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Abstract: This review deals with the production of oxygen by photo-oxidation of water, which is a
topic fitting a journal devoted to oxygen. Most of the present biosphere, including mankind, depends
on oxygen. Elucidating the mechanism is of importance for solving the present energy crisis. Photo-
synthesis evolved in bacteria, first in a form that did not produce oxygen. The oxygen-producing
version arose with the advent of cyanobacteria about three billion years ago. The production of
oxygen by photo-oxidation of water requires the co-operative action of four photons. These are
harvested from daylight by chlorophyll and other pigments (e.g., phycobiliproteins) and are chan-
neled to photosystem II and photosystem I. The oxygen-evolving complex resides in photosystem
II, surrounded by protein subunits, and contains one ion of calcium, four ions of manganese, and a
number of oxygen atoms. For each quantum of energy it receives from absorbed light, it proceeds one
step through a cycle of states known as the Kok–Joliot cycle. For each turn of the cycle, one molecule
of oxygen (O2) is produced.
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1. Introduction

Life arose on our planet in a reducing environment. The first kind of photosynthesis
probably did not involve the evolution of molecular oxygen, but this complicated process
evolved at least 3 billion years ago, as evidenced in a number of ways. Analysis of genomes
indicates that cyanobacteria had already evolved at that time [1]. The lack of variability
in the ratio of uranium isotopes in pre-3.0 Ga iron formation samples suggests minimal
presence of dissolved U(VI) in rivers and seawater (indicating anoxic conditions); however,
2.95 billion years ago, this started to change [2]. By comparing the abundances of iron
and other metals in sediments of ancient shallow oceans, Satkoski et al. [3] came to the
conclusion that they contained oxygen 3.2 billion years ago.

Why do I say that evolution of molecular oxygen is a complicated process? Oxidation
of water to O2 is not only energy-demanding; it also requires the co-operative action of four
photons, arriving at random times, to remove four electrons from two water molecules.
How this can happen and how it evolved is not clear. Let me first describe what we think
we know about the mechanism and then speculate about how it has come to be.

In plants and algae, photosynthesis takes place in cell parts called chloroplasts, which
are a few micrometers in size. They were derived from cyanobacteria more than a bil-
lion years ago, and the photosynthetic structures in chloroplasts and cyanobacteria are
quite similar. They contain chlorophylls and carotenoids, as well as phycobiliproteins in
cyanobacteria, which absorb the light that drives oxidation of water to molecular oxygen
coupled with a reduction of carbon dioxide to carbohydrate. The light energy is absorbed
by two large protein complexes with associated pigment molecules, called photosystem I
and photosystem II (Figure 1). They reside in so-called thylakoid membranes, which are
closed structures (thylakoids) with different inside and an outside structures. Here, we
shall concentrate on photosystem II (PSII), which is the that which carries out the oxidation
of water to oxygen molecules.
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Figure 1. Thylakoid membrane with photosynthetic protein complexes and sites of bicarbonate ac-

tion. Slightly modified from Shevela et al. [4]. Reprinted with permission from [4]. © 2020 American 

Chemical Society. Reproduced under the Creative Commons Attribution (CC-BY) License 

(https://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html, 27 July 2022). 
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pendently, by Pierre Joliot et al. [5] and Bessel Kok et al. [6]. When they exposed Chlorella 

algae or spinach chloroplasts that had been in darkness for some time to repeated very 

short and intense light flashes, they observed no oxygen after a single flash, a maximum 

of oxygen (O2) production after the third flash, and thereafter on every fourth flash (Figure 

2). The sequence of flashes resulted in approach toward a constant oxygen yield per flash. 

The gradual levelling out is due to the fact that even these very short flashes often result 

in more than one step forward (in some cases, there is no hit at all) in what has come to be 

known as the “Kok cycle” or the “Joliot–Kok clock” (Figures 3B and 6). Structures of the 

intermediates in this “clock” have been described by Umena et al. [7], Suga et al. [8], and 

Kern et al. [9]. All details in this cycle are not yet clarified, and various possible versions 

are discussed by Li et al. in [10]. 

Because photons arrive at random times and four photons are needed for the pro-

duction of one oxygen molecule, there must be some mechanism for storing energy and 

positive charge until enough is available for oxidation of the water molecules. This is 

achieved by the four manganese atoms of the Kok cycle (Figure 3B), in steps proceeding 

from MnIII3MnIV to MnIV4
+. A minimum of four more photons are needed for complete 

photosynthesis, including assimilation of one CO2 molecule. 

Figure 1. Thylakoid membrane with photosynthetic protein complexes and sites of bicarbonate
action. Slightly modified from Shevela et al. [4]. Reprinted with permission from [4]. © 2020
American Chemical Society. Reproduced under the Creative Commons Attribution (CC-BY) License
(https://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html, accessed on 27 July 2022).

The evolution of cyanobacteria and the availability of molecular oxygen have been
necessary for the continued rich evolution of life on our planet.

2. Photosystem II

A breakthrough in the elucidation of the function of photosystem II was made, inde-
pendently, by Pierre Joliot et al. [5] and Bessel Kok et al. [6]. When they exposed Chlorella
algae or spinach chloroplasts that had been in darkness for some time to repeated very
short and intense light flashes, they observed no oxygen after a single flash, a maximum of
oxygen (O2) production after the third flash, and thereafter on every fourth flash (Figure 2).
The sequence of flashes resulted in approach toward a constant oxygen yield per flash. The
gradual levelling out is due to the fact that even these very short flashes often result in
more than one step forward (in some cases, there is no hit at all) in what has come to be
known as the “Kok cycle” or the “Joliot–Kok clock” (Figures 3B and 6). Structures of the
intermediates in this “clock” have been described by Umena et al. [7], Suga et al. [8], and
Kern et al. [9]. All details in this cycle are not yet clarified, and various possible versions
are discussed by Li et al. in [10].

Because photons arrive at random times and four photons are needed for the pro-
duction of one oxygen molecule, there must be some mechanism for storing energy and
positive charge until enough is available for oxidation of the water molecules. This is
achieved by the four manganese atoms of the Kok cycle (Figure 3B), in steps proceeding
from MnIII

3MnIV to MnIV
4

+. A minimum of four more photons are needed for complete
photosynthesis, including assimilation of one CO2 molecule.

The molecular structure in which the oxidation of water to molecular oxygen takes
place is called the Mn4CaO5 cluster (Figure 3A). The structure was first reported by Shen’s
group, Umena et al. [6] and Suga et al. [7].

Figure 4 shows a schematically of how the Mn4CaO5 cluster forms part of the large
photosystem II complex, which is one of the proteins in the thylakoid membranes in
cyanobacteria and in the chloroplasts of algae and other plants.

https://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html
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Figure 2. Yield of molecular oxygen from Chlorella cells as a function of flash number. The first flash 

does not result in any oxygen; the first maximum comes on the third flash. Thereafter, maxima occur 

on every fourth flash, and the oscillation gradually decreases towards a flat line (steady state). Re-
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water molecules. (B) The Kok cycle (also called the Kok–Joliot cycle). S0 to S4 are the OECs in various 
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and an electron and a proton are released. When S3+ changes to S0, a water molecule is taken up, and 

a proton and an oxygen molecule are released. In darkness, the equilibrium state is mainly S1. 

Graphics by D. Shevela (SciGrafik, Sweden). 

Figure 4 shows a schematically of how the Mn4CaO5 cluster forms part of the large 

photosystem II complex, which is one of the proteins in the thylakoid membranes in cya-

nobacteria and in the chloroplasts of algae and other plants.  

Figure 2. Yield of molecular oxygen from Chlorella cells as a function of flash number. The first
flash does not result in any oxygen; the first maximum comes on the third flash. Thereafter, maxima
occur on every fourth flash, and the oscillation gradually decreases towards a flat line (steady
state). Redrawn and modified from Joliot et al. [4]. Kok et al. [5] obtained very results with spinach
chloroplasts. (See also Joliot & Kok [11]).
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Figure 3. (A) The oxygen-evolving complex (OEC). The four manganese ions are colored violet, the
six oxygen atoms are indicated in red, and the calcium atom is indicated in yellow. W1 to W4 are
water molecules. (B) The Kok cycle (also called the Kok–Joliot cycle). S0 to S4 are the OECs in various
states, without or with a positive charge, with oxidation states of the manganese indicated. Yellow
circles labelled hν indicate quanta from light. When S2

+ changes to S3
+, a water molecule is taken up,

and an electron and a proton are released. When S3
+ changes to S0, a water molecule is taken up,

and a proton and an oxygen molecule are released. In darkness, the equilibrium state is mainly S1.
Graphics by D. Shevela (SciGrafik, Sweden).

In experiments with the extremophilic red alga Cyanidioschyzon merolae and comparing
with results from spinach, Pham et al. [12] explained, in detail, patterns such as that shown
in Figure 2 and arrived at the conclusion that the S2-to-S3 transition is the least efficient
step during the oxidation of water to O2. It is also the step that has been most thoroughly
investigated and divided into substeps. Thus, Klauss et al. [13] found that the proton
transfer in this step precedes the electron transfer. They observed an exceptionally high
activation energy of 540 ± 30 meV for the proton transfer. However, Amin et al. [14]
concluded that even prior to the proton transfer step, oxidation of one of the manganese



Oxygen 2022, 2 340

ions and a change of spin takes place, resulting in a change in the EPR signal from g = 2 to
g = 4.1. The structural changes taking place during the S2-to-S3 transition were studied by
Ibrahim et al. [15].
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Figure 4. Photosystem II: The water-splitting enzyme of photosynthesis. D1 and D2 are the central
polypeptides in a very large complex in the thylakoid membranes of cyanobacteria and chloroplasts.
Electrons from water are transferred via the “Mn4CaO5” cluster, the tyrosine Yz in D1, P680 (an
ensemble of chlorophyll a molecules), Pheo (pheophytin), and QA (a molecule of plastoquinone
attached to D2) to QB, another molecule of plastoquinone, which, after receiving two electrons,
dissolves in the membrane and will be used as reductant in further reactions (as PQH2). Reproduced
with permission of SciGrafik (Sweden) and Agrisera (Sweden).

It is easy to forget that chlorine is one of the essential elements for plants, as deficiency
seldom occurs under natural or agricultural conditions. However, as Mandal et al. [16]
showed, chloride ions are necessary for the transition from state S2 to state S3 of the
oxygen-evolving complex (Figure 5).

Using photoacoustics and a method called “photothermal beam deflection”, which,
with high time resolution, monitors volume changes in the system, Klauss et al. [17,18]
were able to separate and time several steps of electron and proton transfer in the Kok cycle
for particles from spinach from S2

+ to S0. State S4, originally proposed by Kok, has never
been directly identified.
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Figure 5. When a chloride ion (Cl–) is present in the OEC, the transfer of an electron from water, via
manganese ion 1 (Mn1) (and change between S2 and S3 states of the OEC) and tyrosine Z, to the
plastoquinone B (QB) on the D1 polypeptide goes downhill, i.e., toward higher redox potential (Em).
In the absence of Cl–, the redox potential of Mn1 is increased beyond that of tyrosine Z, and Mn1
cannot be oxidized; the electron transfer to tyrosine Z is blocked. From Mandal et al. [16]. Reproduced
with permission from the authors. A detailed energy diagram of the S0–S1–S2 transitions in the native
state was published by Siegbahn [19].

3. The Role of Manganese

As shown in Figure 3B, the molecular oxygen (two red spheres) is released during
the transition from the hypothetical (never observed) state S4

+ to S0. Figure 6 shows the
changes in the OEC during this transition. In the S4 state, oxygen atoms 5 and 6 (labelled
O5 and O6) form part of the distorted OEC cube. In the next structure, with lower internal
energy, they are released, and the “cube” is opened. One of the oxygen atoms is then
replaced by oxygen, with a hydrogen atom attached, from the water molecule labelled
W3 in Figure 3 to close the structure again. The transition from S4 to S0 can take place
without energy input from light because the internal energy is lower for the S0 structure
than that for the S4 structure. It is important to note that Figure 6 is tentative, showing
one of several possible mechanisms; many other possible versions of the cycle have been
published [13,20–24]. It is too early to draw a final version of this cycle.
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Figure 6. Molecular details of the Kok cycle (cf. Figure 3). Red and blue circles, oxygen; white,
hydrogen; green and violet, manganese; yellow, calcium. In the transition from state S0 to state S1,
the proton on oxygen O5 is released, and Mn3 is oxidized. In dark-adapted PSII, the reaction cycle
starts with the S1 state with two MnIII and two MnIV ions and in which all bridges are deprotonated.
During the S1/S2 transition, Mn4 is oxidized. State S2 involves several conformations (not shown).
In the transition from S2 to S3, water W3 is inserted into the binding site between Ca2+ and Mn1,
concomitant with Mn1 oxidation and the binding of a new water molecule (N1) to the W3 site
(dashed grey arrows). Only after rearrangements within S3 (not shown) can the Mn4CaO6 cluster be
oxidized to S4. Instead of Mn oxidation, S4 state formation involves the oxidation of the fast substrate
water, indicated by a black dot on W3. By rearranging the electrons of the chemical bonds (black
half-arrows), the S4 state rapidly converts into the S4′ state, which contains a complexed peroxide.
The further conversion of S4′ into S0 + O2 requires the binding of one water molecule and the release
of a proton. It is suggested that a prebound water ligand (W2 or W3) fills the empty O5 binding site
and that this ligand is concomitantly replaced by a new water molecule (N2; dashed grey arrows). In
the S0 state, the O5 bridge is protonated, in line with the faster exchange of Ws and spectroscopic
data. From de Lichtenberg et al. [25], https://creativecommons.org/licenses/by/3.0/, accessed on
27 July 2022. Many other versions of this cycle have been published (see the main text).

Manganese is remarkable in that it can attain all oxidation states from 0 (as metal) to
+7 (as in potassium permanganate). However, for the Kok cycle, an alteration between +3
and +4 is sufficient. Zhang and Sun [26] proposed that the manganese atom (number 4
in Figure 3A) “dangling” outside the cubical structure would be oxidized all the way to
oxidation number 7 (VII). However, computations by Li et al. [27] indicate that with this
oxidation state, there would be a high-energy barrier to prevent the system from reaching
the S4 state.

4. The Role of Calcium

The calcium ion is essential for the function of the Mn4CaO5 cluster. It can be removed
by various methods and added back with restoration of function, and function can also be
restored to some extent by strontium (Sr2+) [28] (see also Gates et al. (2016) [29]). Based

https://creativecommons.org/licenses/by/3.0/
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on EPR signals, vanadyl ions (VO2
+) have an effect similar to that of strontium ions [30].

All the transitions of the Kok–Joliot cycle, except the S0-to-S1 transition, are inhibited in
the absence of a calcium ion [31]. Removal of the calcium ion reveals that it is not essential
for the OEC structure [32,33], although some changes in the hydrogen bonding of water
molecules take place [34]. So, what is the function of Ca2+? Nagashima et al. [35] arrived
at the conclusion that Ca2+ maintain the hydrogen bond network near the Ca2+ site and
provides of an electron transfer pathway to the manganese cluster. Yao et al. [36] have
shown, in model experiments with synthetic clusters mimicking Mn4CaO4, that gadolinium
and yttrium provide almost the same structure and electrical properties as calcium. Tsui
and Agapie [37] demonstrated, with inorganic manganese-oxido-cubane complexes, how
the redox potential is modified by various redox-inactive metals and that strontium and
calcium have very similar effects.

An interesting observation was made by Bang et al. [38]. They found that Ca2+ ions, as
well as Sr2+ ions, could cause the release of O2 from non-haem iron(III)–peroxo complexes
in the presence of an electron acceptor (e.g., 1-benzyl-1,4-dihydronicotinamide dimer). The
authors attributed this effect to the ion acting as a Lewis acid, i.e., accepting an electron pair.
It is likely that Ca2+ in the OEC functions in the same way. Other examples of Ca2+ acting as
a Lewis acid, facilitating various reactions, were reviewed by Begouin and Niggemann [39]
and Hill et al. [40].

5. The Role of Bicarbonate in PSII Function

Boyle [41] noted an “apparent necessity of minute quantities of CO2 to bring about
oxygen evolution” in a Hill reaction with p-benzoquinone as the electron acceptor. Warburg
and Krippahl [42] confirmed the effect. A number of other researchers later repeated
and extended these experiments, showing that the effect is due to bicarbonate ions rather
than carbon dioxide and that it is quite separate from the role of carbon dioxide as a
substrate for carbon assimilation. Wydrzynski and Govindjee [43] observed an effect of
bicarbonate on the fluorescence from PSII. They concluded that “the bicarbonate affects the
primary reactions in photosynthesis” and that it “is specific for Photosystem II”. Brinkert
et al. [44] found that the removal of bicarbonate shifts the midpoint redox potential of the
couple QA/QA

−• from ∼−145 mV to −70 mV. Based on EPR measurements, Vermaas
and Rutherford [45] concluded that the bicarbonate influences the conformation of the
QA

–• Fe2+ complex. Shevela et al. [46] found that when spinach thylakoids are depleted of
carbon dioxide and bicarbonate, the miss probability in the Kok cycle is higher than under
ambient conditions and that the addition of 5 mM bicarbonate to thylakoids depleted of
inorganic carbon largely restores the original miss parameter. Shevela et al. [4] found that
bicarbonate affects not only the reducing side but also the oxidizing side of PSII (Figure 6).
It is unlikely that bicarbonate is tightly bound to the oxygen-evolving complex [47–49].

One bicarbonate ion per photosystem II becomes firmly bound, i.e., the one bound to
the iron ion between QA and QB, whereas other bicarbonate ions help to shuffle protons
around [50,51].

An interesting observation is that the purple anoxygenic bacterium Rhodovulum io-
dosum is able to oxidize Mn2+ to Mn3+ in the presence of bicarbonate, although not in its
absence [52]. Rhodovulum iodosum has a type-2 photosystem. The mechanism by which
carbonate and bicarbonate facilitate water oxidation in artificial systems was reviewed
by Mizrahi and Meyerstein [53]. Bicarbonate has been directly shown to shift the mid-
point redox potential of the Mn2+/Mn3+ couple in modified reaction centers of Rhodobacter
sphaeroides mutants from 625 mV to 535 mV [54]. With pea chloroplasts, Kozlov et al. [55]
identified two Mn-bicarbonate complexes with three bicarbonate ions per complex and
midpoint redox potentials of 610 mV and 520 mV, respectively.

6. Assembly of the Oxygen-Evolving Complex

For an overview of photosystem II assembly, see [56]. Here, we shall focus on the
OEC. Manganese is imported into the OEC protein as Mn2+, and oxidation to Mn3+ is
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achieved by Yz
• generated by light-induced charge separation in the same way as in

photosynthesis [57,58]). Only one Mn ion can be imported until structural changes in the
protein have taken place. A small soluble protein in the lumen, Pbs27, aids the process
by transiently binding to PSII (see [58] for details). The quantum yield of the process
is low—much lower than the quantum yield for photosynthesis [59]—although to some
degree, it is increased by the presence of Ca2+ [60–62]. Chloride, in association with
the OEC, facilitates the oxidation of Mn2+ [63], with two chloride ions in PSII near the
OEC [6]. The low quantum yield was explained by Sato et al. [64], with back reactions
proceeding faster than forward reactions (Figure 7). The calcium ion protects the system
from photoinactivation [62].
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Figure 7. The initial stages of photoassembly of the OEC; redrawn and modified from Sato et al. [64].
The first light reaction is counteracted by a dark reaction that is much faster than incorporation of
calcium ions, a second manganese ion, and rearrangement of the protein scaffolding. This leads to an
overall low quantum yield.

Complete photoactivation of the OEC requires a secondary photon absorption [65]
(Figure 7).

7. Evolution of Oxygen Evolution

Oxygenic photosynthesis is a complicated process. How could it arise so early in the
evolution of life on Earth? Nothing is known with certainty, but various explanations have
been proposed. Sauer and Yachandra [66] point to structural similarities between the OEC
and certain minerals. Dismukes et al. [67] suggest that the first kind of oxygenic photosyn-
thesis to evolve produced molecular oxygen from bicarbonate ions rather than from water.
One theory is that the evolution of water-oxidizing photosynthesis was preceded by a form
in which mineral manganese (Mn2+) was oxidized. Chernev et al. [68] created a model
of this system by removing the Mn4CaO5 cluster from purified spinach PSII, which also
resulted in the loss of three extrinsic proteins (PsbQ, PsbP, and PsbO). When Mn2+ ions were
supplied at a low concentration, only a minimal electron transport to an added artificial
electron acceptor was observed. The results with a higher Mn2+ concentration (240 µM) are
interpreted as rapid oxidation of manganese and formation of Mn(III/IV) oxide particles,
similar to the mineral birnessite (confirmed by X-ray spectroscopy). Chernev et al. [68]
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suggest that “in the evolution of PSII, there may have been a transition from extended
Mn-oxide nanoparticles towards the Mn4CaO5 cluster of today’s PSII”. They further point
out that “a Mn oxide denoted as ranciéite is isostructural to birnessite and contains Mn and
Ca ions at approximately the same 4:1 stoichiometry as present in the Mn4CaO5 cluster
of PSII”.
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