, the AI model with the highest predictive accuracy on DataRobot was identified, and
various insights (such as Permutation Importance or Partial Dependence Plot) obtained
from the model were reviewed. To calculate the accuracy of the model, 20 additional image
data (10 images in the activated state and 10 images in the inactivated state) that were not
used as training data for the AI model creation were added for validation.

2.4. Statistical Analysis

The RNA sequencing data on diffuse- and intestinal-type GC was analyzed via Stu-
dent’s t-test. The z-scores of intestinal- and diffuse-type GC samples were compared, and
the difference was considered significant at p < 0.00001, following previous reports [1,18].
The activation z-score in each pathway was calculated in IPA to show the level of activation.

3. Results
3.1. Regulation of the EMT in Development Pathway in Diffuse- and Intestinal-Type GC
3.1.1. Gene Expression Mapping in Regulation of the EMT in the Development Pathway in
Diffuse- and Intestinal-Type GC

Alterations in gene expression in diffuse- and intestinal-type GC was mapped to a
canonical pathway, “Regulation of the EMT in development pathway” (Figure 1) based on
the previous gene expression analysis results [1]. Red or green color indicates upregulated
or downregulated genes, respectively. In the regulation of EMT in the development
pathway, frizzled and adenomatous polyposis coli regulator of the WNT signaling pathway
(APC) was upregulated, while SUFU negative regulator of hedgehog signaling (SUFU),
pygopus family PHD finger 2 (PYGO2), and BRCA1 was downregulated in diffuse-type
GC compared to intestinal-type GC. APC encodes a tumor suppressor protein that acts
as an antagonist of the Wnt signaling pathway. APC is also involved in other processes,
including cell migration and adhesion, transcriptional activation, and apoptosis. SUFU is
associated with β-catenin binding, protein kinase binding, and transcription regulation.

Onco 2023, 3, FOR PEER REVIEW  6 
 

 

accuracy of the model, 20 additional image data (10 images in the activated state and 10 
images in the inactivated state) that were not used as training data for the AI model 
creation were added for validation. 

2.4. Statistical Analysis 
The RNA sequencing data on diffuse- and intestinal-type GC was analyzed via 

Student’s t-test. The z-scores of intestinal- and diffuse-type GC samples were compared, 
and the difference was considered significant at p < 0.00001, following previous reports 
[1,18]. The activation z-score in each pathway was calculated in IPA to show the level of 
activation. 

3. Results 
3.1. Regulation of the EMT in Development Pathway in Diffuse- and Intestinal-Type GC 
3.1.1. Gene Expression Mapping in Regulation of the EMT in the Development Pathway 
in Diffuse- and Intestinal-Type GC 

Alterations in gene expression in diffuse- and intestinal-type GC was mapped to a 
canonical pathway, “Regulation of the EMT in development pathway” (Figure 1) based 
on the previous gene expression analysis results [1]. Red or green color indicates 
upregulated or downregulated genes, respectively. In the regulation of EMT in the 
development pathway, frizzled and adenomatous polyposis coli regulator of the WNT 
signaling pathway (APC) was upregulated, while SUFU negative regulator of hedgehog 
signaling (SUFU), pygopus family PHD finger 2 (PYGO2), and BRCA1 was 
downregulated in diffuse-type GC compared to intestinal-type GC. APC encodes a tumor 
suppressor protein that acts as an antagonist of the Wnt signaling pathway. APC is also 
involved in other processes, including cell migration and adhesion, transcriptional 
activation, and apoptosis. SUFU is associated with β-catenin binding, protein kinase 
binding, and transcription regulation. 

  
(a) (b) 
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3.1.2. Molecular Activity Prediction in Regulation of the EMT in Development Pathway 
in Diffuse- and Intestinal-Type GC 

Figure 1. Regulation of the epithelial–mesenchymal transition (EMT) in development pathway in
diffuse- and intestinal-type gastric cancer (GC). (a) Gene expression alteration in diffuse-type GC in
regulation of the EMT in development pathway; (b) Gene expression alteration in intestinal-type GC
in regulation of the EMT in development pathway. Red or green color indicates upregulated or down-
regulated genes, respectively. The intensity of colors indicates the degree of up- or downregulation.
A solid or dashed line indicates direct or indirect interaction, respectively.
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3.1.2. Molecular Activity Prediction in Regulation of the EMT in Development Pathway in
Diffuse- and Intestinal-Type GC

The prediction of molecular activity in the regulation of the EMT in the development
pathway in diffuse- and intestinal-type GC was mapped (Figure 2). GSK3β, SNAI1, NFκB,
LOX, and EMT are activated, whereas SNAI2 and E-cadherin are inactivated in diffuse-type
GC compared to intestinal-type GC. Notch receptor 1 (NOTCH1) intracellular domain
(NOTCHIC) was predicted to be activated in the CSL-HIF1A-MAML1-NICD complex,
which consists of hypoxia-inducible factor 1 subunit alpha (HIF1A), mastermind-like
transcriptional coactivator 1 (MAML1), NOTCH1, and recombination signal binding for
immunoglobulin kappa J region (RBPJ) in the nucleus, and β-catenin (CTNNB1) was
predicted to be activated in β-catenin-APC-AXIN-GSK3β complex in the cytoplasm in
diffuse-type GC compared to intestinal-type GC.
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Figure 2. Molecular activity prediction in regulation of the EMT in development pathway in diffuse-
and intestinal-type GC. (a) Molecular activity prediction in diffuse-type GC; (b) molecular activity
prediction in intestinal-type GC. Red or green color indicates upregulated or downregulated genes,
respectively. The intensity of colors indicates the degree of up- or downregulation. A solid or
dashed line indicates direct or indirect interaction, respectively. Orange or blue color indicates
predicted activation or inhibition, respectively. The intensity of colors indicates the confidence level of
the prediction.

3.2. Activity Plot of Regulation of the EMT in Development Pathway

In total, 6216 analyses were found to be involved in the regulation of the EMT in
the development pathway (as of September 2021) (Figure 3). In subsequent AI model-
ing analyses, samples with “NA” in the case treatment and blank in the disease state
were excluded.
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Figure 3. Activity plot of regulation of EMT in development pathway (6216 analyses, as of
September 2021).

3.3. AI Modeling and Validation of the Prediction Model

The activation state of regulation of EMT in the development pathway was modeled
by machine learning, including deep learning, using 50 activated and 50 inactivated images
of the regulation of EMT in development pathway (Figure 4). DataRobot was used for
machine-learning modeling and 34 models were automatically created, including an Elastic-
Net Classifier (L2/Binomial Deviance) model. DataRobot also highlighted the parts of the
image data critical to the prediction accuracy of the model in an activation map (Figure 4).
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Figure 4. Activation map of AI modeling (DataRobot).

To validate the ElasticNet Classifier model, predictions were made using data on 10
activated and 10 inactivated pathway images that were not used to train the model (Table 2).
The results showed that the prediction accuracy for the additional 20 images was 100%
(AUC = 1.0).
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Table 2. Validation of the model ElasticNet_Classifier_(L2/Binomial_Deviance).

Analysis Name Disease
State Target Gene Tissue Treatment EMT Prediction Label

18092-Breast
adenocarcinoma
CP466722 8993

breast adeno-
carcinoma ATM Breast Cp466722 TRUE 0.9693884 1

25525-Breast
adenocarcinoma
celastrol 17252

breast adeno-
carcinoma multiple targets Breast Celastrol TRUE 0.99966132 1

25083-Breast
adenocarcinoma
CGP60474 16761

breast adeno-
carcinoma CDK1; CDK2 Breast Cgp60474 TRUE 0.99881416 1

18267-Breast
adenocarcinoma
AZD8055 9187

breast adeno-
carcinoma mTOR Breast Azd8055 TRUE 0.99731849 1

7513-Breast
adenocarcinoma
OTSSP167 25473

breast adeno-
carcinoma MELK Breast Otssp167 TRUE 0.9991679 1

18469-Breast
adenocarcinoma
HG6-64-1 9411

breast adeno-
carcinoma B-RAF Breast Hg6-64-1 TRUE 0.99314697 1

25636-Breast
adenocarcinoma
HG6-64-1 17375

breast adeno-
carcinoma B-RAF Breast Hg6-64-1 TRUE 0.99867832 1

14-Breast carcinoma
estradiol 1431

breast
carcinoma Breast Estradiol TRUE 0.99207239 1

895-Breast ductal
carcinoma

GSK1059615 27068

breast ductal
carcinoma PI3K; mTOR Breast Gsk1059615 TRUE 0.98180702 1

1263-Breast ductal
carcinoma

lapatinib 2924

breast ductal
carcinoma HER2; EGFR Breast Lapatinib TRUE 0.99916824 1

9-Normal control
olive pollen

extract 16317

Normal
control

Peripheral
blood

Olive
pollen
extract

FALSE 0.00276633 0

37-Normal
control 257

Normal
control Lung FALSE 0.00027655 0

21926-Normal
control

rebastinib 13253

Normal
control BCR-ABL Kidney Rebastinib FALSE 0.08588748 0

4-Normal control
mock 16535

Normal
control Bone marrow Mock FALSE 0.00030339 0

15884-Normal
control

withaferin A 6539

Normal
control IKKβ Breast Withaferin A FALSE 0.00271459 0
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Table 2. Cont.

Analysis Name Disease
State Target Gene Tissue Treatment EMT Prediction Label

4-Normal control
lipopolysaccharide

(LPS) 15703

Normal
control Embryo

Lipopoly
saccharide

(LPS)
FALSE 0.00194256 0

10-Normal control
co-culture 3076

Normal
control

Peripheral
blood Co-culture FALSE 0.00115878 0

6-Normal control
actinomycin D 4750

Normal
control Fetal kidney Actinomycin

D FALSE 0.01263976 0

2-Melanoma 35 Melanoma Skin FALSE 0.02006465 0

490-MYD88
deficiency

lipopolysaccharide
(LPS);

polymyxin 12583

MYD88
deficiency

Peripheral
blood

Lipopoly
saccharide

(LPS);
polymyxin B

FALSE 0.03955118 0

3.4. Regulation of EMT in the Development Pathway in Other Diseases Than Cancer

The results of the modeling of regulation of EMT in the development pathway found
one false-positive and one false-negative result in the model Elastic-Net Classifier in the
process of the model generation (Figure 5). The analysis of the false-negative result was
Parkinson’s disease with a z-score of 3 (Figure 5a). The analysis of the false-positive result
was a genetic disease with a z-score of −2.646 (Figure 5b).
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(a) (b) 

Figure 5. Regulation of EMT in development pathway in diseases. (a) Parkinson’s disease (PD) (skin)
differentiation medium 4389, p value = 1.89 × 10−2, z-score = 3; Gene identifiers marked with an asterisk
(*) indicate that multiple identifiers in the dataset file map to a single gene in the Global Molecular
Network. (b) genetic disease (midbrain) 444, p value = 4.75 × 10−2, z-score = −2.646.

4. Discussion

Our result demonstrates that the canonical pathway of regulation of the EMT in the
development pathway was activated in diffuse-type GC but not in intestinal-type GC.
Specifically, the pathway mapping of gene expression revealed that Frizzled and APC were
upregulated, while SUFU, PYGO2, and BRCA1 were downregulated in diffuse-type GC
compared to intestinal-type GC. Frizzled proteins are a family of Wnt receptors involved
in carcinogenesis [24]. It was previously shown that Frizzled-7 affected stemness and
chemotherapeutic resistance in GC [25]. Accordingly, targeting inhibition of Frizzled-7
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attenuated spheroid formation and stemness, as well as the resistance to cisplatin, an
anti-cancer drug, in GC cells may have a therapeutic effect [25]. Besides Frizzled-7, the
expression of Frizzled-10 was shown to have interesting correlation with cancer evolution.
Importantly, as Frizzled-10 is not expressed in fully proliferative healthy tissue, but is
highly expressed in certain cancerous tissue, it has the potential to be used as a prospective
receptor molecule for targeted therapy. Intriguingly, it was found that while in GC, a
decrease in cytoplasmic expression of Frizzled-10 is associated with increasing malignancy,
while in colon cancer, the opposite is true; increased cytoplasmic expression of Frizzled-10
is crucial for the late stages of colon cancer progression and metastasis [24]. The co-localized
expression of Frizzled family in different sub-types of cancer would confer progressive
features on cancer.

APC is essential as a tumor suppressor protein in colorectal cancer and for its de-
struction complex functions, though its specific molecular activity has not been fully
resolved [26]. The modeling or simulation of the cellular phenotype transition in EMT and
diseases and predicting the molecular-induced responses in diseases would be useful for
future investigation.

SUFU, PYGO2, and BRCA1 were downregulated in diffuse-type GC compared to
intestinal-type GC. Previous findings have reported that SUFU, a regulator of Wnt signaling,
was downregulated in GC and inhibited by miRNA-324-5p [27]. It was suggested that
miRNA-324-5p induces EMT by inhibiting SUFU in GC [27]. PYGO2 was reported to
be increased in human breast cancer [28]. The expression of PYGO2 was also assessed
in glioma tissue samples and the results showed a positive correlation between tumor
grade and PYGO2 overexpression [29]. The expression of PYGO2 was overexpressed in
drug-resistant cell lines of GC and GC tissue after neoadjuvant chemotherapy [30]. It may
be possible that PYGO2 has a different expression profile in diffuse-type GC compared
to intestinal-type GC. BRCA1 was also downregulated in diffuse-type GC compared to
intestinal-type GC. We have previously shown that the role of BRCA1 in the DNA damage
response pathway was activated in intestinal-type GC compared to diffuse-type GC [18].
Accordingly, BRCA1 is rather important to intestinal-type GC.

The current study successfully generated AI-based models using 50 activated and 50
inactivated images of EMT gene regulation in the development pathway. The analyses
in the database were selected based on the diseases and the treatment (Tables 1 and 2).
Diseases in activated states of EMT regulation in the development pathway included
bone osteosarcoma [31], breast carcinoma [32], and colon cancer [33]. AI application in
gastrointestinal diseases would be a promising approach [34].

An interesting point of our current study is that the machine-learning modeling
revealed that an IPA analysis of Parkinson’s disease had a false-negative prediction result
(Figure 5a). The color of the picture seems to be inactivated, which is in accordance with
the prediction result as inactivated. Furthermore, it seems that EMT activation in the
WNT pathway via SNAI2 resulted in the prediction being activated, whereas CSL-HIF1A-
MAML1-NICD complex-induced EMT via SNAI1 was predicted as inactivated. In addition
to Parkinson’s disease, the machine-learning modeling revealed that an analysis of another
unrelated genetic disease had a false-positive prediction result (Figure 5b). On the other
hand, based on the analysis, GSK3β and SNAI1 were predicted as activated, while SNAI2
was inactivated (Figure 5b). The activation of GSK3β could be associated with the mediator
role of GSK3β in the cross-talk of EMT signaling pathways [35].

5. Conclusions

The regulation of EMT in the development pathway was activated in diffuse-type GC
and inactivated in intestinal-type GC. AI modeling with molecular pathway images gener-
ated the Elastic-Net Classifier model. The validation with 10 activated and 10 inactivated
new pathway images, which were not used for the modeling, resulted in high accuracy.
The modeling of the cellular phenotype transition in EMT and diseases will be studied in
the near future.
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