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Abstract: Waveguide gratings are used for applications such as guided-mode resonance filters and
fiber-to-chip couplers. A waveguide grating typically consists of a stack of a single-mode slab
waveguide and a grating. The filling factor of the grating with respect to the mode intensity profile
can be altered via changing the waveguide’s refractive index. As a result, the propagation length of
the mode is slightly sensitive to refractive index changes. Here, we theoretically investigate whether
this sensitivity can be increased by using alternative waveguide grating geometries. Using rigorous
coupled-wave analysis (RCWA), the filling factors of the modes of waveguide gratings supporting
more than one mode are simulated. It is observed that both long propagation lengths and large
sensitivities with respect to refractive index changes can be achieved by using the intensity nodes of
higher-order modes.
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1. Introduction

Passive and low-loss planar optical waveguides can transport light over large areas [1–4].
When they are combined with optical elements such as diffraction gratings (termed waveg-
uide gratings), they can be used for applications such as optical filters [5–10] and sen-
sors [11–17] via exploiting guided mode resonances. Commonly, only the spectral positions
of resonance are sensitive to refractive index changes, while the corresponding propagation
length Lprop remains almost constant. This circumstance indicates the necessity of spectrom-
eters for such devices based on waveguide gratings. With a large sensitivity of Lprop, small
refractive index changes could be directly translated into a spatial variation in the outcoupled
guided light. This can be detected by an array of simple broadband photodetectors.

Beyond passive refractive index sensors, a large sensitivity would allow for electrical
control of Lprop, which opens up new possibilities such as active beam deflectors or mod-
ulators. To meet the requirement of long propagation lengths, it is desirable to use fast
and loss-free effects such as the electro-optic Pockels or Kerr effect. However, those effects
enable small refractive index tuning in the order of ∆n ≈ 10−4 . . . 10−3 [18–20] only, which
requires large sensitivities of Lprop. Thus, it is of no surprise that reports about electrooptic
detuning of waveguide gratings can only rarely be found in the literature to date and rather
show the control of the spectral positions of resonances than the control of the propagation
length [21,22].

In fact, there is a way to overcome these limits. It has been shown that intensity nodes
of TE modes (s-polarized modes with a transversal electric field node) can be used to maxi-
mize the propagation length [23–25] by placing a lossy, diffractive, or scattering structure
at the node position. This way, spectrally narrow resonances can also be obtained [26].
Conceptually, it has been estimated that such node modes should provide high sensitivities,
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as a slight shift of the node position largely affects the propagation length [27]. However,
this concept has not been discussed in the scientific literature yet.

Here, we explicitly and exemplarily show that the node of the TE1 mode in planar
waveguide gratings allows obtaining long propagation lengths of more than 105λ and large
sensitivities in the order of Lprop(n)/Lprop(n + ∆n) ≈ 1.5× 106 for ∆n = 1× 10−4.

2. Results and Discussion
2.1. Definition of Geometry and Symmetry Parameters

A visualization of the sensitivity of the propagation length with respect to refractive
index changes is shown in Figure 1a,b. Light propagates through a waveguide grating
mode in the positive x-direction. Due to the interaction with the grating, light is emitted
into free space with a propagation length Lprop under a mean angle θ0 and with an angular
divergence of ∆θ. Without a change in the refractive index, the propagation length is large,
and ∆θ is small. When a refractive index change ∆n is introduced, the propagation length
is much shorter, and ∆θ is larger. Detailed equations on these relations are provided later
in this text.
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achieved, we used the geometry of a waveguide grating, which is defined by the 
parameters in Figure 1c. It consists of an infinitely extended rectangular grating of period 
Λ, refractive indices 𝑛ଵ and 𝑛ଶ, and a duty cycle 𝐷. Two dielectric layers of thicknesses 𝑡ௗଵ  and 𝑡ௗଶ , as well as refractive indices 𝑛ௗଵ  and 𝑛ௗଶ , surround the grating. For all 

Figure 1. (a) A waveguide grating with an eigenmode of large propagation length Lprop and, thus,
a small angular divergence ∆θ. θ0 is the mean angle under which light is emitted; (b) a shorter
propagation length Lprop and larger ∆θ under refractive index tuning ( n→ n + ∆n ); (c) the definition
of the geometry parameters of the proposed waveguide grating. TE-polarized light is considered.
Further details are provided in the text.

To present a strategy for how a large sensitivity of the propagation length can be
achieved, we used the geometry of a waveguide grating, which is defined by the parameters
in Figure 1c. It consists of an infinitely extended rectangular grating of period Λ, refractive
indices ng1 and ng2, and a duty cycle D. Two dielectric layers of thicknesses td1 and td2,
as well as refractive indices nd1 and nd2, surround the grating. For all simulations in this
research, we considered s-polarized plane-wave incidence (TE) in the x–z plane, with a
lateral momentum kx,0.
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To provide a measure of symmetry for both the waveguide grating’s refractive indices
and thicknesses, we defined the symmetry parameters as

χgp = 1− |td1 − td2|
td1 + td2

and
χn =

nd1
nd2

,

where “gp” represents the grating position, and “n” represents the refractive index profile.
Values of χgp = 1.0 and χn = 1.0 indicate a fully symmetric waveguide grating.

2.2. Geometry with ng1 = ng2

To introduce some measures of interest and explain the role of the TEk mode, as well
as the role of symmetry, we defined a waveguide grating with the parameters td = 0.632 λ,
tg = 0.079 λ, ns = 1.0, nd1 = nd2 = 1.5 (χn = 1.0), and ng1 = ng2 = 1.275, and compared
the cases of χgp = 0.0 (Figure 2a,b) and χgp = 1.0 (Figure 2c,d). As it is known from
the literature, such a waveguide grating exhibits eigenmodes (TEk) that can be found for
distinct real-valued lateral momenta kx,0,k = k0 ne f f ,TE,k, whereby ne f f ,TE,k is the effective
refractive index of an eigenmode. The index k counts the number of nodes of the electric
field distribution Re(Ey) attributed to an eigenmode. Thus, the TE0 has no nodes of Re(Ey),
while the TE1 mode exhibits exactly one node of Re(Ey). This node causes an interesting
behavior of the filling factor of the grating layer

FF =

∫ zg+tg
zg

∣∣Ey
∣∣2dz∫ ∞

−∞

∣∣Ey
∣∣2dz

,

where zg and zg + tg define the first and second interface of the grating layer with respect
to z. While relatively large values of FF between 0.033 and 0.129 occur for all asymmetric
cases as well as for the TE0 mode at χgp = 1.0, we observe a substantially lower value of
FF = 0.002 for the TE1 mode when χgp = 1.0.
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Figure 2. The distributions of the normalized electric field Re
(
Ey
)

and normalized intensity I ∝
∣∣Ey
∣∣2

as well as filling factors (FF) of two exemplary waveguide grating geometries with td1 + td2 = 0.632 λ,
tg = 0.079 λ, ns = 1.0, nd1 = nd2 = 1.5 (χn = 1.0) and ng1 = ng2 = 1.275: (a) TE0 mode at χgp = 0;
(b) TE1 mode at χgp = 0.0; (c) TE1 mode at χgp = 1.0; (d) TE1 mode at χgp = 1.0.
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2.3. Geometry with ng1 6= ng2 with Variation in Symmetry Parameters

The grating (tg > 0, ng1 6= ng2) acts as a discrete lateral momentum reservoir pro-
viding a set of lateral momenta km,k = kx,0,k + m 2π

Λ as a result of Floquet’s theorem [28].
The physical consequence of this set of momenta is that a mode of initial lateral mo-

mentum | Re(km,k)
k0
| > ns couples to free-space modes for | Re(km,k)

k0
| < ns. As a result, the

initially real-valued ne f f ,TE,k becomes complex-valued. The intensity of an excited mode
dampens to 1/e of its initial value by radiation over the normalized propagation length
Lprop

λ = 1
4π Im(ne f f ,TE,k)

due to radiation into free-space modes. Radiated light enters the

free space under an angle of θ0 = arcsin(
Re(km,k)

ns k0
) and angular divergence of the diffracted

light of ∆θ =
2Im(ne f f ,TE,k)

ns cos(θ0)
. Here, we chose ng1 = 1.0, ng2 = 1.5, D = 0.5 with otherwise

identical parameters as for the waveguide grating discussed in Figure 2. Figure 3a,b show
Lprop and ∆θ as functions of χgp with fixed values of td1 + td2 = 0.632 λ, Λ = 0.632 λ,
and tg = 0.079 λ (the grating position is shifted through a waveguide grating of fixed

thickness). For χgp = 0.0, we obtained small values of Lprop
λ of around 102 and large values

of ∆θ of around 0.1◦, for both the TE0 and the TE1 mode. Strikingly, for χgp = 1.0, the

TE1 mode exhibits large values of Lprop
λ = 1.2× 105 and small values of the divergence

angle around ∆θ = (10−4)◦. The distributions of Re
(
Ey
)

and
∣∣Ey
∣∣2 in Figure 3c–e for the

TE0 and TE1 mode at χgp = 0.0, as well as for the TE0 mode at χgp = 1.0, are spatially
distorted in comparison to the corresponding ones in Figure 2. Such distortions can be
understood as radiation sources and indicate that the grating strongly couples guided
waves to radiating waves. For the TE1 mode at χgp = 1.0 (Figure 3f), almost no such
distortion can be observed.

This behavior of Lprop
λ , ∆θ, and the field distributions originates from the small value of

FF discussed in Figure 2: empirically, for thin gratings (tg < 0.1 tWG), we find the relation

Lprop

λ
∝

1
tp
g

We observed that the TE1 mode at χgp = 1.0 exhibits p = 6, and thus, Lprop
λ ∝= t−6

g . In
comparison, the TE0 mode at χgp = 1.0 and χgp = 0.0 as well as the TE1 mode at χgp = 0.0
show p = 2. These dependencies presumably occur because the radiative loss rate α of
the grating scales with α ∝ t2

g and the filling factor approximately scales with FF ∝ t3
g and

FF ∝ t1
g, respectively. As a side note, gratings with dominant Ohmic losses (e.g., metallic

gratings) show scalings of p = 3 (TE1 mode, χgp = 1.0) and p = 1 for all other cases.
Figure 4a,b show Lprop/λ and ∆θ with variation in tg/λ at a fixed value of td1 + td2 = 0.632 λ.

Decreasing values of tg/λ lead to increasing values of Lprop/λ and decreasing values of
∆θ with the explained proportionalities. These trends can be observed up to a value of
tg = 0.4 λ, corresponding to tg

tWG
≈ 0.39.

Figure 4c,d show Lprop/λ and ∆θ with variation in tWG/λ at a fixed value of tg = 0.079 λ.
Lprop/λ is strongly increased for the TE1 mode at χgp = 1.0 in comparison to all other
displayed cases for all values of tWG/λ above the cutoff of the TE1 mode.

Thus, as long as tg is small, compared with tWG, and tWG is large enough to support
the TE1 mode, its increased values of Lprop/λ and decreased values of ∆θ can be obtained
over a broad range of waveguide grating thicknesses in the case of χgp = 1.0 and χn = 1.0.

To present an impression of the meaning of these values in an optical application, we
considered the TE1 mode and χgp = 1.0 for a wavelength of λ = 632.8 nm with a grating
thickness of tg = 0.079 λ = 50 nm. For these values, we obtained Lprop = 7.6 cm. In
comparison, the standard scenario of a TE0 mode and χgp = 0.0 leads to Lprop = 110 µm.
To reach the same Lprop as for the TE1 mode at χgp = 1.0, the grating thickness would
have to be reduced to 0.88 nm (a factor of 1/56) or the waveguide grating thickness (for
tg = 50 nm) would have to be increased to approximately tWG = 7 µm (a factor of 15).
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Therefore, for a given grating geometry and waveguide grating thickness, using the TE1
mode at χgp = 1.0 allows for a drastic increase in the propagation length in comparison to
standard waveguide gratings using the TE0 mode.
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Figure 5a shows the dispersion relation of the TE1 mode at χgp = 1.0 and the TE0
mode at χgp = 0.0, with fixed ratios of all other geometry parameters (identical values to
the ones in Figures 3 and 4). Remarkably, large values of Lprop/λ between 104 and 106 are
observed for the TE1 mode over a broad spectral range between λ

tWG
= 0.9 and λ

tWG
= 2.0.

This behavior occurs due to the symmetry of the waveguide grating, which enforces the
node of the TE1 mode to remain at the center plane of the waveguide grating. Therefore,
regardless of the wavelength, an equivalent situation as discussed in Figure 3 is apparent
when λ

tWG
is below the cutoff of the TE1 mode.

In comparison, the TE0 mode exhibits values of Lprop/λ between 102 and 103 for all
values of λ

tWG
.

For an asymmetric geometry (χgp 6= 1.0, χn 6= 1.0), Lprop/λ shows a maximum of
around 105 at a distinct value of λ

tWG
= 0.96 (Figure 5b) for the TE1 mode. This maximum

occurs since the position of the node of Re
(
Ey
)

shifts through the waveguide grating with
respect to the z-direction as a function of λ

tWG
, and the largest value of Lprop/λ is observed

when FF is minimized.
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Figure 5. (a) The dispersion relations and normalized propagation lengths of the TE0 mode for
χgp = 0.0 and the TE1 mode for χgp = 1.0 under fixed ratios of all geometry parameters as used in
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relations and normalized propagation lengths for an asymmetric geometry with χgp = 0.91, χn = 1.03
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td1+td2

= 0.045.

2.4. Sensitivity to Asymmetric Refractive Index Changes

In the last part of this study, we analyze the sensitivity of the waveguide grating with
respect to an asymmetric change in the refractive index at χgp = 1.0. Such an asymmetric
change in the refractive index means that nd1 is varied, and nd2 remains fixed at a value of
1.5. As a side note, variations in both nd1 and nd2 at χn = 1.0 show almost no sensitivity for
the TE1 mode for any symmetric geometry, as FF is always minimized.

For this exemplary case, the grating thickness was chosen to be tg = 1.5× 10−3 λ,
whereby all other remaining geometry parameters were chosen to be the same as in
Figures 3 and 4.

The following two simulation observations are of interest in order to investigate the
sensitivity of the waveguide grating:

(1) For small changes of the refractive index, the figure of merit

FoM(nd1) =
1

Lprop(nd1)

∂Lprop(nd1)

∂nd1

provides a measure for the sensitivity.
(2) For more practical considerations, the refractive index is commonly switched

between two distinct values, with a difference of ∆n. The sensitivity can be defined by

S∆n =
Lprop(nd1 + ∆n)

Lprop(nd1)

Figure 6 shows both Lprop/λ and the corresponding FoM, as well as S∆n as a function
of nd1 for the TE0 mode and the TE1 mode. Similar to the variation in χgp in Figures 3–5,
the TE1 mode exhibits high values of Lprop/λ around 1012 of when χn approaches 1.0. Most
strikingly, Lprop/λ strongly varies with changing values of nd1 (Figure 6a). In comparison,
the TE0 mode exhibits nearly constant values of Lprop/λ around 103. The FoM of the TE1
mode reaches values of up to 2× 104, whereas the maximum FoM of the TE0 mode in the
displayed range is 5.6 (Figure 6b). The reason for this large FoM for the TE1 lies in a strong
decrease in Lprop/λ consequent to symmetry breaking. Concerning S∆n (Figure 6c), for a
value of ∆n = 1× 10−4 (e.g., in the Pockels effect [18,19]), the values of S∆n are close to
1 for the TE0 mode.
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Figure 6. (a) The normalized propagation length, (b) FoM, and (c) S∆n of a waveguide grating with
tg = 1.5× 10−3 λ and otherwise identical parameters to the ones in Figures 3 and 4 with asymmetric
refractive index changes (nd1 is varied, and nd2 is fixed at a value of 1.5).

However, for the TE1 mode, it can be observed that S∆n exhibits a maximum at
χn = 1.0, with a substantially higher value of around 1.5× 106, in comparison to the TE0
mode. Although fully bound modes ( Lprop → ∞ ) cannot be reached, as the filling factor
cannot be set to zero, the TE1 mode allows obtaining much higher propagation lengths and
sensitivities with respect to asymmetric refractive index changes than the TE0 mode using
the same geometry. In comparison, reports in the literature regarding the sensitivity of the
propagation length with respect to refractive index sensitivity are around FoM ≈ 3 and
S∆n ≈ 1.005 for ∆n = 1× 10−4 [21,22].

3. Conclusions

The results presented in this study show a way to drastically increase both the propa-
gation length and sensitivity of waveguide grating by using the TE1 mode, as long as the
grating thickness is small, compared with the waveguide grating thickness. As all results
were obtained with the help of an exemplary set of waveguide grating geometries, fur-
ther optimizations for specific applications such as different refractive indices and grating
shapes should be considered in future studies. Nonetheless, as the increased propagation
length and sensitivity result from symmetrical conditions, the concept at hand can be
applied to a broad range of geometry parameters and wavelengths in general. Control over
the propagation length cannot be provided only by changing the refractive index but also by
breaking the geometric symmetry of the waveguide grating, e.g., by thermomechanical ef-
fects. To be sure, this property also implies the necessity of the accurate control of thickness
homogeneity. From the practical point of view, symmetric and homogeneous waveguide
gratings can be approached by lamination [29] and are, therefore, in principle, accessible
with precise standard fabrication techniques such as roll-to-roll coating [30] in combination
with lithography methods [31,32]. Thus, we anticipate this concept to be suited for large-
area applications requiring control of the propagation length and divergence angle over
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many orders of magnitude or sensitivity to environmental changes. Obvious applications
are spatially resolved refractive index sensors and light modulators.

4. Methods

All simulations in this research were conducted using rigorous coupled-wave analysis
(RCWA) [28]. To ensure the stability of the simulation, we checked both the convergence of
the simulated values as well as the conservation of energy (see the Supporting Information).
Naturally, as the presented data were calculated for TE polarization, fast convergence and
large stability were already obtained for a low number of Fourier orders.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/opt3010008/s1, Figures S1: (a,b) The convergence of Lprop as a
function of the number of Fourier orders at the smallest (tg = 1.5·10−3 λ) and thickest grating layer
thicknesses tg = 0.4·10−4 λ; (c) energy conservation for various grating thicknesses at 15 Fourier
orders. For all values, the energy is conserved, confirming the stability of the simulation. Figure S2:
(a,b) Lprop/λ and ∆θ as a function of tg/λ for a waveguide grating with a blaze grating geometry
and otherwise identical parameters as in Figure 3. The black and red dots indicate the TE0 and
TE1 modes for χgp = 1.0, respectively. Figure S3: (a,b) Lprop/λ and ∆θ as functions of tg/λ for a
waveguide grating with a lossy grating (ng1 = nd1 and ng2 = 0.06 + 4.24j) and otherwise identical
parameters as in Figure 3. The black and red lines indicate the TE0 and TE1 modes for χgp = 1.0,
respectively. Figure S4: (a,b) Lprop/λ and ∆θ as a function of Λ/λ for a waveguide grating with
otherwise identical parameters to the geometry in Figure 3 for χgp = 1.0.
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