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Abstract: Salmonellosis is a zoonosis of major relevance to global public health. Here we present
the assessment of Salmonella enterica contamination in pork and poultry meat sold at retail markets
in São Paulo, Brazil. A total of 780 meat samples (386 poultry meat and 394 pork samples) were
collected from 132 markets. From these, 57 samples (7.3%) were positive for S. enterica isolation,
including 32 (8.3%) poultry meat and 25 (6.3%) pork samples. S. enterica isolates were further
characterized for serotyping, antimicrobial resistance and genotyping by amplified fragment length
polymorphism and pulsed field gel electrophoresis. Antimicrobial resistance analysis demonstrated
two main profiles: pork isolates were more resistant to macrolides, β-lactams, tetracycline, phenicols,
and fluoroquinolones, and poultry meat isolates presented higher resistance to fluoroquinolones,
sulfonamides, tetracycline, and β-lactams. A total of 72.4% of poultry meat isolates were identified
as S. Heidelberg, while most of pork isolates were S. Typhimurium (31.7%) and S. Give (16.7%).
Genotyping resulted in most clusters consisting exclusively of pork or poultry meat, no cross-
contamination was detected, and a tendency to differentiate isolates according to their serotypes and
markets of origin. High resistance rates to critically important antimicrobials reinforce the importance
of controlling Salmonella contamination in meat production chains.

Keywords: Salmonella enterica; pork; poultry; serotype; antimicrobial resistance; PFGE

1. Introduction

Non-typhoidal salmonellosis is a major zoonosis with relevance to global public
health. According to the World Health Organization (WHO), each year, approximately 1 in
10 people become ill with foodborne infections and 33 million years of healthy life are lost.
Diarrheal diseases are the most common result of foodborne infections and approximately
550 million people fall ill each year. Salmonella infection is considered one of the four
leading global causes of diarrheal diseases [1]. However, few countries report complete
data on the population and economic impacts caused by salmonellosis [2,3].

In the United States, the Centers for Disease Control and Prevention (CDC) associates
Salmonella infection with 1.35 million cases of foodborne disease, 26,500 hospitalizations,
and 420 deaths annually [4]. Although the overall incidence has decreased in recent
years, an increase in infections caused by serotypes Infantis, Muenchen, Montevideo, and
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Braenderup was detected [5]. In Europe, salmonellosis was the second most frequent
foodborne disease, with 87,923 confirmed human cases in 2019; serovars S. Enteritidis
(50.3%), S. Typhimurium (11.9%), and monophasic S. Typhimurium (8.2%) were the most
reported among cases with known serovar [6].

In Brazil, S. enterica has been reported as one of the main pathogens associated with
foodborne disease over the last 15 years and has been associated with approximately
34.1% of the outbreaks reported between 2000 and 2017 [7]. However, the incomplete-
ness of these data due to underreporting of the occurrences of gastrointestinal conditions
without hospitalization need should be highlighted. Furthermore, the official reports in
Brazil do not provide the identification of Salmonella serovars. Nevertheless, according to
Campioni et al. [8], S. Enteritidis was the most prevalent serovar isolated from Brazilian
foodborne outbreaks from the late 1980s to early 2000s.

Although Salmonella infection has been associated with the consumption of varied
foods, animal products play a prominent role as an infection source [9,10]. Meat, especially
pork and poultry meat, has been traditionally involved in the dissemination of Salmonella
to humans and plays an important role in the epidemiology of distinct serovars [11].
However, most of the recent Brazilian studies and monitoring were performed at the
beginning of the production chain, mainly farms and slaughterhouses, focusing on carcass
contamination [12–15], but not retail meat. Therefore, further evaluation of retail meat
contamination was required considering the direct risks to consumers. The aim of this study
was to assess the Salmonella enterica contamination in pork and poultry retail meat sold in
distinct market types in São Paulo city (Brazil), including genotyping and antimicrobial
resistance profiling of the obtained isolates.

2. Materials and Methods
2.1. Sampling

A total of 17 sampling trips were performed between September 2013 to April 2016,
covering 132 markets from the 5 macro-regions of São Paulo city. These included hyper-
markets (10.6%), supermarkets (12.1%), neighborhood butchers (46.2%), and butcher stalls
within municipal markets (31.1%). The evaluated markets were also classified if they sold
exclusively poultry meat (15.9%) or pork (25.0%), or if both pork and poultry meat were han-
dled and commercialized (59.1%). A total of 780 meat samples were evaluated—394 pork
and 386 poultry meat samples—including different meat cuts: chop (97), gammon (93),
loin (101), rib (103) among pork samples, and wing (92), thigh (97), breast (98), and drum-
stick (99), among poultry meat samples.

2.2. Salmonella Isolation and Confirmation

The S. enterica isolation was performed according to Holt et al. [16]. Briefly, 25 g
of each sample were homogenized in 225 mL of sterile buffered peptone water with 4%
novobiocin and incubated at 37 ◦C for 24 h, aerobically. From this pre-enrichment broth,
1.0 mL was transferred to 9 mL of tetrathionate added with iodine solution broth (Difco,
Detroit, MI, USA) and incubated at 37 ◦C for 24 h, aerobically. One loopful of the enrich-
ment broth was plated onto Xylose Lysine Tergitol 4 agar (XLT4, Difco), CHROMagar®

Salmonella (Difco) and MacConkey agar (Difco) and incubated at 37 ◦C for 24 to 48 h,
aerobically. Two to six presumptive Salmonella colonies from each sample were selected for
further analyses.

The selected S. enterica colonies were confirmed by Matrix Associated Laser Desorption-
Ionization—Time of flight mass spectrometry–MALDI-TOF (Bruker Daltonics, Inc. Billerica,
MA, USA) and invA gene amplification. For MALDI-TOF MS identification, sample prepa-
ration and processing were performed according to Hijazin et al. [17]. A Microflex® mass
spectrometer (Bruker Daltonics, Inc. Billerica, MA, USA) was used for mass spectra acquisi-
tion in the 2–20 kDa range. The obtained spectra were loaded into MALDI BioTyper® 3.0
and compared with the manufacturer’s library; standard Bruker interpretative criteria were
applied for microbial identification. For molecular S. enterica identification, purified DNA
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was recovered using the protocol by Boom et al. [18], and the partial amplification of invA
gene was performed as previously described by Rahn et al. [19].

2.3. Serotyping

The antigenic characterization of S. enterica was obtained using the fast agglutination
technique based on the antigenic formulas for Salmonella [20].

2.4. Antimicrobial Resistance Profiling

For the evaluation of antimicrobial resistance, the broth microdilution technique was
applied, according to the CLSI VET08 [21] standards, to determine the minimum inhibitory
concentrations (MICs) using a 17 antimicrobials panel. The Staphylococcus aureus ATCC
29,213 was used as quality control strain. The obtained MIC results were categorized
as susceptible, intermediate, and resistant using the interpretative criteria specified in
CLSI performance standards VET08 [21] and M100 [22]. The multidrug resistance (re-
sistance to three or more classes of antimicrobials) rate was determined as described by
Schwarz et al. [23].

2.5. Genotyping

For single-enzyme amplified fragments length polymorphism (SE-AFLP), DNA was
recovered according to the extraction protocol by Boom et al. [18]. The AFLP was performed
as previously described by McLauchlin et al. [24], using the restriction endonuclease HindIII
(New England BioLabs Inc., Ipswich, MA, USA). The amplified products were detected
with electrophoresis at 90 V for 4 h in 2% agarose gel stained with BlueGreen® (LGC
Biotecnologia, São Paulo, Brazil) and photographed under UV transillumination system Gel
Doc XR® (Bio-Rad Laboratories, Hercules, CA, USA). The 100 pb DNA Ladder (New England
BioLabs Inc., Ipswich, MA, USA) was applied for amplified fragments determination.

The Pulsed Field Gel Electrophoresis (PFGE) culture conditions, plug preparation, and
DNA extraction were performed using Ribot et al. [25] and Pulsenet 2017 protocol. The XbaI
(New England BioLabs Inc.) restriction enzyme was applied for DNA digestion at 37 ◦C for
2 h. Electrophoresis was performed using 1% SeaKem Gold agarose (Cambrex Bio Science
Rockland, Inc., East Rutherford, NJ, USA) and a CHEF-DR III System (Bio-Rad Laboratories)
with 0.5× TBE at 14 ◦C. DNA fragments were separated in the following conditions: run
time 20 h at 6 V/cm at 120◦ fixed angle with pulse times from 2.2 to 63.8 s. Finally, gels were
stained with 1× SYBR® Safe (Invitrogen Corporation, Carlsbad, CA, USA) for 30 min and
visualized under UV transillumination system Gel Doc XR® (Bio-Rad Laboratories). Lambda
DNA-PFGE® marker (New England BioLabs Inc., Ipswich, MA, USA) and Salmonella serotype
Braenderup H9812 were applied as standard and for fragment size determination.

2.6. Statistical Analysis

The descriptive analyses were performed using SPSS 16.0 (SPSS Inc, Chicago, IL, USA).
The resistance results were transformed into binary data for identification of the respective
resistance profiles and subsequent cluster analysis. Profiles were analyzed as categorical
data in Bio Numerics 7.6 (Applied Maths, Sint-Martens-Latem, Belgium), and a dendrogram
was constructed using the different values coefficient and Ward method.

The SE-AFLP and PFGE fingerprint patterns were analyzed with BioNumerics 7.6
(Applied Maths, Sint-Martens-Latem, Belgium) to generate dendrogram using the Dice
coefficient and UPGMA (unweighted pair group method with arithmetic mean) method.
For SE-AFLP analysis, a 90% genetic similarity cut-off value was applied to analyze the
resulting clusters; for the PFGE cluster analysis, the isolates were considered in different
pulsotypes when they differed by four or more bands [26]. The respective discriminatory
indexes were calculated according to Hunter and Gaston [27].
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3. Results

From the 780 analyzed meat samples (386 poultry meat and 394 pork samples), only
57 samples (7.3%) were positive for Salmonella enterica, including 32 (32/386–8.3%) poul-
try meat samples and 25 (25/394–6.3%) pork samples (Table 1). These originated from
35 markets, of which 57.1% were classified as neighborhood butchers, 25.7% as supermar-
kets, 11.4% as municipal markets, and 5.7% as hypermarkets. Among positive markets,
82.9% sold both pork and poultry meat. However, S. enterica was only isolated simultane-
ously from both pork and poultry in samples obtained from four of the studied markets
(M85, M88, M99, and M129).

Table 1. Distribution of meat samples positive for Salmonella enterica isolation according to their origin.

City Region
Nº

Positive
Markets

Pork Poultry
Total

Chop Rib Loin Hamm Breast Thigh Drumstick Wing

Center 7/22 1/17 1/17 0/17 0/13 2/17 2/17 1/17 4/15 11/130
East 4/18 1/11 1/13 0/12 1/11 1/12 0/11 0/12 0/12 4/94

North 8/26 0/22 2/24 1/22 1/20 3/22 1/21 1/22 3/18 12/171
West 8/37 3/21 2/25 2/24 1/22 0/22 2/22 0/22 4/22 14/180
South 8/29 3/26 2/24 2/26 1/27 4/25 0/26 1/26 3/25 16/205

Total 35/132 8/97 8/103 5/101 4/93 10/98 5/97 3/99 14/92 57/780

From the 57 positive meat samples, 32 poultry meat and 25 pork samples, 58 isolates
from poultry meat, and 60 isolates from pork were further selected for serotyping, genotypic
analysis, and antimicrobial resistance profiling. The selection included one to three strains
identified as Salmonella enterica from each positive sample.

A total of 12 different serotypes were detected among studied isolates (Table 2). Only
serotype Schwarzengrund appeared in both pork and poultry meat; Heidelberg (72.4%)
was the most frequent among poultry meat isolates, while Typhimurium (31.7%) and Give
(16.7%) were more prevalent in pork. It is highlighted that only five markets (M39, M85,
M99, M113, and M129) presented more than one serotype among the tested meat samples,
of which M39 and M113 had only one positive sample each with two distinct serotypes
detected among their respective isolates (Table S1).

Table 2. Distribution of serotypes detected among studied Salmonella enterica isolates—n (%).

Serotype Pork Poultry Total

Heidelberg - 42 (72.4) 42 (35.6)
Typhimurium 19 (31.7) - 19 (16.1)

Give 10 (16.7) - 10 (8.5)
London 7 (11.7) - 7 (5.9)

Brandenburg 6 (10.0) - 6 (5.1)
Derby 6 (10.0) - 6 (5.1)

Enteritidis - 5 (8.6) 5 (4.2)
Infantis 5 (8.3) - 5 (4.2)

Schwarzengrund 3 (5.0) 2 (3.4) 5 (4.2)
Muenchen - 4 (6.9) 4 (3.4)

Panama 4 (6.7) - 4 (3.4)
Ohio - 3 (5.2) 3 (2.5)

Tennessee - 2 (3.4) 2 (1.7)

Total 60 (100) 58 (100) 118 (100)

The SE-AFLP analysis resulted in 24 clusters (G1–G24) (Figure 1). Most clusters are
exclusively pork or poultry meat, except for G4, which comprises one isolate from pork and
one from poultry meat that originated from distinct markets. There is a slight tendency to
cluster isolates according to serotypes and markets; however, genotypes G7 and G9 stand
out for clustering pork isolates from three distinct serotypes each.
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Figure 1. Dendrogram showing the relationship among the SE-AFLP genotypes of S. enterica isolates
from pork and poultry meat.

The PFGE analysis resulted in 36 pulsotypes (P1–P36) (Figure 2). Here, clusters are
exclusively made up of pork or poultry meat, and clearly differentiate isolates according
to their serotypes and markets. For both SE-AFLP and PFGE techniques, the isolates
originating from the markets positive for both pork and poultry samples, simultaneously
(M85, M88, M99, and M129), were also separated in distinct genotypes according to their
serotypes. The discriminatory indexes for SE-AFLP and PFGE were 0.89 and 0.97, respectively.
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Figure 2. Dendrogram showing the relationship among the PFGE pulsotypes of S. enterica isolates
from pork and poultry meat.

The resistance rates of pork and poultry isolates against tested antimicrobials are
presented in Table 3. There is a difference between the resistance profiles of pork and poultry
isolates. While the pork isolates present higher resistance to azithromycin (95.0%) followed
by ampicillin (51.7%), oxytetracycline (40.0%), chloramphenicol (40.0%), and nalidixic
acid (38.3%), the poultry meat isolates stand out with higher resistance to quinolones
(nalidixic acid and ciprofloxacin—82.8 and 74.1%, respectively), sulfamethoxazole (81.0%),
oxytetracycline (79.3%), and over 69% resistance to tested β-lactams. Interestingly, colistin
resistance was observed in only three poultry isolates (5.2%).
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Table 3. MIC range and resistance rates of Salmonella enterica isolates against tested antimicrobials.

Antimicrobial
Range

(µg/mL)

Pork Poultry

S
N (%)

I
N (%)

R *
N (%)

S
N (%)

I
N (%)

R *
N (%)

Ceftiofur 0.25–8 57 (95.0) - 3 (5.0) 17 (29.3) - 41 (70.7)
Amoxicillin/Clavulanate 1/0.5–32/64 39 (65.0) 20 (33.3) 1 (1.7) 17 (29.3) 1 (1.7) 40 (69.0)

Ampicillin 1–64 29 (48.3) - 31 (51.7) 17 (29.3) - 41 (70.7)
Meropenem 0.25–8 60 (100) - - 58 (100) - -
Fosfomycin 8–512 60 (100) - - 57 (98.3) - 1 (1.7)

Oxytetracycline 2–32 34 (56.7) 2 (3.3) 24 (40.0) 12 (20.7) - 46 (79.3)
Chloramphenicol 4–64 32 (53.3) 4 (6.7) 24 (40.0) 49 (84.5) 8 (13.8) 1 (1.7)

Florfenicol 0.5–8 36 (60.0) 8 (13.3) 16 (26.7) 34 (58.6) - 24 (41.4)
Nalidixic Acid 8–128 37 (61.7) - 23 (38.3) 10 (17.2) - 48 (82.8)
Ciprofloxacin 0.06–8 38 (63.3) 4 (6.7) 18 (30.0) 10 (17.2) 5 (8.6) 43 (74.1)
Marbofloxacin 0.06–8 57 (95.0) - 3 (5.0) 58 (100) - -

Gentamicin 0.5–32 50 (83.3) - 10 (16.7) 50 (86.2) 1 (1.7) 7 (12.1)
Neomycin 4–16 57 (95.0) - 3 (5.0) 54 (93.1) - 4 (6.9)

Azithromycin 4–64 3 (5.0) - 57 (95.0) 29 (50.0) - 29 (50.0)
Colistin 1–16 60 (100) - - 55 (94.8) - 3 (5.2)

Sulfamethoxazole 256–1024 39 (65.0) - 21 (35.0) 11 (19.0) - 47 (81.0)
Trimethoprim/Sulfamethoxazole 2/18–4/76 51 (85.0) - 9 (15.0) 58 (100) - -

* Gray cells highlight the antimicrobials with the highest resistance rate in poultry and pork.

Multidrug resistance was detected in 50.0% of pork isolates and 79.3% of poultry
isolates. Among S. enterica originated from pork samples, we highlight serotypes Ty-
phimurium and Schwarzengrund with 100% of multi-resistant isolates, followed by Panama
(75.0%) and London (57.1%) (Table 4). For the poultry isolates, serotypes Muenchen and es-
pecially Heidelberg stand out, with 100% multi-resistance, in which the serotype Heidelberg
corresponds to 72.4% of the isolates of poultry origin.

Table 4. Number of resistant antimicrobial classes according to serotypes detected among pork and
poultry S. enterica isolates—n (%).

Origin Serotype
Nº Resistant Antimicrobial Classes

Total
0–2 3–5 >6

Pork

Typhimurium - 11 (57.9) 8 (42.1) 19 (100)
Give 9 (90.0) 1 (10.0) - 10 (100)

London 3 (42.9) - 4 (57.1) 7 (100)
Brandenburg 6 (100) - - 6 (100)

Derby 6 (100) - - 6 (100)
Infantis 5 (100) - - 5 (100)
Panama 1 (25.0) 3 (75.0) - 4 (100)

Schwarzengrund - - 3 (100) 3 (100)

Total 30 (50.0) 15 (25.0) 15 (25.0) 60 (100)

Poultry

Heidelberg - 38 (90.5) 4 (9.5) 42 (100)
Enteritidis 5 (100) - - 5 (100)
Muenchen - 3 (75.0) 1 (25.0) 4 (100)

Ohio 3 (100) - - 3 (100)
Schwarzengrund 2 (100) - - 2 (100)

Tennessee 2 (100) - - 2 (100)

Total 12 (20.7) 41 (70.7) 5 (8.6) 58 (100)

The resistance profiles cluster analysis resulted in three clusters (M1–M3) (Figure 3).
The M1 group corresponded to 45 isolates mostly of pork origin (73.3%), from 10 distinct
serotypes, with only three multi-resistant Panama isolates. Interestingly, the three colistin
resistant isolates of poultry origin were included in M1 as they only demonstrate resistance
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to this drug. The M2 cluster was composed of 32 multidrug resistant isolates, mostly
from pork (84.4%), including all serotype Typhimurium isolates; these profiles assemble
the isolates resistant to ampicillin, oxytetracycline and azithromycin, and with variable
resistance to phenicols and quinolones. Finally, the M3 cluster comprised 41 multi-resistant
poultry isolates, of which 92.7% were from serotype Heidelberg; these were resistant to
β-lactams, oxytetracycline, quinolones and sulfamethoxazole.

Figure 3. Antimicrobial resistance profiles cluster analysis of S. enterica isolates from pork and poultry
meat. The grey scale squares (black, grey and white) correspond to resistant, intermediate and
sensitive status, respectively.
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4. Discussion

Despite the importance of salmonellosis to public health, data on S. enterica prevalence
in retail meat products are still scarce in Brazil. Most research focuses on the production
chain, especially slaughterhouses, in such a way that the risk of consumer exposure arising
from products sold in markets is not fully known. The knowledge of Salmonella prevalence
is necessary for estimating the risks of foodborne diseases related to meat consumption,
and further characterization of isolates can be useful for understanding the origin of
contamination and development of intervention strategies for risk reduction [28].

Here, we report a prevalence of 7.3% for S. enterica isolation from raw pork and
poultry meat from retail markets in Brazil. The city of São Paulo, where this study was
conducted, has a population of 12.2 million inhabitants, being the largest city in the South-
ern Hemisphere; it is considered a cosmopolitan city, home to citizens from all countries.
Ristori et al. [28] recently reported 5.8% (32/552) of S. enterica prevalence in meat products
sold at São Paulo retail, comprising mostly contaminated raw pork sausages and chicken
legs. In contrast, Perin et al. [11] detected Salmonella in 31.7% of frozen chicken cuts (wing,
breast, leg, and fried chicken) produced and commercialized in the state of Paraná, south
Brazil. Mürmann et al. [29] also described an S. enterica isolation rate of 24.4% (82/672)
in fresh pork sausages collected at retail level in 36 butcher’s shops and supermarkets in
Porto Alegre, south Brazil. Variability of Salmonella prevalence in retail meat is commonly
reported worldwide, ranging from 2.4% in Europe [30], 18.1% in Mexico [31], to over 35%
in China and Cambodia [32–34].

Most of the S. enterica positive markets in this study were characterized as neigh-
borhood butchers, which may be related to hygiene protocols and greater variability in
the origin of meats offered for sale. Nevertheless, supermarkets and hypermarkets were
also positive for S. enterica isolation (25.7% and 5.7% of positive markets, respectively)
indicating that structural size and greatness of brands are not related to the absence of
contamination. Usually, it is expected that supermarkets present a lower prevalence of
Salmonella contamination than in traditional/wet markets due to the differences in hygiene
conditions [32,35,36]. However, higher levels of S. enterica contamination in meat retailed
at supermarkets have been reported in Mexico, as well as European and Asian countries,
demanding attention to further understand this health threat [31].

Interestingly, in our study, most positive markets commercialized both pork and
poultry meat; however, in only four markets was S. enterica isolated from both pork
and poultry samples simultaneously, but interestingly, the isolates belonged to different
serotypes. This suggests the absence of cross contamination between pork and poultry meat
within markets and reinforces the possible origin of contamination from the production
chain. This may be also sustained by genotyping results, in which both SE-AFLP and PFGE
techniques resulted in most clusters exclusively of pork or poultry meat, and a tendency to
differentiate isolates according to their serotypes and markets of origin.

In this study, we identified 12 different S. enterica serotypes, with a predominance of
Heidelberg and Typhimurium in poultry meat and pork, respectively. High variability of
serotypes among pork and poultry meat products had already been described in Brazil.
Perin et al. [11] detected nine distinct serotypes among frozen chicken cuts and the majority
was S. Typhimurium and S. Heidelberg. Similarly, Ristori et al. [28] reported 14 different
serotypes in raw pork sausages and chicken legs, of which Typhimurium and Enteritidis
were the most frequent among pork and poultry meat, respectively. Interestingly, in
our study, only serotype Schwarzengrund appeared in both pork and poultry meat, and
S. Infantis was restricted to pork samples. The serotype Schwarzengrund strains isolated
from pork presented a multi-resistance profile (resistance to seven antimicrobial classes),
very diverse of poultry strains of the same serotype, which were resistant only to colistin.

As expected, the prevalence of non-S. Enteritidis isolates from poultry meat refers to
the change in the epidemiology of Salmonella in the country [37]. Serotypes Typhimurium
and Heidelberg have been prevalent not only in meat but also among the poultry and
porcine production chains [15,38,39]. These serotypes are also highlighted for presenting
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a multidrug resistant profile [11,39]; in our study, the totality of S. Typhimurium and
S. Heidelberg were characterized as multidrug resistant. Moreover, serotypes London,
Panama, Schwarzengrund, and Muenchen also presented over 50% of multidrug resistance.

Regarding the antimicrobial resistance, in addition to the difference between the re-
sistance profiles of pork and poultry isolates, the high levels of resistance to a variety of
antimicrobials demand further attention to both human and veterinary medicine. The
traditional first-line antimicrobials for Salmonella infections were ampicillin, trimethoprim-
sulfamethoxazole and chloramphenicol, and due to widespread resistance, currently, the
use of fluoroquinolones, azithromycin, and extended-spectrum cephalosporin is recom-
mended [5,40]. These are among the antimicrobials to which we observed higher resistance
rates (Table 3) which demand further attention to the public health risks. Furthermore, the
antimicrobials that we detected high resistance levels are also included in the WHO list [1]
of CIA—critically important antimicrobials (azithromycin, 3rd generation cephalosporins,
fluoroquinolones, ampicillin, and amoxicillin/clavulanate)—and HIA—highly important
antimicrobials (trimethoprim-sulfamethoxazole, chlortetracycline, and chloramphenicol).

The resistance patterns observed between pork and poultry isolates are distinct and
have a clear correlation with the selection pressure that has been carried out in recent
years in different animal intensive production systems. While in swine there is a higher
frequency of resistance to azithromycin (macrolide), ampicillin (β-lactam), and chloram-
phenicol (phenicol), which belong to classes widely used in Brazilian swine production [41],
in poultry, there is relatively high resistance to quinolones, sulfamethoxazole, oxytetracy-
cline, and β-lactams (ceftiofur, amoxicillin/clavulanate, and ampicillin), which are also
extensively applied in poultry production systems [42].

Mellor et al. [43] compared the resistance profile in 3537 S. Typhimurium isolates
isolated between 2003 and 2014 in the United Kingdom from swine, cattle, and chickens.
The authors reported that the isolates of swine origin showed greater diversity of resistance
profiles and higher multi-resistance rate when comparing with isolates of avian and bovine
origin. In the present study, multi-resistant isolates were more frequent in poultry (79.3%)
than in pork (50%). Interestingly, the Mellor et al. [43] ecological diversity analyses revealed
variations in observed resistance profiles both between host species and between produc-
tion types for chickens and pigs, similar to our results from meat isolates. The authors
suggest that several factors, in addition to antimicrobial use, may influence the variation
in Salmonella resistance profiles among host species, including host immunity, vaccination
status, biosecurity, and industry structure.

5. Conclusions

Despite investments in good practices for farming and the meat industry, Salmonella enterica
contamination remains a risk to human health. Monitoring the most important serovars
in the final product and in animal production systems is of great importance so that the
country can carry out applied control plans. Contamination was slightly higher in small
butcher shops; nevertheless, supermarkets and hypermarkets also presented positive
results and deserve attention. The observed resistance profiles and genotypes indicate that
the meat contamination originates in the production systems or slaughterhouses and do
not suggest cross contamination in the evaluated markets. High resistance rates to critically
important antimicrobials for human health reinforces the importance of controlling and
monitoring Salmonella contamination in these production chains.
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