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Abstract: Background/Objectives: For patients with medically refractory temporal lobe
epilepsy (TLE), surgery is an effective strategy. However, post-operative seizure recur-
rence occurs in 20–30% of patients, and it remains challenging to predict outcomes solely
based on clinical variables. Here, we ask to what extent differences in gene expression
in epileptic tissue can predict the outcome after resective epilepsy surgery. Methods: We
performed RNAseq on hippocampal tissue resected from eight patients who underwent
anterior temporal lobectomy with amygalohippocampectomy (ATL/AH), half of whom
became seizure free (SF) or non-seizure free (NSF). Results: Bioinformatic analyses revealed
1548 differentially expressed genes and statistical enrichment analyses identified a distinct
set of pathways in NSF and SF cohorts that were associated with neuroinflammation, neuro-
transmission, synaptic plasticity, and extracellular matrix (ECM) reorganization. Resected
tissue exhibiting strong pro-inflammatory processes are associated with better post-surgery
seizure outcomes than patients exhibiting cellular signaling processes related to ECM
reorganization, autoantibody production, and neural circuit formation. Conclusions: The
results suggest that post-operative targeting of both inhibitory aspects of the ECM remodel-
ing and the autoimmune/inflammatory components may be helpful in promoting repair
and preventing the recurrence of seizures.

Keywords: temporal lobe epilepsy; surgery outcome; autoantibodies; neuroinflammation;
transcriptome; temporal lobectomy

1. Introduction
Temporal lobe epilepsy (TLE) is the most prevalent and medically intractable form of

adult partial epilepsy [1]. TLE produces recurrent seizures originating from the amygdala
and hippocampus complex and parahippocampal region [2,3]. About one-third of patients
with TLE become drug resistant [4,5]. For patients with refractory seizures in spite of
therapeutic anti-seizure medications (ASMs), treatment with epilepsy surgery may offer a
potential cure. TLE surgery includes ablation or resection of epileptogenic temporal lobe
tissue, including stereotactic laser amygdalohippocampotomy (SLAH) or anterior temporal
lobectomy with amygdalohippocampectomy (ATL/AH), respectively [6]. Patients may
be rendered seizure free in about ~60% of cases with ablative surgery (i.e., SLAH) and in
approximately 80% of cases with ATL/AH [7,8].

The extent of resection, pathology type, epilepsy duration, and localization pattern
may be important determinants of post-surgical seizure control [9–13]. However, it has
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remained challenging to predict post-operative seizure freedom solely based on these
features. Other factors may extend beyond traditional clinical variables, such as those
involving cellular or molecular processes that lower seizure threshold [14]. An impor-
tant unanswered question is to what extent differences in gene expression in epileptic
hippocampal tissue can predict the outcome after resective epilepsy surgery. There is still
limited direct evidence on specific cellular or signaling pathway differences in resected
brain tissue that correlate with seizure freedom versus seizure recurrence after temporal
lobe epilepsy surgery.

Transcriptome studies have identified altered gene expression patterns in tissues
resected from patients with TLE [6,14–17]. These observations suggest that recurrences after
epilepsy surgery may be influenced partly by differences in neuroinflammatory and/or
neuronal healing/remodeling pathways. Here, we perform RNAseq on hippocampal
tissue from eight patients, four of whom remained seizure free (SF) and four of whom
experienced seizure recurrence (NSF) after surgery. Analyses of the altered genome-wide
patterns of transcript abundance reveal several commonalities as well as stark differences
between these two cohorts. Our results suggest that resected tissue exhibiting strong
pro-inflammatory processes are associated with better post-surgery seizure outcomes
than patients exhibiting cellular signaling processes related to extracellular matrix (ECM)
reorganization, autoantibody production, and neural circuit formation.

2. Materials and Methods
2.1. Patient Samples

The University of Arizona Institutional Review Board approved all research consent
and the protocol for this study. Eight patients with medically intractable complex partial
epilepsy underwent right-sided anterior temporal lobectomy with hippocampectomy
(ATL/AH), from which hippocampal tissue was obtained. ATL/AH included resection of
at least 5.5 cm of right-lateral temporal cortex. The en bloc hippocampal resection extended
posteriorly to at least the level of the cerebral peduncle. The hippocampus was preserved
for gene expression analysis in the manner described previously [18].

2.2. RNASeq and Statistical Analyses

Statistical results are conveyed as the mean ± Standard Deviation. We used a “pertur-
bation signature” approach to identify genome-wide differences in transcript abundance
between patients that were not seizure free (NSF) and those that were seizure free (SF)
after surgery. We compared RNA-sequencing findings in our non-seizure-free cohort (NSF)
with those of the seizure-free (SF) cohort to filter out common alterations due to having
epilepsy per se. RNAseq and differential expression analyses were performed as previously
described [15,19]. A stranded mRNA-Seq kit, with assessed average fragment size, was
used to construct the libraries. Rapid-Run SBS 2 x 100 bp chemistry was used to perform se-
quencing on the HiSeq2500 (Illumina, San Diego, CA, USA). Five healthy subjects provided
post mortem control human hippocampal tissue RNA-seq data [20]. Htseq-count version
0.6.1 was used to obtain gene expression counts [21]. We normalized gene expression
counts with the calcNormFactors function of the exactTest function in edgeR. During each
sequencing run, we obtained about 20 million high quality sequencing reads, with >90%
aligned with the reference genome. We evaluated all reads, producing for differential
expression analysis a total of 63,677 final transcripts. Differential expression gene (DEG)
analysis was performed on NSF versus SF groups using four biological replicates per group,
which has been shown in power analyses to be sufficient to yield a true positive rate greater
than 80% under the conditions used here [22]. Only genes that were differentially expressed
between NSF and SF at a level of ≥2.0 log2FC were included in analyses (i.e., n = 1548 DEGs).
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We identified significantly deactivated or activated biological pathways, with in-
volvement of putative upstream transcriptional regulators, with analysis of significant
differentially expressed genes (DEGs), defined by false discovery rate (FDR) ≤ 0.01 for NSF
and SF versus controls, FDR ≤ 0.05 for NSF versus SF using Ingenuity® Pathway Analysis
(IPA) (Qiagen, Hilden, Germany), and p-value ≤ 0.05. This RNAseq bioinformatic analysis
determined the most significantly enriched biological pathways based on differentially
expressed genes (DEGs). Using a set of log2-transformed counts calculated by the rlog
function in DESeq2, we conducted principal component analysis (PCA) with DESeq2’s
plotPCA function [23]. Based on the read counts of the 500 genes with greatest expression
variance, PCA plots were created.

To predict whether pathways were activated or deactivated relative to baseline, we
also included comparisons of NSF and SF samples versus a set of controls derived from
RNA-seq data of five healthy post mortem human hippocampal tissues [20]. To ensure that
our results were not overly biased by altered gene expression due solely to post mortem
processes, we reported results for pathways that were shown to be significantly altered
only in the NSF versus SF comparison (i.e., the intersection of all three comparisons).

2.3. Pathway Literature Searches and Feature Selection

To aid evaluation of IPA-identified canonical pathways, we conducted a literature
search using “Claude” AI assistant (Anthropic, San Francisco, CA, USA). We submitted the
following query: “what does activation/deactivation of ‘canonical pathway name’ have to
do with brain injury?” We identified several pathway “effects” (e.g., blood–brain barrier,
neuroinflammation) in the SF and NSF subjects. We assigned a score of 1 or 2 to each
canonical pathway effect based on ‘detrimental’ and ‘beneficial’ aspects, respectively, in
association with either deactivated or activated states. For instance, with the pathway effect
“neuroinflammation”, either a ‘1’ or ‘2’ was designated when pro- or anti-inflammatory
cytokines were produced early and/or late during the injury process, respectively. The score
of 1/2 was designated when there was a beneficial effect in one context but a detrimental
effect in another context. A given pathway was designated as “0” when the effect was not
involved in that pathway. We fundamentally assumed that samples of tissue were obtained
in chronic epileptogenic stages for the assignment of whether an effect was detrimental or
beneficial. A final list of references cited for each search was constructed and evaluated for
result verification in pathways determined to be the most relevant.

3. Results
3.1. Cohort Characteristics

The ages of the six males and two females spanned 16 to 38 years (mean = 29.0 ± 7.0).
The NSF and SF cohorts each had three males and one female, with mean ages of 29.0 ± 5.4
and 29.0 ± 9.3 years, respectively (Table 1). The etiology of seizures included drug over-
dose, stroke, and febrile seizures, with five of unspecified origin. An equal number of
patients in the NSF and SF cohorts had signs of hippocampal sclerosis and hippocam-
pal atrophy. All patients recorded seizure activity for at least 8 years prior to surgery
(mean seizure duration = 17.9 ± 11.2 years), with NSF and SF averaging 20.7 ± 7.2 and
15.8 ± 14.2 years, respectively. Pre-surgical seizure frequency data were collected for each
patient, which ranged from 0.33 to 10 seizures per month (mean = 5.3 ± 3.1), with NSF
and SF averaging 6.0 ± 2.3 and 4.6 ± 4.0 seizures/month, respectively. Patients were
taking an average of 3.8 ± 2.3 anti-seizure medications (ASMs), with NSF and SF aver-
aging 4.3 ± 2.5 and 3.3 ± 2.2 ASMs, respectively. Patients were followed clinically for
34.5 ± 27.9 months post-operatively, while SF patients were followed for a minimum of
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12 months (mean = 23.5 ± 10.2 months). There were no statistically significant differences
in these features between the NSF and SF cohorts.

Table 1. Clinical characteristics of patients with refractory temporal lobe epilepsy (TLE).

Subject # Surgery
Outcome Sex Age (yr) Duration

(yr) Etiology
Onset
Age
(yr)

Seizures/Mo H.S. #ASMs

1 NSF M 32 17 Unk 15 4 No
(HA) 8

2 NSF M 32 29 Unk 3 4 no 3

3 NSF M 21 Unk Unk Unk 8 yes 3

4 NSF F 31 16 Unk 15 8 yes 3

5 SF F 32 8 CVA 24 0.33 No
(HA) 1

6 SF M 16 10 Unk 6 4 yes 6

7 SF M 30 8 OD 22 4 yes 4

8 SF M 38 37 Feb 1 10 No
(HA) 2

Surgery Outcome: Not seizure free (NSF), seizure free (SF); sex: male (M), female (F); duration of seizures
prior to surgery (Duration); etiology of epilepsy (Etiology): stroke (CVA); drug overdose (OD*); febrile illness
(Feb); unknown (Unk); age of onset of epilepsy (Onset age); frequency of seizures per month prior to surgery
(Seizures/mo); hippocampal sclerosis (H.S.), hippocampal atrophy (HA); number of antiseizure medications
(#ASMs); years (yr). *OD = drug overdose with 3,4-methylenedioxymethamphetamine (MDMA). # = number.

3.2. Principal Component Analysis

Figure 1 shows the results of a principal component analysis that was conducted using
the 500 transcripts with the greatest variance to determine the largest source of variation in
the data for the NSF versus SF comparison. The first two principal components explain
~63% of the total variation in gene expression. Three of the four NSF subjects cluster tightly
on the upper left portion of the plot with one subject as an outlier in the upper right side.
The four SF subjects span the central portions of the plot (Figure 1A).

We then performed a similar analysis after including RNA-seq data from five “controls”
that derive from five adult autopsy samples from hippocampal tissue [20]. In this case, a
total of 65% of the variance was explained in the first two dimensions, with the five controls
positioned on the right side of the plot (Figure 1B). A similar pattern was obtained for
NSF and SF, with three of the four NSF subjects clustering in the upper left and a single
outlier at the bottom left. The four SF subjects clustered between these two points. These
results suggest that seizure freedom is one of the main determinants of variance within the
expression data.
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Figure 1. Principal component analysis (PCA). (A) The PCA based on the 500 transcripts with the
greatest variance in expression. Black-filled circles represent NSF individuals, and open circles
represent SF individuals. The first two principal components explain ~73% of the total variation
in transcript abundance. (B) The PCA including 5 post mortem control samples based on the
500 transcripts with the greatest variance in expression. Gray-filled circles represent controls. The
first two principal components explain 65% of the variance in transcript abundance.

3.3. Differential Expression Analysis

In comparing gene expression differences between NSF and SF, 1548 genes were
significantly differentially expressed (p-value ≤ 0.05, FDR ≤ 0.05), 952 with elevated tran-
script abundance in NSF (≥2-fold, range 2.0–457) and 632 with lower transcript abundance
(≥2-fold, range 2.0–98.5). To infer the number of genes that were upregulated and down-
regulated, we performed comparisons of transcript abundance in NSF versus controls and
SF versus controls. A total of 1082 transcripts were upregulated and 484 downregulated in
NSF (FDR-adjusted p-value ≤ 0.05) (Figure 2A). The SF versus control analysis yielded a
larger number of differentially expressed genes (DEGs): 1385 upregulated and 716 down-
regulated. There were 506 upregulated and 205 downregulated DEGs shared between NSF
and SF, respectively.
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3.4. Canonical Pathways Altered in NSF and SF Cohorts

We investigated the results of pathway enrichment procedures, limiting reporting to
significant results shared among comparisons of NSF vs. SF (FDR ≤ 0.05) and NSF or SF
versus controls (FDR ≤ 0.01) and z-scores with absolute values ≥ 2.0 (Figure 3). For the NSF
cohort, pathway enrichment procedures identified 37 canonical pathways, all of which were
predicted to be activated (Figure 2B). A total of 35 significantly altered canonical pathways
were identified in the SF cohort, 17 of which were predicted to be deactivated and 18 to be
activated. Shared canonical pathways between NSF and SF included two predicted to be
activated in NSF and deactivated in SF (Adrenergic Receptor Signaling and Neurexins and
Neuroligins) and seven predicted to be activated in both (S100 Family Signaling, Interleukin
17A (IL-17A) Signaling in Fibroblasts, Macrophage Alternative Activation Signaling, Class
A/1 Rhodopsin-like receptors, Interleukin-10 signaling, cell surface interactions at the
vascular wall and Inducible nitric oxide synthase (iNOS) Signaling) (Figures 2B and 3).
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Figure 3. Pathway effects in NSF and SF cohorts. (A) Bar chart showing frequency of 13 common
pathway effects representing a range of injury processes associated with 54 canonical pathways
that distinguish NSF and SF. Neuroinflammation (INF); repair (REP); synaptic plasticity (SNP);
survival (SVL); cognition (CGN); the blood–brain barrier (BBB); excitotoxicity (ETX); secondary
injury cascade (SIC); oxidative stress (OXS); axonal guidance (AXG); neurotransmission (NTM); glial
activation/fibrosis (GFS); and the extracellular matrix (ECM). (B) Mean frequency of beneficial (BEN)
and detrimental (DET) effects for NSF and SF pathways. t-test: * p = 0.05; **** p < 0.0001. (C) The ratio
of beneficial and detrimental effects associated with NSF pathways and (D) SF pathways.

The top five pathways predicted to be solely activated in NSF include Binding and Up-
take of Ligands by Scavenger Receptors, G-Protein Coupled Receptor Signaling, Potassium
Channels, cAMP response element-binding protein (CREB) Signaling in Neurons, and G
alpha (q) signaling events. For SF, the top unique activated pathways include Pathogen In-
duced Cytokine Storm Signaling, Atherosclerosis Signaling, Triggering receptor expressed
on myeloid cells-1 (TREM1) Signaling, Toll-like Receptor Signaling, and High mobility
group box 1 (HMGB1) Signaling (Figure 4). Atherosclerosis is the main cause of ischemic
stroke and cardiovascular disease and is considered an inflammatory disease—providing a
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pathway link with epileptogenesis [14,24]. The top five deactivated pathways for SF were
Glutaminergic Receptor Signaling, Synaptogenesis Signaling, Synaptic Long-Term Potenti-
ation, Dopamine–dopamine and cAMP-regulated phosphoprotein (DARPP32) Feedback in
cAMP Signaling, and Netrin Signaling.
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expressed genes (DEGs) to total number of genes in each pathway.

3.5. Hierarchical Pathway Categories

Figure 4 shows a bubble chart representing a subset of the 63 pathways (n = 36
“selected” pathways) that most strongly distinguish NSF and SF in terms of enrichment
p-value and activation score. The SF cohort is characterized by a nearly equal representation
of activated and deactivated pathways, many of which function in immune and neuronal
systems, while NSF shows a pattern dominated by activation of pathways associated
with adaptive immune, neuronal, and ECM functionality. These higher categories can be
visualized in Figure 5A, where we classify all 63 significantly enriched pathways into one
of six higher-level functional categories: immune, metabolism, development, neuronal,
signaling, and extracellular matrix (ECM). Nearly equal percentages of NSF-activated
pathways fall under immune and neuronal categories, followed by signaling and ECM
(Figure 5B). In contrast, the majority of SF deactivated pathways are in the neuronal category
(Figure 5C), and nearly all of the SF activated pathways are immune related (Figure 5D).
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(A) The percentage of deactivated NSF pathways, (B) percentage of activated NSF pathways, (C) per-
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are the number of pathways in each category relative to the total number of deactivated or activated
pathways for the NSF or SF cohorts, which are listed at the top of each bar chart. Deactivated
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3.6. Predicted Upstream Regulators

To identify potential drivers of the differential expression patterns observed within
each dataset, we used the upstream regulator function in IPA. In general, the top predicted
activated molecules had higher z-scores for the SF compared with the NSF cohort (top
five mean = 8.6 versus 6.7, respectively). Lipopolysaccharide (LPS) was the top predicted
activator for both NSF and SF (z-score = 7.8 and 10.7, respectively). However, Cyclic-AMP
response element binding protein 1 (CREB1) was the next top predicted upstream activator
for the NSF cohort (z-score = 6.9), while the immune-related molecules, Interleukin-1 beta
(IL1B) and Tumor necrosis factor (TNF), were the next top predicted activators for the SF
cohort (z-score = 8.8 and 8.2, respectively).

3.7. Pathway Effects

In Figure 3, for the 52 canonical pathways unique to NSF or SF cohorts, we conducted
literature searches for cellular processes commonly described in brain injuries and addi-
tional neurological diseases. We tallied the number of times each of the 13 resulting effects
were involved in all 52 pathways. Hallmarks of neurological disease or prominent roles in
disease pathogenesis or brain injury response were evident for many of the identified path-
way effects [25,26]. In 37 of the 52 (71.2%) pathways, ‘neuroinflammation’ was identified as
the most common pathway (i.e., the sum of INF in first column of Figure 3C,D).

This was followed by ‘cell survival/apoptosis’ (SVL, 67.3%), ‘synaptic plasticity’ (SNP,
65.4%), ‘repair/recovery’ (REP, 63.5%), ‘cognition’ (CGN, 40.4%), ‘excitotoxicity’ (ETX,
38.5%), ‘blood-brain barrier’ (BBB, 36.5%), ‘secondary injury cascade’ (SIC, 32.7%), ‘oxida-
tive stress’ (OXS, 32.7%), ‘axon guidance/neurite outgrowth’ (AXG, 28.8%), ‘neurotrans-
mission’ (NTM, 21.2%), ‘glial/fibrotic scar’ (GFS, 19.2%), and ‘extracellular matrix’ (ECM,
13.5%) (Figure 3).

NSF versus SF effect frequencies differ; five pathway effects are higher in NSF com-
pared with SF, INF (84.6% vs. 57.7%), SVL (80.8% vs. 53.8%), AXG (34.6% vs. 23.1%), GFS
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(30.8% vs. 7.7%), and ECM (26.9% vs. 0.0%), respectively, while three are more frequent in
SF, REP (76.9% vs. 50.0%), CGN (61.5% vs. 19.2%), and BBB (50.0% vs. 23.1%), respectively
(Figure 6A). The mean number of effects associated with a pathway is 2.7 ± 2.5. For the
combined cohort, the mean number of beneficial effects (2.1 ± 2.4) is lower than that for
detrimental effects (3.2 ± 2.5) (t-test p-value = 0.010) (Figure 3). This trend is more extreme
for the SF cohort, which has a much lower mean number of beneficial (0.9 ± 1.9) versus
detrimental effects (4.3 ± 2.0) (t-test p-value ≤ 1 × 10−5). The NSF cohort shows the
opposite trend with a larger mean number of beneficial effects (3.5 ± 2.2) compared with
detrimental effects (1.9 ± 2.3) (t-test p-value = 6.3 × 10−3) (Figure 3). This shift toward
increased detrimental effects in the SF cohort is clearest for SVL, CGN, OXS, and NTM
(Figure 3).
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Figure 6. Beneficial and detrimental pathway effects in NSF and SF cohorts. (A) Bar chart showing 13
common pathway effects representing a range of injury processes associated with 52 distinguishing
canonical pathways that distinguish NSF and SF. Neuroinflammation (INF); repair (REP); synaptic
plasticity (SNP); survival (SVL); cognition (CGN); blood–brain barrier (BBB); excitotoxicity (ETX);
secondary injury cascade (SIC); oxidative stress (OXS); axonal guidance (AXG); neurotransmission
(NTM); gliosis/fibrotic scar (GFS); and extracellular matrix (ECM). (B) Mean frequency of beneficial
and detrimental effects associated with higher-level-ECM-, neuronal-, and immune-related categories.
t-test: NSF ECM p = 0.156 (ns); NSF immune p = 0.903 (ns); NSF neuronal p = 0.002 (**); SF immune
p < 0.0001 (****); SF neuronal p = 0.001 (***). (C) The mean frequency of beneficial and detrimental
effects associated with NSF pathways within neuronal- and immune-related subcategories (the num-
ber of individual pathways in each subcategory is shown in parenthesis). (D) The mean frequency of
beneficial and detrimental effects associated with SF pathways within neuronal- and immune-related
subcategories (the number of individual pathways in each subcategory is shown in parenthesis);
ns = not significant.

3.8. Divergent Immune System- and Neuronal System-Related Pathway Effects

As reported above, NSF and SF cohorts differ in the activation status of immune-
and neuronal-related pathways (Figure 5). A striking difference between NSF and SF
hippocampal tissue is the over-expression of nearly three dozen immunoglobulin genes in
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NSF. Of the 40 immunoglobulin DEGs in both the NSF and SF cohorts, 34 were found to be
over-expressed in NSF (Table 2), with only 2 expressed at lower levels. The genes uniquely
upregulated in NSF include several that can form autoantibodies. The top hit, when per-
forming an overrepresentation test for these 34 DEGs in the Reactome knowledgebase, was
‘complement cascade’. Our analysis reveals distinct effects of deactivation/activation of
these pathways, whereby NSF has a mixed beneficial to detrimental profile for immune-
related pathways and a predominantly beneficial profile for neuronal-related pathways. In
contrast, SF has a detrimental profile for both immune- and neuronal-related pathway al-
terations (Figure 6B). Further subclassification of immune and neuronal functions indicates
SF pathways characterized by detrimental activation of pro-inflammatory cytokines and
inflammatory immune cells, with no evidence of adaptive immune/antibody-mediated
processes as seen in NSF (Figure 6D). NSF has several activated pathways that function
in neurotransmission and neuronal excitability with chiefly beneficial effects (Figure 6C),
while SF has several deactivated pathways that function in the formation of neural circuits
(axon guidance, neurite outgrowth), synaptic plasticity, and neurotransmission—all with
mainly detrimental effects in the context of injured brain tissue (Figure 6D).

Table 2. Differentially expressed immunoglobulin genes in NSF and SF patients 1.

Category Gene Name NSF vs. SF NSF vs. Control SF vs. Control Role in Autoantibody Function

IgH IGHV5-51 159.0 527.6 Antigen specificity, can target self
IGHV4-39 131.8 103.6 Antigen specificity, can target self

IGHG3 127.6 156.9 IgG component; autoimmunity
IGHV1-18 118.1 202.6 Antigen specificity, can target self

IGHG1 107.9 449.0 4.2 IgG component; autoimmunity
IGHV2-5 96.4 216.9 Antigen specificity, can target self
IGHV1-69 47.8 2117.3 44.6 Antigen specificity, can target self

IGHG4 38.3 206.0 IgG component; autoimmunity
IGHGP 31.1 45.7 Pseudogene, no autoantibody role

IGHV3-7 20.0 102.1 Antigen specificity, can target self
IGHM 6.6 4.7 IgMcomponent; form autoantibodies

IGHV1-46 5.5 64.5 Antigen specificity, can target self
IGHA1 8.8 IgAcomponent; form autoantibodies

IGHV1-67 46.4 Antigen specificity, can target self
IGHV3-33 32.4 Antigen specificity, can target self

IgL IGLC3 195.9 58.3 Lambda light chains, autoantibodies
IGLV2-14 139.6 52.0 Antigen specificity, can target self
IGLV1-44 96.4 65.2 Antigen specificity, can target self

IGLC2 39.4 195.9 Lambda light chains, autoantibodies
IGLV1-40 28.4 55.7 Antigen specificity, can target self
IGLV4-69 42.7 Antigen specificity, can target self

IgK IGKV1-39 443.2 Antigen specificity, can target self
IGK1-5 456.9 169.4 Antigen specificity, can target self
IGK1-9 23.7 Antigen specificity, can target self

IGKV1D-33 32.4 Antigen specificity, can target self
IGKV1D-39 17.7 269.8 Antigen specificity, can target self
IGKV3-11 65.1 13.2 Antigen specificity, can target self
IGKV3-15 12.6 Antigen specificity, can target self
IGKV3-20 251.4 570.8 Antigen specificity, can target self

IGKV3D-15 131.6 Antigen specificity, can target self
IGKV4-1 37.3 7.3 Antigen specificity, can target self

Others IGSF9B 2.5 2.8 Not directly in autoantibodies
ISLR 2.2 Not directly in autoantibodies
ISLR2 2.2 Not directly in autoantibodies

1 Numbers represent statistically significant fold-changes after false discover rate adjustment (p ≤ 0.05).
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4. Discussion
While clinical features have shown utility in predicting post-operative outcomes [11,27,28],

the process of evaluating which temporal lobe epilepsy (TLE) patients are the best surgical
candidates based solely on clinical/imaging data is complex [29]. For example, models to
predict surgical outcomes have <75% discrimination [16,28]. The incorporation of molec-
ular data to improve clinical decision-making has shown promise [17,30–32], including
recent genome-wide approaches. Hershberger et al. [16] found that the upregulation of
genes related to immune response and inflammation was associated with a higher risk of
seizure recurrence and that altered expression of genes involved in synaptic transmission
and neuronal plasticity was associated with a lower risk of seizure recurrence. Similarly,
Louis et al. [17] found that upregulation of genes related to neuroinflammation, glial cell
activation, and oxidative stress was associated with seizure recurrence and downregula-
tion of genes involved in Gamma-aminobutyric acid (GABA) ergic signaling and synaptic
plasticity was associated with seizure freedom. Focusing more on risks of late seizure recur-
rence, Jehi et al. [14] found associations related to neuronal plasticity, synaptic transmission,
and immune response. These findings underscore the known complexity of epilepsy
pathophysiology and molecular mechanisms that may contribute to post-surgical seizure
outcomes. The main unanswered question is how localized alterations of these pathways
(i.e., in the resected tissue itself) predict post-surgical outcomes (i.e., more widespread
and/or persistent effects).

Our transcriptome analyses of resected hippocampal tissue identified several cellular
signaling pathways that distinguish non-seizure-free (NSF) from seizure-free (SF) patients.
In the following sections, we attempt to infer how these alterations predict or influence post-
operative seizure freedom versus seizure recurrence. We do not favor an explanation based
solely on pre-surgical clinical factors because evaluations of our patients were performed at
a single neurosurgical center, and NSF and SF cohorts did not vary significantly in clinical
features that have been shown to be predictors of surgical outcomes [9,11,12,25] (Table 1).

4.1. Shared Pathways Indicative of Common Processes in Epileptogenesis

We used a two-prong strategy to identify molecular and cellular signaling processes
that may explain post-surgical seizure outcomes. By comparing genome-wide changes in
transcript abundance in NSF versus SF, we filtered out many common alterations that un-
derly the epileptogenic process per se. Similar rates of anti-seizure medication (ASM) usage,
epilepsy duration, and seizure frequencies help to homogenize the impact of these variables
on the genetic makeup of the tissue [14]. The drawback of using internal cohort compar-
isons is that they cannot determine whether genes are upregulated or downregulated
relative to baseline expression levels expected under physiological conditions. Therefore,
we also compared each TLE cohort with a set of autopsy controls without epilepsy [20].
The results reported in Figures 2–6 represent only those genes and pathways that were
statistically significant in both analyses.

4.2. Pathways Distinguishing NSF from SF

Deactivated and activated pathways in hippocampal tissue from the NSF cohort pri-
marily fell into four higher-level categories: extracellular matrix (ECM), immune, neuronal,
and signaling systems (Figure 5A,B). This pattern contrasts with that of the SF cohort, which
primarily exhibited the deactivation of neuronal pathways and the activation of immune
pathways (Figure 5C,D). Moreover, the ratio of beneficial to detrimental pathway effects
differed significantly for the higher-level categories shared between the NSF and SF cohorts
(Figure 6B). Neuronal system pathway effects were generally inferred to be beneficial in the
NSF and detrimental in the SF cohort (Figures 3 and 6B). While immune-related pathways
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were of mixed effect in NSF, they were exclusively associated with detrimental effects in
the SF cohort (Figure 6B). In the next section, we discuss pathways and pathway effects
that uniquely characterize the NSF and SF cohorts to identify potential factors underlying
seizure freedom or recurrence.

4.3. Increased Expression of Immunoglobulins in NSF

A striking difference between NSF and SF hippocampal tissue is the over-expression of
nearly three dozen immunoglobulin genes in NSF. Of the 40 immunoglobulin differentially
expressed genes (DEGs) in both NSF and SF cohorts, 34 were found to be over-expressed in
NSF (Table 2), with only two expressed at lower levels. The genes uniquely upregulated
in NSF include several that can form autoantibodies. The top hit when performing an
overrepresentation test for these 34 DEGs in the Reactome knowledgebase was ‘complement
cascade’. The complement system is a critical part of the immune response that enhances the
ability of antibodies and phagocytic cells to clear damaged cells and promote inflammation.
Antibodies that participate in autoimmunity can interact with the complement cascade
in several significant ways, contributing to both physiological immune function and the
pathology of autoimmune diseases. In fact, our results bear some resemblance to a recent
study that found increased inflammatory response characterized by the activation of the
complement system in drug-resistant TLE patients who experienced seizure recurrence
after hippocampectomy [26].

How might increased immunoglobulin expression, particularly in the context of au-
toimmunity and persistent inflammation, contribute to the risk of post-surgery seizure
recurrence in TLE and other neurological disorders? Autoantibodies targeting neuronal
proteins (e.g., anti-N-methyl-D-aspartic acid (NMDA) receptor; anti-Gamma-aminobutyric
acid (GABA) receptor) can have widespread effects on neural circuit function and plasticity,
contributing to the development and persistence of seizures even after surgical resection
of the epileptic focus [33]. In spinal cord injuries, B cells producing pathogenic antibodies
have been shown to impair recovery [34], and a spinal cord injury can trigger systemic
autoimmunity, characterized by chronic B lymphocyte activation and autoantibody syn-
thesis [35,36]. The high-affinity IgG receptor, Fc gamma receptor I (FcγRI), has also been
implicated in modulating neuropathic pain after a peripheral nerve injury [37], suggesting
a role for immunoglobulins in the pathogenesis of neurological disorders.

The risk of developing autoimmune epilepsy after TLE surgery may be elevated in
patients with an increased expression of immunoglobulins in the resected hippocampal
tissue [38,39]. Such increased expression may suggest the presence of pre-existing autoim-
mune activity, even if it has not yet manifested as clinical autoimmune epilepsy [40]. Thus,
it is plausible that autoimmune epilepsy could potentially be triggered by the resection
of hippocampal tissue in TLE patients after surgery and affect other brain regions [41]. In
other cases, the exposure of neuronal antigens during surgery may lead to the produc-
tion of autoantibodies that cross-react with other proteins in the brain due to molecular
mimicry [42].

4.4. The Role of Increased Activation of Chondroitin and Dermatan Synthesis in NSF

Chondroitin sulfate proteoglycans (CSPGs) are key components of the ECM in the
central nervous system (CNS). Increased activation of chondroitin and dermatan synthesis,
particularly after a CNS injury or in neurological disorders like epilepsy, can lead to the
formation of a dense, inhibitory CSPG-rich matrix [43,44]. This inhibitory matrix can
limit synaptic plasticity, axonal growth, and regeneration, thus hindering repair processes
and functional recovery [45–47]. Interestingly, the enzymatic digestion of CSPGs using
chondroitinase ABC (ChABC) has shown promise in promoting functional recovery and
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reducing pathology in spinal cord injury models [45,48]. In the context of temporal lobe
epilepsy, increased chondroitin 6-sulfation has been implicated in the formation of aberrant
neural circuits and the persistence of seizures [49]. The upregulation of CSPGs can also
contribute to the formation of a glial scar, which acts as a physical and chemical barrier to
regeneration [48,50].

4.5. What Factors Explain the Association of Increased Pro-Inflammatory Markers and
Post-Surgery Seizure Freedom?

In contrast to our NSF patients, patients in the SF cohort had increased levels of neu-
roinflammatory markers involved in innate immunity, the production of pro-inflammatory
cytokines, the regulation of inflammation, and the recruitment of immune cells to the
site of injury. The activation of these pathways is consistent with findings in other TLE
studies, especially in patients with hippocampal sclerosis (HS) [51,52]. Interestingly, cells
of adaptive immunity such as T and B cells or natural killer (NK) cells were not detected
in human epileptic tissue [52], which differentiated brain inflammation in TLE from in-
flammation in Rasmussen’s encephalitis, where cells of adaptive immunity are strongly
represented in the lesional tissue [53]. The association of activated neuroinflammatory
processes in patients with better post-surgical outcomes appears to be contrary to the
aforementioned transcriptome studies [14,16,17]. Figure 6 shows a significant presence of
detrimental inflammatory pathways in SF compared with NSF. Current surgical practices
appear to be resecting inflammatory hippocampal pathophysiology in SF patients and
“ineffectively” resecting adaptive/antibody-mediated pathophysiology in NSF patients.
Continued research is needed to establish whether the increased expression of neuroinflam-
matory markers and signaling processes in resected tissue could be an indicator of a more
localized pathology that is amenable to surgical treatment (as opposed to increased CSPGs
and immunoglobulin levels, which may have a more extensive and complex pathology
that is less likely to be resolved by surgery alone).

4.6. Implications for Pre- and Post-Surgery Surveillance

Future work is needed to determine whether these results have implications for pre-
and post-surgery surveillance such as (1) identifying patients with a higher likelihood
of post-surgery seizure freedom and (2) monitoring patients after surgery and treatment
when increased expression of CSPGs and immunoglobulins is identified in resected tissue.
Incorporating circulating inflammatory cytokine (along with CSPG and immunoglobulin
expression data, if possible) into pre-surgical evaluation protocols might help guide patient
counseling, surgical decision-making, and post-operative management strategies. Indeed,
gene expression profiles are known to differ in pre-surgical peripheral blood samples taken
from NSF and SF patients, and several candidate biomarkers have been identified [54]. For
example, BGN codes for biglycan, which is a structural component of the ECM that also
acts as a danger signal that stimulates multifunctional pro-inflammatory signaling, linking
the innate to the adaptive immune response [55]. Other genes with potential prognostic
value include several with the ECM and/or inflammation-related roles (e.g., Bridging
Integrator 3 (BIN3); Matrix Metallopeptidase 8 (MMP8); Interferon Alpha Inducible Pro-
tein 27 (IFI27); Interleukin 22 Receptor Subunit Alpha 1 (IL22RA1); Radical S-Adenosyl
Methionine Domain Containing 2 (RSAD2); Platelet Factor 4 Variant 1 (PF4V1)) as well
as with roles in synaptic plasticity and repair (e.g., Proteolipid Protein 1 (PLP1); Glial
Fibrillary Acidic Protein (GFAP); Nectin Cell Adhesion Molecule 2 (PVRL2); Cytoplas-
mic Polyadenylation Element Binding Protein 4 (CPEB4); and MAM Domain Containing
Glycosylphosphatidylinositol Anchor 1 (MDGA1)) [54].

Validating these results on a biological level may also inform researchers on patients
at risk for seizure recurrence and other neurological deficits after surgery. In addition to
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standard ASMs, some patients may benefit from immunomodulatory therapies, such as
intravenous immunoglobulin (IVIG) or plasmapheresis, which have been used to treat
autoimmune epilepsy and other neurological disorders associated with pathogenic autoan-
tibodies [41,56]. It may also be of benefit to consider continued monitoring of circulating cy-
tokines with a neuroinflammatory profile during long-term follow-up as an additional tool
that may be used as an indication of favorable outcomes after temporal lobe surgery [51].

5. Conclusions and Limitations
In summary, this study revealed a distinct set of immunological and neurological

processes in hippocampal tissue resected from patients who became seizure free or who
experienced recurrent seizures following temporal lobectomy and amygdalohippocam-
pectomy. In both the NSF and SF cohorts, there is ample evidence of alterations involving
the regulation of neuroinflammation. However, the immune response in the NSF cohort is
mainly geared to the clearance of cellular debris and potentially harmful molecules through
phagocytosis and antibody-dependent cellular cytotoxicity, while the response in the SF
cohort is aimed at the production of pro-inflammatory cytokines and chemokines, which
can exacerbate neuroinflammation and secondary damage in pathologic brain tissue. There
is a similar division in the neuronal response, with NSF pathways primarily involved in
the modulation of neuronal excitability and neurotransmission, the activation of which
may have a neuromodulatory effect. On the other hand, many neuronal pathways were
deactivated in the SF cohort, which may have the effect of impairing synaptic function,
reducing neurotransmitter release, and disrupting the formation of neural circuits. Finally,
this study identified pathways that involve chondroitin and dermatan synthesis that were
activated in the NSF cohort, which may have a more widespread inhibitory effect on
neuronal plasticity.

An important open question for future work is whether the increased activation of
these pathways and the concomitant upregulation of immunoglobulin expression can work
in concert to inhibit repair processes and contribute to the persistence of seizures after
surgery. Targeting both the inhibitory CSPG matrix and the autoimmune/inflammatory
components may be necessary to effectively promote repair and prevent the recurrence
of seizures and other neurological deficits [57]. While uncovering many pathological pro-
cesses that may be prognostic for surgery outcomes in patients with TLE, we point out two
limitations of this study, including a relatively small cohort size and the lack of suitable
control tissue. While we prioritized the NSF versus SF comparisons, we also relied on
post mortem hippocampal tissue to predict whether pathways were activated or deacti-
vated relative to the baseline at physiological conditions. It is also important to note that
future studies are needed to validate these findings at the biological level and to test the
potential role of autoimmunity in the post-surgical non-seizure-free condition. Additional
functional studies, including with animal models of temporal lobe epilepsy, are needed
to replicate and confirm the relationships between canonical pathways and beneficial and
detrimental effects in non-seizure-free and seizure-free conditions. Finally, the discovery of
biomarkers in samples that are easily accessed from patients in presurgical examinations
(e.g., peripheral blood, including leukocytes) will greatly facilitate the translation of this
study. Leukocyte gene expression has been shown to predict post-operative seizure free-
dom for a variety of genes and biological pathways involved in temporal lobe epilepsy
pathogenesis [54]. To further investigate the prognostic value of immunoglobulins for
seizure recurrence, an analysis of systemic leukocyte gene expression for immunoglobulins
(Table 2) might serve as a pre-surgical validation step for correlation with post-operative
seizure outcomes.
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