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Abstract: Evaluation of the 3D bone morphology of the glenohumeral joint is necessary for pre-
surgical planning. Zero echo time (ZTE) magnetic resonance imaging (MRI) provides excellent
bone contrast and can potentially be used in the place of computed tomography. Segmentation
of the shoulder anatomy, particularly the humeral head and the acetabulum, is needed for the
detailed assessment of each anatomy and for pre-surgical preparation. In this study, we compared
the performance of two popular deep learning models based on Google’s DeepLab and U-Net to
perform automated segmentation on ZTE MRI of human shoulders. Axial ZTE images of normal
shoulders (n = 31) acquired at 3-Tesla were annotated for training with DeepLab and 2D U-Net, and
the trained model was validated with testing data (n = 13). While both models showed visually
satisfactory results for segmenting the humeral bone, U-Net slightly over-estimated while DeepLab
under-estimated the segmented area compared to the ground truth. Testing accuracy quantified by
Dice score was significantly higher (p < 0.05) for U-Net (88%) than DeepLab (81%) for the humeral
segmentation. We have also implemented the U-Net model onto an MRI console for push-button
DL segmentation processing. Although this is an early work with limitations, our approach has the
potential to improve shoulder MR evaluation hindered by manual post-processing and may provide
clinical benefit for quickly visualizing bones of the glenohumeral joint.
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1. Introduction

Evaluation of patient-specific 3D position and morphology of the glenohumeral joint
bone is useful clinically for a multitude of reasons. These include a basic diagnosis of
shoulder dislocation and fracture, visualization of the glenoid surface for determining
glenoid bone loss and fracture [1,2], and the measurement of bone morphology for pre-
surgical planning [3–6], which is needed for shoulder arthroplasty [7].

Computed tomography (CT) is the current gold standard for bone imaging in 3D [6,8–10].
While preferred for the lack of ionizing radiation, conventional magnetic resonance imaging
(MRI) sequences (Figure 1A,B, provided as examples) have suboptimal contrast (i.e., bone
has a similar signal to several other tissues) for distinguishing bone for visualization [9].
However, recent advances in MRI including ultrashort time-to-echo (UTE) [11,12] and zero
time-to-echo (ZTE) techniques [13–16] have shown to be promising alternatives that can
depict cortical bone with a uniform contrast (i.e., a low signal for the cortical bone and the
air/back ground, a high signal for all other tissues such as muscle and trabecular bone and
marrow; Figure 1C), making it relatively easy to isolate and visualize the bones [14,17], with
minor processing. Unlike conventional magnetic resonance (MR) images that depict cortical
bones and other soft tissues (such as ligaments) with low signal intensity (Figure 1A,B), ZTE

Osteology 2024, 4, 98–110. https://doi.org/10.3390/osteology4020008 https://www.mdpi.com/journal/osteology

https://doi.org/10.3390/osteology4020008
https://doi.org/10.3390/osteology4020008
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/osteology
https://www.mdpi.com
https://orcid.org/0000-0003-3633-5630
https://orcid.org/0000-0002-7183-7508
https://doi.org/10.3390/osteology4020008
https://www.mdpi.com/journal/osteology
https://www.mdpi.com/article/10.3390/osteology4020008?type=check_update&version=1


Osteology 2024, 4 99

MRI provides a more uniform contrast for bone, for example with a high signal intensity
in inverted ZTE images (Figure 1D). These studies have also shown that cortical bone
morphology (e.g., surface contour) measured on UTE or ZTE are highly similar to that
measured on a CT or a micro CT [17]. For these reasons, ZTE MRI is increasingly being
prescribed when bone imaging is desired [17].

Figure 1. (A) Anatomy of the shoulder showing the major bone structures of the humerus, humeral
head, glenoid, and scapula. The axial imaging plane is shown in the dotted red box. Conventional
shoulder MR images were acquired using conventional (B) spin echo proton density weighted,
(C) spin echo proton density weighted with fat suppression, and (D) zero echo time (ZTE) sequences.
Conventional sequences do not isolate bone effectively. (E) Inverted ZTE image depicting mostly bony
tissues with high signal intensity. Conventional magnetic resonance (MR) images depict non-bony
tissues with similar contrast as bony tissues, making them less useful for bone-only imaging.

As mentioned above, it is useful to visualize and analyze individual bones of the
glenohumeral joint (Figure 1A). This requires manual segmentation, a time-consuming
process. This can be improved with traditional segmentation techniques utilizing the
thresholding of pixel values [18], region growing [19], and active shape modeling [20].
Recently, deep learning techniques such as full convolutional network (FCN) [21] and
U-Net [22] have been highly successful in performing image segmentation using small train-
ing data with good results. Another development includes Google’s DeepLab, designed to
perform image segmentation [23]. This model consists of the three main components of
the feature extraction module, an atrous spatial pyramid pooling (ASPP) module, and a
decoder module. It has been used widely for scene segmentation and to a limited degree
for the medical imaging for tumors [24–26], but not for bone segmentation.

Specifically for the segmentation of shoulder MRI, several recent studies have used
deep learning methods. One study used [27] 2D and 3D U-Net to segment the humeral
head and glenoid on conventional spin echo and gradient echo MR images. Another
approach [27–29] combined U-Net and AlexNet to perform rough and fine segmentation,
respectively, of the humeral head and the glenoid bones. Others also used the convolutional
network for shoulder bone segmentation [28–31], or bone recognition for shoulder muscle
segmentation [32]. DeepLab, although readily available, has not been used previously for
this application. It would be important to compare not only the performance of several
models, but also the nuances of how different models behave.

Additionally, past studies focused solely on the performance of the model, not on
the important aspect of how the segmentation integrates with the existing workflow. The
vast majority of deep learning models require off-line processing for inference, and the
raw output may not be compatible with digital imaging and communications in medicine
(DICOM) viewers or the picture archiving and communication system (PACS) that maybe
used by clinicians [33–35]. We aim to demonstrate an implementation that would be useful
for clinical workflow.

The goal of this study was to demonstrate an end-to-end approach for creating and
deploying deep learning-based models to perform shoulder MRI segmentation, comparing
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two common deep learning models, to provide immediate utility without the hurdle
of off-line processing. This is the first study to compare deep-learning based shoulder
segmentation using U-Net and DeepLab, and we also describe an implementation for
achieving this directly on the console, which may facilitate a quick clinical translation.

2. Materials and Methods

The parts of this study involving MR imaging of human subjects was approved by the
institutional review board. The remaining images were obtained after de-identification.

The overview of the methodology is as follows: (1) acquire or collect ZTE MRI images
of the shoulder similar to Figure 2; (2) pre-process images for uniform size and grayscale
values (see Section 2.1. Pre-processing); (3) split data into training and testing sets; (4) per-
form annotation which is the manual segmentation of the images into three regions as
shown in Figure 3; (5) perform training separately for U-Net and DeepLab models; here,
pre-processed images will be the inputs, and the segmented images will be the outputs to
be compared against manual segmentation images; (6) after training, perform inference on
test data and determine accuracy; (7) finally, implement a deep learning model on the MRI
console for immediate processing.

Figure 2. Inverted axial ZTE shoulder images used in this study were acquired with moderately
varying scan parameters. (A) was acquired with TR = 88 ms, TE = 0.016 ms, FOV = 180 mm,
matrix = 256 × 256, and 1 mm slice thickness. (B) was acquired with TR = 458 ms, TE = 0.016 ms,
FOV = 160 mm, matrix = 256 × 256, and 1 mm slice thickness. (C) was similar to (B) but acquired
with FOV = 180 mm, matrix = 512 × 512, and 1.2 mm slice thickness. While varying in image contrast,
all images shared a similar feature of depicting the bones of the shoulder with high signal intensity.

Figure 3. Manual segmentation of the MRI images. (A) Inverted ZTE MRI shoulder images ac-
quired in the axial plane were manually annotated (segmented) into (B) background, (C) humeral
head/humerus, and (D) the remaining tissues.
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2.1. Zero Echo Time (ZTE) MRI Data

Training Data: For deep learning (DL) training data, we obtained a de-identified MRI
shoulder dataset through an existing study where 7935 images from n = 31 normal asymp-
tomatic unilateral (left or right) shoulders, acquired on General Electric 3-Telsa scanners,
were available. The images were acquired in the axial plane using the ZTE sequence with
mixed scan parameters: Time-to-Repetition (TR) = 100 to 600 ms, Time-to-Echo (TE) = 0.016
to 0.028 ms, field of view (FOV) = 160 to 240 mm, image matrix = 256 × 256 to 512 × 512,
slice thickness = 0.7 to 1.2 mm, number of slices = 90 to 200. Despite some variations in the
scan parameters, the images had generally similar appearances (Figure 2A–C), depicting
bone and air with low signal intensity, and most of the other soft tissues with a moderate to
high signal intensity. As a part of the standard processing on the MRI console, raw ZTE
images were intensity-corrected, and then inverted (i.e., from Figure 1C,D) to depict bone
with high signal intensity (Figure 2). Examples of inverted axial ZTE shoulder images are
shown in Figures 1D and 2. Unfortunately, demographical information (age, sex, etc.) was
not available.

Testing Data: For testing data, additional axial ZTE shoulder data (1860 images)
were obtained from n = 13 subjects that included existing data from nine volunteers
(demographic information was not available) and four newly acquired datasets from
subjects with recent shoulder pain (3 males, 1 female; age range 40 to 55 years old). These
were all acquired with similar scan parameters to the training data.

Pre-Processing: Training and testing data were pre-processed prior to input into the
deep learning models by normalizing the voxel values in each 3D stack (separately for each
shoulder) between 0 and 1, and then conversion to an 8-bit image with voxel values between
0 and 255. The images were then resized to 256 × 256 in-plane using bilinear interpolation.

2.2. Opportunistic CT Data for Comparison

We obtained opportunistic data where both a clinical CT scan and a ZTE MRI of
the same shoulder were available. ZTE scan parameters were similar to the training
data. CT scanning parameters were: voltage = 140 kVp, current = 120 mA, reconstruction
diameter = 275 mm, image matrix = 512 × 512, and slice thickness = 1.25 mm. The image
data were first registered using MATLAB, then the registered ZTE data were segmented
using DL, while the CT data were segmented manually. The Dice score for humerus
segmentation was determined, and the respective segmented images were fused and 3D
rendered for visual comparison.

2.3. Annotation/Manual Segmentation

All images were annotated using ImageJ [36] (v2.1.0). Inverted ZTE MR images
(Figure 3A) were loaded as a three-dimensional (3D) stack and annotated using the Seg-
mentation Editor plugin. On every 2 to 3 slices, the boundaries of the humerus were drawn
using a polygon selection tool, interpolated between slices, then filled to create a binary
3D image for the humerus (Figure 3C). For the background segmentation (Figure 3B), we
performed thresholding and additional manual clean-up. Finally, segmentation of the
remaining tissues was created through inversion of the background image and subtrac-
tion of the humerus image. This yielded three separate binary 3D images, representing
(i) the background/air (Figure 3B) including the bulk of the lung, (ii) the humeral head and
humerus bone (Figure 3C), and (iii) all other soft and bony tissues (i.e., glenoid, acromion,
etc., Figure 3D). Note that humerus segmentation was performed loosely around the struc-
ture to avoid accidental cropping of the humeral head. While we used a single observer (a
non-physician with 10 years of experience in imaging research, trained in the musculoskele-
tal section), we felt that the bone segmentation task did not require extensive training due
to a high contrast between bone and soft tissues, and that our approach of using loosely
fitting annotation allowed for rapid annotation that still included the structure of interest
without error.
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2.4. Deep Learning Segmentation Models

We have implemented two-dimensional (2D) U-Net [22] and DeepLab v3 [23] deep
learning (DL) models in MATLAB with the Deep Learning Toolbox (R2021b) to perform
the segmentation of shoulder ZTE MR images. The DL models first take in inverted ZTE
shoulder images that have been resized to 256 × 256 voxels.

The U-Net (Figure 4A) applies 64 convolution filters with a 3 × 3 kernel size, and
two convolution operations at each step, with an encoder depth of 5 (or 9 layers, 4 down-
sampling followed by 4 up-sampling). The DeepLab v3 (Figure 4B) uses spatial pyramid
pooling module for encoding, which captures contextual information at multiple scales
using 3 × 3 convolution filters with different dilation rates of 6, 12, and 18. This is then
pooled and concatenated in the decoder to produce the final segmentation.

Figure 4. Architectures of (A) U-Net and (B) DeepLab used in this study. Adapted from [22] and [37],
respectively. Training results showing accuracy and loss values for (C) U-Net and (D) DeepLab.

In both models, the final output consists of the pixel classification layer with 3 classes,
each for the background (air), the humeral head/humerus, and the remaining other tissues.
The models were trained to 120 epochs (~2 days) using the default setting (Adam optimizer,
L2 regularization, population batch normalization, shuffling image every epoch, mini batch
size of 8) using cross entropy as the loss function, on a Windows 10 PC with i7-10700K
CPU, 32GB RAM, RTX3090 GPU with 24 GB VRAM. Training accuracy quickly converged
to >99% (Figure 4C,D) and remained high. The weight that provided the lowest loss during
training was kept and used for the remainder of the study. A MATLAB code is provided
below in Section 2.4.1 to clarify the model building and training processes. (We also trained
on augmented images using rotation, translation, and rescaling, but unfortunately this did
not improve the test results. Additionally, the current approach did not use cross-validation,
which is a moderate limitation.)
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2.4.1. MATLAB Code

2.5. Inference Accuracy

After training the U-net model, DL segmentation was performed on the validation
images (each dataset taking ~2 min) and compared against the manual annotation. The
following similarity metrics were determined. The Dice score [38,39] provides a measure of
image (i.e., segmentation mask) overlap, defined as Equation (1):

Dice = (2 TP)/(2 TP + FP + FN) (1)

where TP is the number of true positive voxels (i.e., a value of 1 in both DL and manual
segmentations), FP is the number of false positive voxels (a value of 1 in DL, a value of 0 in
manual segmentation), and FN is the number of false negative voxels (a value of 0 in DL, a
value of 1 in manual segmentation).

Sensitivity [40] was determined as Equation (2):

Sensitivity = TP/(TP + FN) (2)

Specificity [40] was determined as Equation (3):

Specificity = TN/(TN + FP) (3)

where TN is the number of true negative voxels (a value of 0 in both DL and
manual segmentations).
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2.6. Clinically Applicable DL Segmentation Workflow

In addition to the development of the DL segmentation model, additional processing
steps were developed to create a workflow that can be used on an MRI scanner, without
the need for off-line processing. As shown in the flowchart in Figure 5A, a MATLAB
runtime (R2021b for Linux) program was compiled as binary and installed on an MRI
console to: (1) read inverted ZTE DICOM images; (2) perform DL segmentation (using the
same routine as the off-line version) to create masks of the humeral head/humerus and the
remaining tissues; and (3) multiply with input ZTE images to create a new series of images
showing the separated structures viewable on the MRI console or any PACS (Figure 5B).
This enabled a push-button DL segmentation of ZTE shoulder images directly on the MRI
scanner for an immediate evaluation following acquisition. As a quality control measure,
we compared the DICOM images from the MRI console to the those from off-line programs
and found no difference in the images.

Figure 5. (A) Flow chart of ZTE DL processing, which reads raw digital imaging and communications
in medicine (DICOM) images, and performs DL segmentation to create masks for the humerus and
the remaining tissues. The masks are then multiplied with the raw image to create segmented DICOM
images that are saved as a new series in the exam. (B) Segmented DICOM images viewed in a PACS
viewer, showing the original image on the left, the segmented humeral bone in the middle, and
segmented remaining tissues on the right.

2.7. Statistics

For the validation data, Dice scores, sensitivity, and specificity for segmentation of the
humerus and the remaining tissues were tabulated, and the mean and standard deviation
of the values were determined and plotted as box plots. To determine the effect of different
models in the segmentation performance, we compared the mean values between U-Net
and DeepLab models using a t-test with a significance level set at 0.05, using Systat (v10,
Grafiti LLC, Palo Alto, CA, USA).

3. Results
3.1. Training

The training results were good, converging to >99% accuracy (Figure 4C,D). The model
weight that achieved the highest accuracy was kept and used for the remainder of the study.

3.2. Testing

Figure 6A–F show segmented ZTE test images. Ground truth segmentations
(Figure 6A,D) are shown next to DL segmentation performed by U-Net (Figure 6B,E)
and DeepLab (Figure 6C,F). While both models performed well by including the important
areas (i.e., bone) in the humeral head segmentation, U-net slightly over-estimated segmen-
tation for the humeral head while DeepLab slightly under-estimated. The segmented ZTE
images could be used for 3D morphologic evaluation of the humeral head (Figure 6H) and
the glenoid (Figure 6I).
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Figure 6. Segmentation results on test images. (A,D) Ground truth or manually segmented images
of the humeral bone and the remaining other tissues shown for comparison. Output segmented
images of (B,C) the humeral head and (E,F) the remaining tissues after DL segmentation performed
by (B,E) U-Net and (C,F) DeepLab. Qualitatively, U-Net slightly over-estimated the area for the
humeral head while DeepLab slightly under-estimated. (G) Input ZTE MRI image is shown.
(H,I) Segmented ZTE images (from the ground truth; (A) and (D)) were used to create separate
3D renderings of the (H) humerus and (I) glenoid/scapular bone.

Figure 7 shows the testing results quantified using the Dice score, the sensitivity, and
the specificity. Figure 7A is the boxplot for the humerus/humeral head and Figure 7B is
the boxplot for the remaining other tissues; the blue color represents U-Net and the red
color represents DeepLab.

Table 1 presents the means and standard deviations, and the p-values suggesting
the difference in values between the models. U-Net had consistently high Dice scores
throughout, averaging 0.88 for the humerus/humeral head and 0.94 for the remaining
tissues. The sensitivity and specificity values were also very high, ranging from 0.88 to 0.99.
In comparison, DeepLab had a significantly lower Dice score (0.81 vs. 0.88, p = 0.027) and
sensitivity (0.71 vs. 0.91, p < 0.001), but greater specificity (0.999 vs. 0.995, p < 0.001), for the
humerus/humeral head segmentation. Other metrics were not statistically different. This,
combined with visual comparison, suggested that U-Net was generally more sensitive and
slightly over-included areas of humeral head, while DeepLab was more conservative in
this regard.
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Figure 7. DL model performances compared. Boxplots of inference accuracy (Dice score, sensitivity,
specificity) quantified on the humeral bone (A) and the remaining tissue (B), determined using U-Net
(blue) and DeepLab (red) models. Marked differences in the accuracy metrics for the humeral bone
were noted.

Table 1. Mean and standard deviation of the Dice scores, sensitivity, and specificity values. p-values
from t-tests indicate statistical difference between the mean values obtained using U-Net vs. DeepLab.

Dice HH Dice Other Sens HH Sens Other Spec HH Spec Other

U
-N

et Mean 0.876 0.940 0.910 0.987 0.995 0.883
SD 0.043 0.031 0.061 0.013 0.003 0.070
N 13 13 13 13 13 13

D
ee

p
La

b Mean 0.811 0.949 0.715 0.992 0.999 0.903
SD 0.088 0.030 0.132 0.015 0.001 0.055
N 13 13 13 13 13 13

p-value 0.027 0.467 <0.001 0.426 <0.001 0.424

3.3. Comparison vs. CT

In the opportunistic data where both ZTE MRI (Figure 8A) and CT (Figure 8B) data
were available from the same subject, the Dice score of the humerus segmentation using DL
was 97%. We created a fused 3D rendering (Figure 8C), which shows an excellent overlap
(white) between ZTE (purple) and CT (green), and is likely to yield similar values when
measured for length, etc. However, this needs to be validated in additional samples.

Figure 8. Comparison of MRI vs. CT segmentation. ZTE MRI (A) and CT (B) data of the same subject
were registered and segmented (using U-Net for MRI, manually for CT). The segmented images were
fused (C), showing the overlapping regions as white, and the non-overlapping regions in magenta
for MRI and green for CT.
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4. Discussion

We have successfully implemented a DL model to segment the humerus and other
tissues from ZTE MRI shoulder images. Using a small amount of training data, a reasonable
level of performance was achieved both visually and quantitatively with moderately high
Dice scores, sensitivity, and specificity using both U-Net and DeepLab models. Comparison
of segmented ZTE vs. CT showed an excellent overlap, suggesting that ZTE MRI could
become a useful modality for imaging bony tissues in the body. The DL model has also
been implemented on an MRI scanner to perform a push-button automated segmentation
in 2 to 3 min. This work could be useful clinically when it is desired to evaluate 3D bone
morphology at the glenohumeral joint for bone defects [41] or dysplasia [42], or for pre-
surgical measurement [3–6], by eliminating the need for manually segmenting the humeral
bone from the glenoid.

While there have been a few studies on DL segmentation of shoulder MRI, this is the
first study utilizing ZTE images, and using DeepLab architecture. Compared to other DL
segmentation models trained on conventional MRI, the performance of our model may
appear underwhelming at first. Rodrigues et al. [27] used a 2D U-Net model to achieve a
sensitivity and specificity of 95% and 99%, respectively, for the humerus, and 86% and 92%,
respectively, for the glenoid. Mu et al. [29] and Wang et al. [28] both achieved an average
sensitivity of ~95% for segmenting the two bones. One study utilizing a conventional
thresholding method combined with a manual selection [43] found that the MRI measure
of the glenoid area correlated strongly (an intraclass correlation coefficient of 0.94) with that
from CT. In contrast, our models achieved a somewhat lower average sensitivity of 71%
(DeepLab) and 92% (U-Net), but a high specificity of >99% (both models) for the humerus
segmentation. This may be related to our approach of using a loosely oversized region
(Figure 6A) for annotating the humerus bone, unlike in past studies that needed to use a
precisely defined region for each bone [27]. While our approach may have resulted in a
lowered sensitivity, minor deviations in the segmentation mask do not appear to cause
problems for the simple purpose of isolating the humeral head and glenoid for visualization.
For additional quantifications such as volume measurement, conventional image processing
techniques (e.g., thresholding [18,44–46]) may be applied to further segment the bone from
surrounding soft tissues.

Comparison between U-Net and DeepLab suggested that while both yielded visually
satisfactory results, there was a tendency of U-Net to slightly over-estimate the area for the
humerus segmentation, while DeepLab tended to slightly under-estimate. A consequence
of this can be seen in Figure 6, where U-Net segmentation included a sliver of glenoid
bone (Figure 6B), while DeepLab missed a sliver of humeral bone (Figure 6C). This was
also apparent in the significantly higher sensitivity of humeral segmentation for U-Net,
and a significantly higher specificity of humeral segmentation for DeepLab. Although
the exact reasons for such differences are unclear, DeepLab’s architecture that uses atrous
(i.e., dilated) convolutions tends to broaden the receptive field, which may be advantageous
for detection and inclusion, but may make the segmentation less precise.

This early study has several limitations. First, we used only axial images for the
training and testing. Given the 2D nature of the models, shoulder images in other planes
(coronal, sagittal) will not provide the expected results in the present study. However,
ZTE images are often acquired as an isotropic 3D stack [16], so axial reformatting will not
degrade the image quality. The variations in scan parameters of the training images, while
lowering segmentation accuracy, would have been beneficial in terms of the generalizability
of the model. Segmentation was performed by a single observer, which is less desirable
than using an average of multiple observers. However, this may not be critical as we
utilized loosely fitting masks unlike most other studies. U-Net and DeepLab models were
introduced some time ago and there are now newer models such as the Segment Anything
Model. However, the application of the existing models to the shoulder segmentation and
the comparison of the results still provide useful insight, despite our study not specifically
using transfer learning [30,47] from existing weights and models. Additionally, U-Net
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and DeepLab models are readily available on the MATLAB platform for easier adaptation,
unlike the newest models that may require expertise in a computer science discipline. The
number of training datasets (7935 images from 31 subjects), while sufficient to yield a func-
tional model, was too small to capture large variations found in normal shoulder anatomy
and did not include any shoulders with known abnormalities in bone morphology [48–51].
Additional and varied datasets in the future will likely improve segmentation performance.
ZTE MRI, while providing superior bone contrast compared to conventional MR sequences,
still falls short compared to CT scanning for bone evaluation. Tissues other than bone
can appear iso-intense with bone (Figure 8A), and this may adversely affect visualization
(Figure 8C, purple signal) using our loosely encompassing segmentation masks.

5. Conclusions

In conclusion, we developed and deployed a fully automated methodology based on
two popular deep learning models to segment the humerus and other bones on novel ZTE
MR images of the human shoulder. Although this is an early attempt with limitations, with
additional training data and model refinement, this study has the potential to improve
clinical practice, by improving clinical workflow such as evaluation of 3D bone morphology
or pre-surgical measurement of the glenohumeral joint by providing rapid and automated
segmentation of the humeral bone.
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