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Abstract: 4-Hydroxy-2-pyrones are of interest as potential biorenewable molecules for a sustainable
transition from biomass feedstock to valuable chemical products. This review focuses on the method-
ologies for the synthesis of 4-hydroxy-2-pyrones published over the last 20 years. These pyrones as
polyketides are widespread in Nature and possess versatile bioactivity that makes them an attractive
target for synthesis and modification. Biosynthetic paths of the pyrones are actively developed and
used as biotechnological approaches for the construction of natural and unnatural polysubstituted
4-hydroxy-2-pyrones. The major synthetical methods are biomimetic and are based on the cyclization
of tricarbonyl compounds. Novel chemical methods of de novo synthesis based on alkyne cycliza-
tions using transition metal complexes and ketene transformations allow for straightforward access
to 4-hydroxy-2-pyrones and have been applied for the construction of natural products. Possible
directions for further pyrone ring modification are discussed.
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1. Introduction

2-Pyrones are an important class of heterocyclic compounds of interest as valuable
reagents in organic synthesis and an essential pharmacophore in many biologically active
products [1–10]. Among them, 4-hydroxy-2-pyrones occupy a special place because these
molecules are both polyketide structures and pyrans [3,5–8] (Figure 1). These substances
can exist in two tautomeric forms, namely, 4-hydroxy-2-pyrone and 2-hydroxy-4-pyrone.
The former is a major tautomer as the result of effective conjugation. This structural feature
makes a wide range of synthesis methods available for their synthesis that are typical for
both 2-pyrones and 4-pyrones and that were not covered in recent reviews [1,4].
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Figure 1. Structural features of 4-hydroxy-2-pyrones.

4-Hydroxy-2-pyrones are polyfunctional molecules that bear several electrophilic and
nucleophilic centers that determine their application in organic synthesis. These hetero-
cycles are attractive building blocks for the preparation of biologically important pyran
structures, aromatics, polymers, azaheterocycles and acyclic structures via ring-opening
transformations or pyran ring modifications [11–21]. Two molecules that receive the most
attention are triacetic acid lactone (4-hydroxy-6-methyl-2H-pyran-2-one) [11] and dehy-
droacetic acid (3-acetyl-4-hydroxy-6-methyl-2H-pyran-2-one) [12,13], which are already
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produced industrially and show high reactivity. Additionally, triacetic acid lactone is
considered a bioprivileged molecule and a potential platform molecule because it can be
prepared from carbohydrates using biological methods [22]. This approach allows for the
sustainable preparation of valuable chemicals and end products based on renewable carbon
sources [23]. Numerous other 4-hydroxy-2-pyrones are also produced using polyketi-
dases [6] and can lead to various structures that can also be attributed to bioprivileged
molecules. Thus, the development of the synthesis of 4-hydroxy-2-pyrones as a renewable
feedstock for the chemical industry is a serious task for sustainable chemistry.

The 4-hydroxy-2-pyrone fragment provides these molecules with promising and
diverse biological and physical properties [1,5–9]. The main strategy and feature of the
search for new bioactive substances includes their isolation from natural sources. Plenty of
4-hydroxy-2-pyrones have been described as varying in the nature and complexity of their
substituents, number and position to which they are attached. These pyrones were found
in bacteria, microbes, plants, insects, fungi and animals [1–10] and are involved in many
types of biological processes, such as defense against other organisms and as signaling
function [1,5–9], as well as representing key intermediates for biochemical transformations
of complex natural molecules [6].

The wide distribution of 4-hydroxy-2-pyrones as secondary metabolites and diverse
biological activity makes them an attractive target for synthesis and the design of new
bioactive compounds. At the same time, the major methods of preparation are isolation
from natural sources and the use of biotechnologies. This review describes modern general
and effective synthetic methods for the construction of 4-hydroxy-2-pyrones, including
natural products.

2. Synthetic Strategies
2.1. Cyclization of 1,3,5-Tricarbonyl Compounds Derived from Acetoacetic Esters

The most common method for the synthesis of 4-hydroxy-2-pyrones is the cyclization
of 1,3,5-tricarbonyl compounds or their protected derivatives [24–31]. This method can be
considered as a biomimetic strategy because the same processes occur under the action
of polyketide synthases in Nature [6]. The general approach is based on a condensation
reaction of acetoacetic esters with aldehydes at the C-4 position in the presence of sodium
hydride and/or n-BuLi with subsequent oxidation. For example, the corresponding ester
1 gives the corresponding products 2, which lead to the diketoesters 3 with the use of
AZADOL® (2-azaadamantan-2-ol) and PhI(OAc)2 in dichloromethane (Scheme 1). The
DBU-catalyzed cyclization in polar and non-polar solvents produces 4-hydroxy-2-pyrones
4 in 60–100% yields [24,29]. This method allows for the use of various derivatives of
acetoacetic ester, which bear the Me, Et, n-Pr, n-Bu groups at the C-2 position, and aldehydes.
However, 2-methylacetoacetic ester is most often used because a few natural compounds
based on 3-methyl-4-hydroxy-2-pyrones. Using this approach, the α-pyrones 6 are also
synthesized, some of which possess a chiral center in the side chain [29]. It should be noted
that the cyclization of 4-acyl-acetoacetate 5 is carried out in the presence of catalytic DBU
(Scheme 1).

There are examples in the literature of the direct preparation of tricarbonyl compounds
based on Claisen condensation of substituted acetoacetic ester in the presence of strong
basics, such as LDA [27,32], n-BuLi [30], LiHMDS [25] or NaHMDS [33]. The use of an active
derivative of carboxylic acid, such as 2-methylmalonyl chloride [25], BnO(CH2)2COImd
(Imd = imidazolyl) [27], dimethyl carbonate [33] and Weinreb amide 12 [32] (Scheme 2), lead
to the corresponding tricarbonyl compounds. The subsequent cyclization in the presence of
1,8-diazabicyclo(5.4.0)undec-7-ene (DBU) gives pyrones 8, 11 and 13, respectively. Several
works [30,34] describe the use of carbon dioxide as a carboxylation reagent in the presence
of acetic anhydride.

DBU is the most popular promoter for the cyclization of tricarbonyl compounds,
and also the catalysis of MeONa [26], PTSA [25], PPA [35] and Ac2O [34] is applied
for the preparation of 4-hydroxy-2-pyrones. Although the majority of the methods are
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based on the lactonization of the methyl esters, the ethyl esters can also be used for
the cyclization [25,27,29]. The cyclization of 4-acyl-acetoacetates has been applied in the
synthesis of natural compounds and biologically important products or their precursors,
such as cyercene A [31], phenoxan [27], gulypyrone A [29], verticipyrone [26], salinipyrone
A [32], sesquicillin A [36] and subglutinol A [37].
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A classical self-condensation of ketoesters first described for the synthesis of dehy-
droacetic acid [38] was revised recently with the use of modern techniques and reagents.
Thus, product 15 is prepared from ethyl benzoylacetate (14) via microwave excitation in
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acetic acid in 62% yield (Scheme 3) [39]. Tetracarbonyl compound A is a possible intermedi-
ate in the reaction, which is formed via the Claisen condensation. The self-condensation of
β-ketoacids 18, which are obtained via acylation of Meldrum’s acid with acyl chlorides 16
and the subsequent hydrolysis of esters 18, makes it possible to obtain 3-acyl-substituted
4-hydroxy-2-pyrones 19 in low-to-moderate yields over four steps. Carbonyldiimidazole
(CDI) is used for the promotion of both the Claisen condensation and the subsequent
cyclization in THF at room temperature (Scheme 3) [40].
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Scheme 3. Preparation of 4-hydroxy-2-pyrones 15, 19 from ketoesters via the self-condensation reaction.

The one-pot synthesis of a wide range of 3-aryl-4-hydroxy-2-pyrones 21 was achieved
by Dhage et al. [41]. Diethyl oxaloacetate undergoes O-acylation with arylacetyl chlo-
rides, which is generated in situ from arylacetic acids 20, followed by base-catalyzed
intramolecular Claisen condensation (Scheme 4). Both ester groups can be attacked during
the cyclization of intermediate B, and competition between the formation of pyrone and
furan systems occurs. However, a more favorable 6-exo-trig cyclization directs the process
toward the formation of the pyrone ring.
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Scheme 4. One-pot preparation of 4-hydroxy-2-pyrones 21 from 2-arylacetic acids.

Schmidt and co-authors showed that the acylation of esters 22 proceeds with aziridines
23 to form tricarbonyl compounds 24. Diketones 24 give salts 25 under treatment with KOH.
The potassium salts of 5-hydroxy-3-oxopent-4-enoic acids 25, which are a stable equivalent
of diketoacids and cyclized to the corresponding 2-pyrones 26 at low temperatures in
the medium of trifluoroacetic acid (TFA) and trifluoroacetic anhydride (TFAA) in 67–96%
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yields [42] (Scheme 5). This approach is effective enough, and the total yield of 6-phenyl-4-
hydroxy-2-pyrone is 57% for three steps.
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2.2. Recyclization of Acetals

Synthetic equivalents of dicarbonyl compounds can also be used for the preparation
of pyrones. Diketene acetone adduct 27 is enolized via deprotonation with lithium diiso-
propylamide (LDA) in the presence of trimethylsilyl chloride, followed by a Mukaiyama
condensation with aldehydes to form silyl dienol ether 28. Subsequent oxidation with Dess–
Martin reagent (DMP) leads to the desired ketones 29 [26,43–47] (Scheme 6). Compounds
29 undergo cyclization to pyrones 30 under reflux in toluene. The use of acid chlorides,
esters and other carbonyls with good leaving groups allows for the direct formation of oxo
derivatives 31, thus reducing the number of stages. The alkylation of derivative 32 with
alkyl iodides gives substituted ketones 33, which are similarly cyclized under heating to
pyrones 34.
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2.3. Cyclization of Acetylenic 1,3-Dicarbonyl Compounds in the Presence of Gold Complexes

Fürnster and colleagues actively utilized gold(I) catalysis for the synthesis of 3,6-
disubstituted 4-hydroxy-2-pyrones 36 from acetylenic diketones 35 [48–50] (Scheme 7).
The alkyl part of the ester group (R3) is critical for the transformation with t-Bu and
CH2CH2TMS gives the best results due to the facile elimination of the corresponding
alkene. The scope of the method is exceptionally broad, including bicyclic and macrocyclic
products. The conditions are quite robust and allow for variation in the solvent and
the phosphine ligand. The synthesis of wailupemycin G (38) was shown to be a typical
representative and is based on the cylclization of alkyne 37 [49]. This method is also applied
for the preparation of various natural products, such as neurymenolide A, orevactaene,
DMDA-pateamine A, radicinol, hispidine, phellinin A [49] and violapyrone C [51].
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Scheme 7. Cyclization of acetylenic 1,3-dicarbonyl compounds.

The catalytic cycle starts with the coordination of the gold-based carbophilic catalyst,
which is primarily coordinated at the triple bond to form the π-complex C. The next step
includes the intramolecular attack of the oxygen atom on the π-complex that leads to the
favorable 6-endo-dig cyclization and the formation of an intermediate D. The heterolysis of
the O–R bond and subsequent protonation gives 4-hydroxy-2-pyrone 36 and the release of
the catalyst (Scheme 8).
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Schreiber et al. showed that 4-hydroxy-2-pyrones 40 can be obtained via the self-
condensation of acetylenecarboxylic acids 39 with the use of a gold-based catalyst [52]. The
reaction is carried out in the presence of 5% chloro(triphenylphosphine)gold(I) and 5%
silver hexafluoroantimonate(V) in toluene at room temperature. However, only 6-phenyl-
(81%) and 6-propyl-(56%) 4-hydroxy-2-pyrone are synthesized in this way (Scheme 9). Later,
Ghosh and co-workers [53] showed the activity of other gold catalysts with the best result
using the JohnPhos ligand, which promotes the transformation of compounds 41 with no
silver additive. The scope of this reaction includes aromatic and aliphatic derivatives, and
the yields of pyrones 42 range from 33% to 93%. Using this approach, pseudopyronine A is
obtained in a 24% total yield over four stages.
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Scheme 9. Direct preparation of 4-hydroxy-2-pyrones 40 and 42 from acetylenecarboxylic acids.

2.4. Syntheses Based on Ketenes

[4+2]-Cyclization reactions with ketenes are involved less often in the synthesis of
2-pyrones [1]. However, several new examples appeared in recent years. 5-Carbomethoxy-
4-hydroxy-6-methyl-2H-pyran-2-one is obtained from malonyl chloride and methyl acetoac-
etate in a 58% yield [54]. Similarly, the reaction of stable ketenes 43 and 46 with dicarbonyl
compounds 44 afforded 4-hydroxy-2-pyrones 45 and 47 in good yields (Scheme 10) [55,56].
The reaction scope includes only the available symmetrical diketones and acetoacetic acid
derivatives 44. The ketenes are easily obtained from corresponding acid chlorides in situ.

It was also demonstrated [57] that CF3-substituted ester 48 gives hexafluorodehy-
droacetic acid 49 in 41% yield under heating with a flame burner in the presence of phos-
phorus(V) oxide (Scheme 11). A proposed mechanism of the reaction includes the formation
of ketene L, which then dimerizes. Recently, our group [58] repeated this synthesis and
showed that the method is difficult to reproduce, and the yields of hexafluorodehydroacetic
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acid 49 are in the range of 35–75%. The molecule can be considered an important building
block for the synthesis of fluorine-containing molecules [58].
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Scheme 11. The synthesis of hexafluorodehydroacetic acid 49.

A simple and direct method for the preparation of 3-acyl-4-hydroxy-2-pyrones 51
was described by Perrone et al. [59]. The carbonylation of α-chloroketones 50 under the
action of a palladium catalyst and triethylamine in tetrahydrofuran [59] gives 3-alkanoyl-
and 3-aroyl-substituted 2-pyrones 51 in high yields (Scheme 12). The byproducts are 4-
pyrones 52, but their amount is minimized to 1% in optimal conditions with the use of
palladium(II) acetate at 60 ◦C. The reaction is tolerant of various alkyl and aryl substituents.
The authors suggested that the formation of acylketene N occurs through the cleavage
of palladium from the product of the carbonylation (intermediate M). The last step is the
[4+2]-cycloaddition of the ketene N to give target 2-pyrone 51.
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Recently, Castilio et al. showed that 3-diazoacetylacetone 53 transforms to 4-hydroxy-
2-pyrone 54 [60], which is an important intermediate in the synthesis of natural com-
pounds [26,61]. Diazoacetylacetone (53) is heated to 180 ◦C under microwave irradiation in
toluene for two minutes, and pyrone 54 crystallizes out of the reaction medium in a total
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yield of 30%. It is most likely formed as the result of the hydrolysis of the non-isolated
intermediate Q, which is the dimer of acetyl ketene P (Scheme 13).
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2.5. Pyrone Fragment Modification

2-Cyano-4-pyrones can be considered as a synthetic equivalent of 4-hydroxy-2-pyrones
via ring-opening transformations and elimination of HCN; however, their direct conversion
has never been described. The substitution occurs selectively only upon treatment with
amines and hydrazines [62,63]. On the other hand, the transformation of MeO-substituted
γ-pyrones under the action of alkali is a general method for the synthesis of 4-hydroxy-
2-pyrones (Scheme 14). This approach was used by Kato’s group in the synthesis of
(+)-sesquicillin A. (−)-Nalanthalide (55) was heated under basic conditions (1 M NaOH)
leading to γ-pyrone hydrolysis and removal of acetyl protection in the non-pyrone fragment,
as a result, deacetylated sesquicillin A (56) was prepared in 83% yield [37].
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Scheme 14. Hydrolysis of 2-methoxy-γ-pyrone 55 in the synthesis of deacetylated (+)-sesquicillin A (56).

Another approach is based on an ANRORC reaction of 3-carbethoxy-substituted 4-
pyrones under the action of a base. Although this reaction was described only in two
works [64,65], it provides access to difficult-to-find 3-formyl-4-hydroxy-2-pyrones. Very
recently, it was observed that the reaction of 4-oxo-4H-pyran-3-carboxylate 57 with NaOH
proceeded selectively and led to 4-hydroxy-2-pyrone 58 in 53% yield. This transformation
presumably occurs through a conjugate nucleophilic addition at the C-2 position of the
γ-pyrone ring, followed by pyrone ring opening and then ring closure to produce the stable
anion of 58 (Scheme 15).
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The reaction of triacetic acid lactone (59) with 3-bromocyclohexene 60 in acetone in the
presence of potassium carbonate leads to compound 61, which can undergo a Claisen rear-
rangement under heating in xylene to give the corresponding 3-cyclohexenyl-substituted
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4-hydroxy-2-pyrones 62 (Scheme 16) [66]. Another approach for the modification of the
pyrone ring is based on the Fries reaction. Acylation of 59 with phenoxyacetyl chlo-
ride leads to O-acylation products R, which are treated without isolation with potassium
cyanide in DCM. These pyrones undergo rearrangement to produce 6-methyl-4-hydroxy-3-
(2-phenoxyacetyl)-2-pyrones 63 in 41–60% yields [67].
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Methods for the modification of triacetic acid lactone and dehydroacetic acid are
widely used, which make it possible to obtain 4-hydroxy-2-pyrones [11,13,68]. These
reactions include the electrophilic substitution method common to pyrones for the function-
alization of positions 3 and 5 of the pyrone ring. For example, bromination or iodination
reactions, Michael reactions, acylation and alkylation of the ring, modification of side sub-
stituents [11,13,68] and selective palladium-catalyzed carbofunctionalization [69]. In many
total syntheses of natural products, the modification of the methyl group located at the C-6
position of the pyrone ring is a convenient strategy via condensation reactions [1,11].

Dealkylation and deacylation reactions are often used for the preparation of 4-hydroxy-
2-pyrones because the methods of side substituent modification and the introduction of
additional groups to the pyrone ring are accompanied by the protection of the hydroxyl
group at the C-4 position. For debenzylation, general methods for removing this group
are applied, such as hydrogen on palladium or sodium borohydride [29,70]. The cleavage
of the methoxymethyl group is achieved with the use of trifluoroacetic acid [71,72]. The
methyl group is deprotected via sequential treatment with hydrogen bromide in acetic
acid and sodium hydroxide or trimethylsilyl iodide in chloroform and then with sulfuric
acid [37,73]. The 2,2,2-trimethylacetyl and acetyl group is cleaved by a base, for example,
DBU in methanol at 0 ◦C [74] or sodium hydroxide in tetrahydrofuran [37].

3. Natural 4-hydroxy-2-pyrones and Their Applications

Several 4-hydroxy-2-pyrones, which have their own names, include the five main
classes of 4-hydroxy-2-pyrones, but we cannot cover this rapidly developing area and
all observed metabolites bearing the 4-hydroxy-2-pyrone moiety in this review [3,7,8,75].
The known natural 4-hydroxy-2-pyrones can be classified according to the nature of the
substituents and positions of substitution at the pyran ring. The first class includes the
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simplest 6-substituted 4-hydroxy-4-pyrones bearing alkyl, styryl and aromatic substituents
(Figure 2). A feature of these molecules is the presence of the free C-3 position, which
can be modified and leads to several new 4-hydroxy-2-pyrones [11]. The simplest natural
4-hydroxy-2-pyrones are triacetic acid lactone and tetracetic acid lactone, which were
first isolated in 1967 from Penicillium stipitatum. These substances were important for
understanding the pathways the polyketide formation in nature [76,77] and stimulated the
development of the synthesis of lactone from carbohydrates [22]. Another simple 6-alkyl-
4-hydroxy-2-pyrone, namely, fistupyrone (4-hydroxy-6-isovaleryl-2-pyrone), is produced
by Streptomyces and demonstrates inhibition of the infection of Alternaria brassicicola in the
leaves of seedlings of Chinese cabbage [78]. Among this series of compounds, hispidin,
which is 6-styryl-4-hydroxy-2-pyrone, bears the catechol fragment and can be distinguished
as a low molecular compound with valuable biological activities, such as anti-oxidative,
anti-inflammatory, cytotoxic, anti-platelet aggregation, anti-diabetic, anti-dementia and
anti-viral effects [79,80]. This pyrone was isolated for the first time from Inonotus hispidus
fungi in 1889 and was later found in various fungi used in traditional medicine [79].
Furthermore, hispidin contains a conjugated system as a natural yellow-brown pigment
and can be used for dyeing [81]. Hydroxylation at the C-3 position occurs in luminescent
mushrooms Neonothopanus nambi, leading to fungal luciferin ((E)-6-(3,4-dihydroxystyryl)-
3,4-dihydroxy-2H-pyran-2-one) [82]. This process is followed by light emission. Also,
hispidin and bisnoryangonin undergo transformations in mushrooms to give a large and
diverse range of biogenerated styrylpyrones, which have a role similar to that of flavonoids
in plants [80]. Several products of the dimerization or oligomerization are connected with
modifications of the C-3 position and include substituted 6-styryl-4-hydroxy-2-pyrones,
such as fasciculines A and B, phelligridins B and I, phelligridimer A, phaeolschidins A–E
and pinillidine [80,83]. Moreover, the oxidized structures at the benzene ring isolated from
micro-organisms as metabolites of the fruiting bodies of Hyrnenochaete mougestii (Poriales)
are hymenoquinone and leucohymenoquinone (Figure 2) [7].
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An aromatic substituent at the C-6 position occurs in such structures, as wailu-
pemicines, phaeochromycins and mutactin. Wailupemicines are a metabolism product of
Streptomyces maritimus, which was found at Wailupe Beach Park along the southeast coast of
Oahu (Hawaii), and are of interest as new α-glucosidase inhibitors [84]. Phaeochromycins
were isolated from an actinomycete Streptomyces phaeochromogenes and demonstrate anti-
inflammatory activity [85].

The most common class of natural 4-hydroxy-2-pyrones includes 3-alkyl-substituted
molecules, which contain alkyl and alkenyl substituents at the C-6 position and less often
substituents at the C-5 position (Figure 3). A large class includes germicidins A–J as impor-
tant representatives of 3,6-dialkyl-substituted 4-hydroxy-2-pyrones [86]. These compounds
are natural antibiotics that were isolated from Streptomyces bacteria and are responsible
for spore germination via inhibition of porcine Na+/K+-activated ATPase [87]. Related
molecules are violapyrones A–F, which bear the methyl substituent at the C-3 position
and a long aliphatic substituent at the C-6 position [88]. They are secondary metabolites
of Streptomyces violascens and demonstrate modest antibacterial activity. Another feature
of alkylated 4-pyrones is that they can perform signaling functions [89]. It was reported
that photopyrones A–H act as signaling molecules in the cell–cell communication system
of the entomopathogenic bacterium Photorhabdus luminescens via the inhibition of quorum
sensing. Pseudopyronines A,B bearing long alkyl substituents at the C-3 and C-6 positions
isolated from different Pseudomonas strains have antibacterial properties, especially against
mycobacteria [9,90]. It is known that 3-methyl-6-alkyl-4-hydroxy-2-pyrones are included
in the M. tuberculosis cell wall as permeability regulators. Pseudopyronines, which are
similar to these compounds, selectively disrupt the membrane and inhibit the growth of M.
tuberculosis by blocking its fatty acid biosynthesis pathway [90].
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Elasnine contains branched alkyl substituents that are modified by a carbonyl group.
It is interesting as an effective and selective inhibitor of human sputum (leukocyte) elas-
tase, which is implicated in many inflammatory disease states [7]. Also, elasnine can
be used in controlling marine biofilms and displays feasibility and advantages when
used as a signal molecule to develop eco-friendly technologies. Elasnine’s action is con-
nected with disturbing the regulation of the ATP-binding cassette transport system and
the bacterial secretion system [91]. The marine-pyrone macrolide neurymenolide A con-
tains the 4-hydroxy-2-pyrone moiety, which was previously isolated from the Fijian red
macroalga, namely, Neurymenia fraxinifolia, and characterized as an antibacterial agent
against antibiotic-resistant strains [92]. It was observed that neurymenolide A significantly
delays the in vivo polymerization of tubulin to form microtubules and bipolar mitotic
spindles at the prophase–metaphase transition. A feature of albidopyrone is the presence
of an aromatic substituent at the C-6 position, and it demonstrates a moderate inhibitory
activity against protein-tyrosin phosphatase B, which is the major negative regulator of
insulin signaling [93]. Nocardiopyrone contains a completely alkyl-substituted pyrone ring
and was isolated from the marine microorganism Nocardiopsis [94].

Although natural 4-hydroxy-2-pyrones are usually polyacetates, some polypropi-
onates were found in mollusks, fungi and bacteria [95]. Fusaripyrone A and exiguapyrone
were isolated from the mollusks Haminoea and contain an unusually long chain and form
via a regular condensation process starting with propionyl-CoA and continuing with
elongation of C3 units up to the linear C30-polypropionates after cyclization [96]. These
compounds can play the role of chemical markers for these marine organisms [95]. Nipy-
rones A and B were isolated from a marine sponge-derived fungus Aspergillus niger and
exhibit moderate antibacterial efficacy against four pathogenic bacteria [97]. Salinipy-
rones A and B were isolated from the marine-derived bacterium Salinispora pacifica. These
metabolites are by-products of the PKS system, which is associated with the rosamicin
macrolide antibiotics [32,98]. A related molecule, namely, capsulactone, was isolated from
an endophytic fungus Penicillium capsulatum obtained from the leaves of Panax notoginseng
and demonstrated weak antibacterial activity (Figure 4) [99].
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The structurally similar micropyrone and ascosalipyrone [100] contain the carbonyl
group and were isolated from Helichrysum italicum ssp. microphyllum and the endophytic
and obligate marine fungus Ascochyta salicorniae of the green alga Ulva sp., respectively.
Bioassay-guided investigation of Okinawan plant-associated fungus Aspergillus sp. led
to the isolation of aspopyrone A [101], which exhibited significant protein tyrosine phos-
phatase 1B (PTP1B) and T-cell PTP inhibitory activities.

A separate group includes 3-acyl-4-hydroxy-2-pyrones (Figure 5). This class of com-
pounds stands out due to its biological properties. The simplest of this series, namely,
dehydroacetic acid, is used as a food preservative (E265) and in cosmetics due to its antibac-
terial and fungicidal properties [68]. A structurally similar 6-methyl-4-hydroxy-2-pyrone,
namely, pogostone, which was isolated from patchouli oil, inhibits both Gram-negative
and Gram-positive bacteria and demonstrates anti-cancer activities [102]. Furthermore,
pogostone can be used as a repellent and insecticide [103]. Csypyrones B are 3-acetyl-α-
pyrone compounds bearing the carboxylic acid side chain as the result of oxidation of the
corresponding alkyl substituent and were isolated from the fungus Aspergillus oryzae [104].
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Mixopyronins and corallopyronins are functionalized N-alkenylcarbamate 3-acyl-4-
hydroxy-2-pyrones bearing chiral centers. These molecules are promising natural antibi-
otics produced by the terrestrial bacterium Myxococcus fulvus Mx f50 and possess antibacte-
rial activity against Gram-positive and Gram-negative pathogens [105]. The pyrones are
rare inhibitors of the bacterial RNA polymerase (RNAP) “switch region” as non-competitive
inhibitors with rifampicin. RNAP is a highly conserved protein, which makes the possible
application of these molecules in medical practice important. From the point of view of
biological activity and the possibility of biotechnological production, special attention is
focused on corallopyronin A as an antibiotic undergoing preclinical studies [106].

A few 4-hydroxy-2-pyrone conjugates are known to have carbohydrates and terpenes,
which are attracted to the C-3 position of the pyrone ring (Figure 6). Such structures ex-
hibit a wide spectrum of biological activity and are an attractive target for total synthesis.
Carbohydrate derivatives, namely, fusapyrone and deoxyfusapyrone, were isolated from
Fusarium semitectum [8,107–109]. These compounds show considerable antifungal activity
(Botrytis cinerea, Aspergillus parasiticus and Penicillium brevi-compactum) [109]. Epipyrone A
(Orevactaene) is a polyene pigment isolated from Epicoccum nigrum with broad-spectrum
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antifungal activity [110,111]. Moreover, this molecule interferes with the RNA binding
activity of the regulatory protein Rev in human immunodeficiency virus type I; demon-
strates anti-microbial activity; and displays inhibitory activities against cytopathic effect
of influenza A virus (H1N1) and NF-κB-dependent gene expression, cysteine and serine
proteases [110].
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A large class of pyrano-diterpene conjugates includes sesquicillins A–E [112], which
were isolated from the fungi Albophoma. Sesquicillins are insecticides and cytotoxic
molecules showing moderate inhibitory activity against the growth of Artemia salina (brine
shrimps) and Jurkat cells.

Another meroterpenoid, namely, subglutinol A, is a natural product isolated from
Fusarium subglutinans, which is an endophytic fungus from the vine Tripterygium wil-
fordii [113]. This compound demonstrated multimodal immune-suppressive effects on
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activated T cells in vitro. These results suggest the potential of subglutinol as a novel
therapeutic for inflammatory diseases. Katsumadain C bears a four-membered cycle and is
isolated from Alpinia katsumadain. This molecule is a product of katsumadain dimerization
and is used as an anti-emetic and stomachic agent [74]. Various pyrones bearing a ter-
pene fragment, such as sartorypyrones [114,115], aszonapyrones [114,116] and metarhizin
A [117], are also isolated and of interest as biologically important compounds.

4. Biosynthesis and Biotechnological Methods for the Preparation of
4-Hydroxy-2-pyrones

Polyketides are a large class of biomolecules assembled by repeating Claisen-condensations
between an activated acylstarter unit and malonyl-CoA-derived extender units [76,118–120].
In Nature, the synthesis of 4-hydroxy-2-pyrones is catalyzed by polyketidases (PKS),
which give chain elongation using structural fragments, such as acetyl-CoA, propyl-CoA,
malonyl-CoA and methylmalonyl-CoA, as well as other derivatives of carboxylic acids
(Scheme 17) [6]. The majority of this family of 4-hydroxy-2-pyrones is found to be biosynthe-
sized by type III polyketide synthases (PKSs), which provide a two-step process, including
two condensation processes and intramolecular cyclization. III PKS systems were described
in plants, fungi and bacteria. In contrast to I PKS and II PKS, III PKS acts independently
of the acyl carrier protein (ACP), and acyl CoA is used directly as a substrate (Scheme 17).
Although usually 4-hydroxy-2-pyrones as triketides are isolated as by-products in the
biosynthesis of complex polyketides [98], in some cases, special pyrone synthases, which
are a kind of polyketide synthase III, are able to control the final length of a polyketide and
responsible for the selective lactonization [121]. Another important biosynthetic pathway
is characteristic of natural 3,6-disubstituted 4-hydroxy-2-pyrones, such as csypyrones, pho-
topyrones, myxopyronins, corallopyrononins and dehydroacetic acid, and is based on the
intermolecular cyclization of two acyl carrier protein (ACP)-tethered β-ketoacyl intermedi-
ates or β-ketoacyl-ACP with acyl-ACP [6,120]. This unique process is non-decarboxilative
and catalyzed by a special type of ketidases, which are also related to III polyketidases.

For 6-substituted aromatic 4-hydroxy-2-pyrones, such as wailupemicines, II polyketi-
dase is an enzyme for synthesis [121]. The involvement of various enzymes in the pro-
cess makes it possible to carry out the modification of side substituents, methylation of
the pyrone ring, reduction and glycosylation, which ensures the diversity of these py-
rones [71,122,123].

The wide distribution of 4-hydroxy-2-pyrones in Nature, the presence of well-functioning
biosynthetic pathways based on polyketide synthases and the application of the pyrones
as important reagents stimulate the development of biotechnological methods. Advances
in synthetic biology and metabolic engineering allow for the improvement of production
efficiency, both using microorganisms and in vitro methods [124]. In addition, in some
cases, the synthesis of pharmaceutically attractive pyrones by chemical approaches is rather
complicated due to the large number of steps [106]. Important features of biotechnological
methods are enzymatic cascade formation of many C–C and C–O bonds; high stereoselec-
tivity; and the use of available compounds as starting molecules, such as glucose or simple
carboxylic acids. In the literature, most attention is paid to biotechnological methods for
the microbial production of triacetic acid lactone as an effective process. This molecule is
constructed via 2-pyrone synthase catalysis from one acetyl-CoA and two malonyl-CoA,
which are obtained from glucose [22]. These approaches allow for the transition from
carbohydrates to valuable products based on biological and chemical methods. At the
same time, special attention in the literature is paid to the synthesis of natural 4-hydroxy-
2-pyrones, such as hispidin [125] and corallopyronin A [106,126], because it is practically
important from the point of view of further application. PKSs allow for different fragments
of carboxylic acids to be involved in the reactions. Also, biological methods were applied
for the construction of unnatural 4-hydroxy-2-pyrones using different carboxylic acids as a
starter [127–129].
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In contrast to PKSs, the recently reported thiolase-based polyketide biosynthesis can
directly use acetyl-CoA as the extender unit to form various 6-substituted 4-hydroxy-2-
pyrones via a nondecarboxylative Claisen condensation, enabling the product synthesis at
maximum energy and carbon efficiency [124].
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Biotechnological methods have some drawbacks associated with the isolation of the
required 4-hydroxy-2-pyrones because in most cases, the desired pyrones are not isolated
in a pure form. Also, the use of bioengineering methods is difficult for chemists and these
pyrones are hard to access in sufficient quantities for further study and application in
organic synthesis. But given the rapid development of these areas, these problems can be
solved, which is important from the point of view of sustainable chemistry.

5. Summary

Thus, the main strategies have been demonstrated for the construction of 4-hydroxy-
2-pyrones via de novo synthesis or pyran modification. Although the isolation of new
pyrones from natural sources is still an urgent task, a wide range of strategies is actively
being developed for the application of 4-hydroxy-2-pyrones in the synthesis of biologically
important and natural compounds. Since these pyrones are hidden tricarbonyl structures,
the most popular are biomimetic methods that are based on the cyclization of tricarbonyl
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compounds and their derivatives. The most accessible approaches are based on the self-
condensation of dicarbonyl compounds without the use of organometallic compounds but
demonstrate a very limited scope. At the same time, a search is underway for new methods
related to both the construction of the carbon skeleton and selective cyclization. Among
them, a special place is occupied by approaches that are based on catalysis by transition
metals. The use of acetylenes makes it possible to easily create new C-C bonds and carry
out subsequent selective gold-catalyzed cyclization, which has found wide application in
the total synthesis of natural pyrones. In contrast to other 2-pyrones, methods based on
[4+2]-cyclization of ketenes for the construction of acyl-substituted 4-hydroxy-2-pyrones are
actively applied. Despite the development of de novo synthesis methods, the modification
of readily available and reactive 4-hydroxy-2-pyrones, such as triacetic acid lactone and
dehydracetic acid, are widespread for the preparation of the pyrones. A special group of
methods includes biotechnological approaches that allow for the one-step construction
of complex pyrone structures from simple and accessible molecules. In general, although
4-hydroxy-2-pyrones are attractive objects for the creation of new bioactive compounds, the
methods of preparation are rather limited, which does not allow for the synthetic potential
to be fully revealed and requires lengthy synthetic procedures for the construction of the
target molecule. We hope that this review will stimulate the development of the chemistry
of 4-hydroxy-2-pyrones, both in terms of the search for efficient synthetic methods and
convenient methods for their further transformations and modifications, as well as joint
approaches based on biotechnology and organic synthesis. After all, this can lead to low-
cost and effective methods for the creation of valuable chemical products based on biomass
feedstock or readily accessible starting reagents.
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