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Abstract: Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis, which
infects more than 23% of the world’s population. With the emergence of drug-resistant TB (DR-
TB) and latent TB infection (LTBI), rapid diagnosis of DR-TB and LTBI has become a challenge
for the prevention and control of TB. Herein, we highlight these challenges and discuss emerging
clustered regularly interspaced short palindromic repeats (CRISPR)-based diagnostics in TB detection.
Currently, the clinical diagnosis of M. tuberculosis infection mainly depends on pathogenic and
molecular biological methods, including sputum smear, sputum culture, and Xpert. Although
CRISPR-based diagnostics have not been applied to the clinical diagnosis of TB, they have shown
exciting preponderances in TB diagnosis compared with traditional methods, including higher
sensitivity, less sample input, and shorter turnaround time. CRISPR-based diagnostics represent
a potential tool to address the challenges and natural weaknesses associated with traditional TB
diagnosis methods. Based on the currently available data, we suggest that future CRISPR-based TB
diagnostics should be developed in the direction of automation, modularization, diversification, and
intelligence. By combining the CRISPR platform with various systems, such as microfluidic chips,
droplet microfluidics, electrochemical techniques, and optical systems, the specificity and sensitivity
of TB diagnosis may be revolutionized.
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1. Introduction

Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb),
which infects more than 23.0% of the world’s population and has become a global health
problem [1]. It is also the second leading cause of death (only behind COVID-19) among infec-
tious diseases, with mortality nearly double that of human immunodeficiency virus/acquired
immune deficiency syndrome (HIV/AIDS) [2], with the first year-over-year increase in 2020
despite years of effort to end TB. The difficulty associated with TB diagnosis is believed
to be one of the major obstacles to successful prevention and control of the disease [3]. In
2020, 41.4% to 47.3% of cases failed to be diagnosed and reported [2]. The bacteriologi-
cal confirmation of TB is critical for correct diagnosis, guiding first-line and second-line
anti-TB drug use, as well as effective and timely treatment, whereas more than 40% of glob-
ally confirmed pulmonary TB cases were not bacteriologically confirmed each year since
2005 [2]. In the present study, the current diagnostic challenges of TB are discussed, novel
clustered regularly interspaced short palindromic repeats (CRISPR)-based diagnostics and
their applications in TB diagnosis are reviewed, as well as their potential to resolve the
diagnostic challenges.
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2. Diagnostic Challenges of TB

The fast, sensitive, and accurate diagnosis of TB and drug-resistant (e.g., rifampicin,
isoniazid, and pyrazinamide) TB (DR-TB) is crucial to reducing morbidity, mortality, and
transmission among patients. However, enormous challenges are associated with this
task. As the primary test for TB diagnosis, sputum smear microscopy cannot distinguish
Mycobacterium tuberculosis (MTB) from nontuberculosis mycobacteria, with relatively low
detection sensitivity, especially on sputum specimens with a low amount of MTB [4]. The
culture-based mycobacterial detection method is the gold standard for TB diagnosis. It
has high sensitivity, specificity, and accuracy. However, it requires professional operator
and usually takes a long time (up to 4 to 6 weeks) to obtain results, preventing rapid
treatment of patients. More than ten highly sensitive and specific nucleic acid amplification
tests (NAATs) have been introduced to date and are recommended by the World Health
Organization (WHO) for bacteriological confirmation of TB and DR-TB. Such tests have
revolutionarily improved the TB diagnostic landscape by significantly lowering the limit
of detection (LOD), enhancing sensitivity, and reducing the time needed for diagnosis
compared with traditional culture testing or sputum smear microscopy. For instance, the
GeneXpert MTB/RIF (Xpert) assay has substantially improved the diagnosis of TB and
DR-TB [2] through full automation, integration, and improved accuracy.

However, it was reported that the Xpert test has not improved global detection rates
substantially, showing limited efficacy in diagnosing extrapulmonary tuberculosis due
to its inadequate sensitivity for some bacilli clinical specimens [5]. These paucibacillary
specimens are usually from smear-negative pulmonary TB, extrapulmonary TB, pediatric
TB, and HIV-positive TB patients, resulting in acid-fast bacillus (AFB)-smear negativity
and representing one of the biggest challenges in TB diagnosis [6]. Furthermore, the high
cost of the Xpert MTB/RIF system limits its usefulness in many high-TB-burden countries,
leading to significant variation in bacteriological confirmation rates in pulmonary TB
among countries, with lower levels of confirmation in low-income countries and higher
levels in high-income countries [2]. Therefore, novel, cost-effective, and ultrasensitive
methods capable of rapid screening and diagnosis of TB are urgently needed [7].

3. CRISPR-Based Diagnostics in TB Diagnosis

The emerging CRISPR/CRISPR-associated (Cas) system is a gene-editing tool and
a next-generation pathogen detection method that can detect single-nucleotide polymor-
phisms (SNPs) with high sensitivity and specificity. Cas protein and single guided RNA
(sgRNA) form a complex of Cas/sgRNA to specifically recognize RNA (Cas13a and Cas13b)
or DNA (Cas12a and Cas14) targets (Figure 1). They activate the trans-cleavage activity of
Cas protein to degrade reporters for target detection. “SHERLOCK”, “DETECTR”, and
“Holmes” systems, as well as a few other nucleic acid detection technologies using the
CRISPR/Cas platform for pathogen detection, tumor diagnosis, and on-site detection, have
emerged [8–10]. The fifth annual roundup of tools with the potential to shake up science
published by Nature listed CRISPR-based diagnostics as one of the seven technologies
to watch in 2022 [11]. Combined with nucleic acid amplification strategies, CRISPR/Cas
platforms can rapidly, accurately, and cost-effectively detect nucleic acid at attomolar con-
centration levels, promising to address the diagnostic challenges of TB. In the present
study, we collected and reviewed related literature on the topic of diagnosis of TB using
CRISPR/Cas-based method in the PubMed database (https://pubmed.ncbi.nlm.nih.gov/
(accessed on 25 August 2022)) using searching keywords “CRISPR”, “Tuberculosis”, and
“detection”. Reviews and unrelated publications were excluded, and the remaining publi-
cations were reviewed.

https://pubmed.ncbi.nlm.nih.gov/
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Figure 1. Schematic diagram of Mycobacterium tuberculosis diagnosis based on CRISPR technol-
ogy. 
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pling LAMP with CRISPR/Cas12a, using the end-point detection of either fluorescent de-
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Figure 1. Schematic diagram of Mycobacterium tuberculosis diagnosis based on CRISPR technology.

CRISPR-based diagnostics for MTB detection have yielded superior results relative
to conventional methods (Table 1). Diagnosing clinically paucibacillary TB patients, espe-
cially those with AFB-smear negativity, is one of the biggest challenges in TB diagnosis.
Sam et al. combined loop-mediated isothermal amplification (LAMP) with CRISPR/Cas12b
detection to develop a novel MTB DNA detection platform (TB-QUICK) [12]. The LOD
of the assay reached as low as 1.3 copies/µL without cross reacting to clinically prevalent
nontuberculous mycobacteria strains. The TB-QUICK assay showed comparable sensi-
tivity in detecting AFB-positive TB patients with MTB culture and Xpert assays (100%,
100%, and 95.8%, respectively), with dramatically higher sensitivity in detecting AFB-
negative TB patients, making it more advantageous for the diagnosis of paucibacillary TB
patients. A similar study targeting the MTB complex was conducted by coupling LAMP
with CRISPR/Cas12a, using the end-point detection of either fluorescent detection or lateral
flow test [13]. The established method, with an LOD of about 10 copies/reaction and a
specificity of 100%, performed better than conventional culture, AFB smear test, and Xpert
MTB/FIR in detection of sputum samples with a low MTB complex pathogen load.

A well-known weakness of the conventional method lies in diagnosing extrapul-
monary TB [6]. Ai et al., for the first time, combined a recombinase polymerase amplifica-
tion (RPA) assay with Cas12a-based detection (CRISPR-MTB) to develop a rapid and highly
sensitive method for both pulmonary and extrapulmonary TB diagnosis [5]. The CRISPR-
MTB, with an overall improved sensitivity (79%), less required sample input (500 µL), and
shorter turnaround time (1.5 h) compared with both culture and Xpert, as well as high
specificity (98%), demonstrated considerable potential as a new diagnostic method for TB,
especially for extrapulmonary TB [7]. Another similar study targeting the IS1081 gene,
although with a higher LOD (4.48 fM or 298 copies/reaction vs. 12.5 copies/reaction),
demonstrated excellent sensitivity (99.29%) and specificity (100%) in the detection of sam-
ples of pulmonary TB [4]. However, its potential for detection of extrapulmonary MTB was
not evaluated.
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Table 1. CRISPR-based diagnostics for Mycobacterium tuberculosis (MTB) detection.

No. Detection Method Target Gene Detection Limit Sensitivity Specificity Advantage

1 RPA and CRISPR/Cas12a
(fluorescent detection) IS6110

5 copies/µL
(12.5 copies/reaction) or

50 CFU/mL
79% (91/116) 98% (62/63)

Overall higher sensitivity and shorter
detection time than both Xpert and culture

methods [7].

2 RPA and CRISPR/Cas12a
(fluorescent detection) IS1081 4.48 fmol/L (about

298 copies/reaction) 99.29% (139/140) 100% (53/53)
Specificity, sensitivity, and accuracy

comparable with the result of the
gold-standard culture method [4].

3 LAMP and CRISPR/Cas12b
(fluorescent detection) IS6110 1.3 copies/µL

(2.6 copies/reaction) 86.8% (59/68) 95.2% (20/21)

Extra-high sensitivity and specificity in TB
pulmonary samples with AFB negativity,
making it advantageous for diagnosis of

paucibacillary TB patients [12].

4
LAMP and CRISPR/Cas12a

(fluorescent detection or lateral
flow test)

IS6110 About 10 copies/reaction 79.5% (35/44)
100% (no cross reactions

to non-MTB complex
strains)

Higher detection rate than conventional
culture, AFB smear test, and Xpert MTB/FIR
in detection of sputum samples with a low

MTB complex pathogen load [13].

5

(1) PCR and CRISPR/Cas12a
(fluorescent detection);

(2) RPA and CRISPR/Cas12a
and lateral flow test (visual

detection)

IS6110
0.25 copies/µL of purified

cfDNA or 0.06 copies/µL of
serum sample

96% (27/28
HIV-negative adults);

83% (5/6 pediatric TB);
100% (13/13

HIV-positive TB
patients)

94% (16/17
HIV-negative adults);
95% (21/22 children);

85% (39/46 HIV-positive
people)

Requirement of cfDNA isolated from 200 µL
of serum, with a 2 h sample-to-answer time

and suitable for paucibacillary specimen
screening in resource-limited settings [14].

6
RPA and CRISPR/mutated

Cas12a (fluorescent or visual
detection)

Gene locus mutations in
the rpsL gene

0.05 ng MTB whole genome;
distinguishing of mutation rates

of 0.1%
100% 100%

The entire detection process can be
completed within 60 min; an alternative for

detecting streptomycin-resistant TB [15].

7 PCR, in vitro transcription, and
Cas13a (fluorescent detection)

Partial sequence of the
quinolone

resistance-determining
region in the gyrA gene

Distinguishing
Of mutations from wild-type

samples varied from 1 × 100 to
1 × 102 copies/mL

91.4% 100%

Potential for use in single-nucleotide
polymorphism detection in

quinolone-resistance gene mutations; crRNA
screening strategy useful for early drug
resistance monitoring and guidance for

clinical treatment [16].

8 Hybridization chain reaction
(HCR) and Cas9 16S rRNA 30 CFU/mL of MTB strain

H37Ra 88.9% (24/27) 95.6% (22/23)
The method was simple, rapid, and accurate,

with the potential to realize single-base
mismatch detection [17].
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Typically, detection of circulating MTB-derived cell-free DNA (cfDNA) instead of
sputum samples has the potential to mitigate underdiagnosis in individuals with extrapul-
monary TB. Sensitivity tests for cfDNA benefit diagnosis and monitoring of the treatment
effect. However, conventional PCR-based detection has performed poorly, with highly
variable diagnostic sensitivity in the detection of MTB cfDNA [14]. Additionally, the above-
mentioned TB-QUICK assay did not perform well in detecting MTB cfDNA. Recently,
Huang et al. established an ultrasensitive PCR-CRISPR-mediated assay with an LOD of
0.25 copies/µL. Its sensitivity and specificity were 96% and 94% in an HIV-negative adult
cohort, 83% and 95% in a pediatric cohort, and 100% and 85% in a people living with HIV
(PLHIV) cohort, respectively [14]. By optimizing both cfDNA extraction and amplification
procedures, the assay could sensitively detect serum MTB cfDNA in most patients with TB,
especially paucibacillary patients missed by sputum-based diagnostics. Furthermore, the
authors introduced an RPA assay and lateral flow test to achieve visual detection, which
could be applied in a portable format suitable for resource-limited settings. The findings
proved the utility of CRISPR-based diagnostics in serum MTB cfDNA analysis to provide
non-sputum-based TB diagnosis.

CRISPR-based diagnostics have also been developed for detection of mutant drug-
resistant genes or single-base mutation of MTB, such as streptomycin- and fluoroquinolone-
resistant mutations, demonstrating the potential use for SNP detection and early drug
resistance monitoring, thus guiding clinical treatment [15–17].

4. Limitations of CRISPR-Based TB Diagnostics

Because CRISPR-based diagnostics have only recently been developed (less than
5 years), potential challenges are still encountered with respect to rapid translation of labo-
ratory results into practice. Typically, CRISPR-based diagnostics require an amplification
procedure to ensure high sensitivity, making detection complicated and time-consuming
and introducing risks of amplification bias and cross contamination. Introducing one-pot
procedures or using amplification-free strategies a key for practice use in the future [18].
Additionally, the studies reviewed herein used only one target gene to detect MTB, which
might be absent in some MTB strains, resulting in false-negative results. In this respect,
multiplex detection methods targeting different genes need to be developed [14]. Moreover,
compared with the frequently used real-time fluorescent PCR, aspects of quantitative de-
tection, automation, and high-throughput use still need to be improved for CRISPR-based
TB diagnostics.

5. Prospects and Conclusions

Overall, CRISPR-based diagnostics exhibit improved diagnostic performance relative
to traditional methods, such as culture and Xpert, with higher sensitivity, lower sample
input, and shorter turnaround time [7], indicating their potential as a tool to address
diagnostic challenges and weaknesses associated with conventional methods for MTB
testing, such as extrapulmonary TB, pediatric TB, HIV-positive TB, and other paucibacillary
TB. Based on the reviewed reports, we suggest that future CRISPR-based TB diagnostics
should be developed toward automation with integrated nucleic acid extraction procedures,
high-throughput, a multiplex of drug-resistance genes, absolute quantitation, and nucleic
acid amplification-free by a combination of CRISPR platform with various systems, such
as microfluidic chips, droplet microfluidics, electrochemical techniques, optical systems,
etc. [19].

Although CRISPR-based diagnostics have not been applied for clinical diagnosis of TB,
the CRISPR-based high-throughput COVID-19 test developed by Mammoth Biosciences
has received FDA emergency use authorization, indicating broad application prospects of
CRISPR-based diagnostics for TB diagnosis.
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