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Abstract: G protein-coupled receptors (GPCRs) comprise a large class of transmembrane 
proteins that play critical roles in both normal physiology and pathophysiology. These 
critical roles offer targets for therapeutic intervention, as exemplified by the substantial 
fraction of current pharmaceutical agents that target members of this family. Tremendous 
contributions to our understanding of GPCR structure and dynamics have come from both 
indirect and direct structural characterization techniques. Key features of GPCR 
conformations derived from both types of characterization techniques are reviewed. 
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1. Introduction 

G protein-coupled receptors (GPCRs) are a large family of integral membrane proteins involved in 
the transduction of cellular signaling. Analysis of the human genome suggested about 950 human 
GPCR sequences [1]. An alternate analysis utilizing 200 published GPCRs to seed searches of the 
human genome database identified 802 unique human GPCRs after duplicate removal [2]. These 
estimates are supported by 1,426 Swiss-Prot and TrEMBL entries representing full-length human 
GPCR sequences referenced in the GPCRdb [3]. The latter list includes redundancies due to multiple 
depositions of the same sequence, thus 800-950 is a more accurate estimate of the number of human 
GPCR sequences. These receptors play essential roles in the action of hormones, neurotransmitters, 
growth factors and the immune system. Considering the prevalence of GPCRs and their essential roles 
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in diverse biological functions, it is not surprising that approximately 25-50% of drugs act on GPCRs 
(variability stems from whether percentages are calculated on sales or drug identity) [4,5]. 

The large number of GPCR sequences has stimulated several classification efforts. The earliest 
classification system still in common use identifies six superfamilies, or clans, labeled A-F based on 
GPCRs in multiple species [6]. A more recent classification developed based on phylogenetic analysis 
of human GPCR sequences produced five families named based on key family members. These five 
families are glutamate (G), rhodopsin (R), adhesion (A), frizzled/taste2 (F) and secretin (S), referred to 
in aggregate as GRAFS [2] Several differences distinguish these systems. First, the D and E 
superfamilies of the A-F system contain no human homologs [7] instead including two classes of yeast 
pheromone receptors [8] Second, the A-F system combines the secretin and adhesion receptors of the 
GRAFS system into superfamily B [7] Despite these differences, both classification systems share 
some key similarities. In particular, both systems have large families of sequences similar to 
rhodopsin, classified as superfamily A in the A-F system or R in the GRAFS system. This is the largest 
family in both classification systems, and is characterized by several well-conserved sequence motifs 
and an agonist binding site typically located within the transmembrane domain (TM). The A-F system 
will be used throughout this review. 

GPCRs exhibit limited conservation of structural features as a superfamily, with a more extensive 
set of conserved features occurring within the classes identified either by sequence similarity or by 
phylogenetic analysis. The most conserved feature is a topology characterized by an extracellular 
N-terminus, seven membrane-spanning alpha helices, and an intracellular C-terminus. The class A 
(rhodopsin-like) GPCRs additionally share several conserved sequence motifs. The sequence motif 
(E/D)R(Y/H) occurs frequently at the intracellular end of TM3 in these receptors. The role of this 
motif in receptor conformation and activation has been extensively reviewed, and two basic 
phenotypes were observed to occur as a consequence of mutations to this motif [9] The first phenotype 
is characterized by receptors that become constitutively active upon non-conservative mutation of the 
acidic residue, but show little change in agonist binding or G protein coupling upon mutation of the 
arginine. The second phenotype shows no constitutive activation due to mutation of the acidic residue, 
but shows disrupted agonist binding upon mutation of the arginine. Thus this motif clearly plays an 
important, but incompletely conserved, functional role in the class A GPCRs. A second highly 
conserved motif in the class A GPCRs is the NPxxY motif near the intracellular end of TM7. This 
sequence motif was identified as providing flexibility that could serve as a hinge during 
conformational changes [10] The crystal structures of rhodopsin [11], the β2-aderenoceptor [12-14], 
the β1-aderenoceptor [15], and the adenosine A2a receptor [16] all demonstrate water-mediated 
interactions between this motif and the conserved aspartate residue in TM2. Mutational analysis in the 
M1 muscarinic receptor [17] and spectroscopic studies of fluorescein-bound rhodopsin [18] indicate 
that this interaction plays a role in signal transduction. While class A has been subject to more intense 
study, class C GPCR members share a long amino terminal sequence preceding the first 
transmembrane alpha helical domain. This amino terminal domain is responsible for binding ligand, 
receptor dimerization, and plays an integral role in signal transduction [19]. Numerous crystallographic 
structures have been reported for isolated and dimeric amino-terminal domains of class C GPCRs [20-22] 
(the venus-flytrap domains). Class B GPCR members also share a large extracellular domain at the 
amino terminus, which drives ligand recognition and subsequent interactions with the transmembrane 
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domain during activation. Many examples of ligand-bound extracellular domains of class B GPCRs 
have also been crystallized [23-30] Crystallographic structures of complete GPCRs, including the 
transmembrane portion, have been much more limited. 

Determination of membrane protein structures offers considerable challenges. This fact is 
particularly evident by comparison of 706 characterized membrane protein structures as of October 31, 
2010 (http://blanco.biomol.uci.edu/Membrane_Proteins_xtal.html) to 68,998 protein structures 
deposited in the Protein Data Bank as of the same date (http:www.rcsb.org). The chasm separating 
these protein classes is not due to a lack of interesting membrane proteins to characterize, but due to 
intrinsic physical, chemical and biological properties of membrane proteins that impede structural 
characterization efforts. Membrane proteins, with the exception of rhodopsin, occur at miniscule 
concentrations in their natural sources. The high concentration of rhodopsin in the rod outer segments 
of the bovine eye contributed substantially to its successful crystallization and characterization [11]. 
Protein yield is most often improved through the use of heterologous expression systems. GPCR 
heterologous expression efforts have examined E. coli, yeast, insect cells infected with baculovirus, 
mammalian cells and cell-free systems with limited success as recently reviewed [31]. Nevertheless, 
the recently reported crystallographic characterization of a rhodopsin mutant isolated after 
heterologous expression in COS cells [32] and the β2-adrenergic, β1-adrenergic, and adenosine A2a 
receptors after heterologous expression in insect cells [12,14-16,33] indicate that efforts to isolate 
GPCRs from heterologous expression systems can fuel structural characterization studies. Expression 
problems that can occur include failure of the recombinant GPCR to connect with the translocation 
machinery of the host to reach the cell surface, or when overexpression of the recombinant protein 
overwhelms the naturally expressed translocation machinery resulting in toxicity toward the host. 
GPCRs that fail to reach the cell surface are found in inclusion bodies, requiring the development of 
refolding protocols, such as that developed for the leukotriene receptor [34], which must be 
specifically optimized for each new GPCR. Even when expression problems are solved, purification 
and detergent selection offer additional challenges. The successful crystallization of the turkey beta-1 
aderenoceptor, for example, relied on the improved stability and detergent resistance offered by the 
turkey over the human receptor sequence, a property which was further enhanced before successful 
crystallization by the incorporation of six thermostabilizing mutations [15]. A recent study designed 
not to solve these problems, but to classify membrane protein sequences likely to serve as tractable 
targets for cloning, expression, and solubility as a tool for target selection in genomics efforts showed 
accuracies in the identification of true positives of >70% (tractable cloning targets), >55% (tractable 
expression targets), and >60% (tractable targets with respect to detergent solubility) [35]. Such tools 
may prove useful to identify which GPCR in a family of homologous GPCRs might prove the most 
tractable target for experimental structural studies. Alternatively, use of engineered constructs that 
eliminate highly flexible loops and provide interfaces for crystal contacts like the replacement of the 
third intracellular loop (IL3) of first the β2-adrenergic [14] and then the adenosine A2A [16] receptors 
with T4 lysozyme may allow characterization of GPCRs that are intractable to crystallization in their 
wild type form. 

The characterization of GPCR structures is further complicated, relative to other membrane 
proteins, by additional factors. The first complication unique to GPCRs is the conformational 
equilibrium involving multiple protein conformations, and the sensitivity of this equilibrium to ligands 
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and coupled proteins [13] Only rhodopsin has the advantage of a covalently bound ligand that 
stabilizes a single conformation, the inactive form, of the receptor. Crystallization of a single 
conformation of first the β2-adrenergic [12] and subsequently the β1-adrenergic [15] and adenosine 
A2A [16] receptors were promoted by the use of highly potent ligands, either inverse agonists or 
antagonists, during purification and crystallization. It remains to be seen if ligands that stabilize other 
conformations of these receptors can be utilized to characterize other protein conformations. 
Regardless, a truly detailed understanding of the structure of a single GPCR must include dynamic 
information. The second complication for GPCR structural studies is the occurrence of both 
homodimers and heterodimers based on studies utilizing both heterologous overexpression and 
endogenous expression [36]. Allosteric coupling between the protomers in such dimers has been 
clearly demonstrated [37], indicating that dimerization has structural and functional consequences.  

Given these numerous challenges inherent in the attempt to experimentally characterize the structures 
of GPCR family members, it is not surprising that a broad variety of indirect methods have been used to 
gain important structural insights. A sampling of these techniques and the resulting structural insights is 
described in the next section, followed by a section focused on the recent successes using direct 
structural studies. We end with perspectives on GPCR structures in rational drug design. 

2. Indirect Reflections of GPCR Structure 

2.1. Insights from Pharmacological Studies 

Rhodopsin is unique among all GPCRs since the ligand is covalently bound to the receptor. 
Reversible ligand binding is the norm throughout the remainder of the GPCR superfamily. As a result, 
many theories have been developed regarding activation of GPCRs other than rhodopsin. As early as 
1980, researchers have explored the question of agonist-specific conformational states of GPCRs. The 
conceptual models generated varied from simple collision to a ternary complex [38]. Lefkowitz and 
coworkers used a variety of agonists and partial agonists to test four distinct models. The models were: 
(1) two non-interconvertible sites; (2) cyclic (allosteric) model; (3) divalent receptor and (4) ternary 
complex. They argue that only a ternary complex fits the data including intrinsic activity of the receptor. 
In this model, the receptor can interact with a ligand (L) or with the G protein (G) to form LR or RG. 
Then either complex can interact with the remaining component to generate the active complex, LRG. 
This model is shown in Figure 1A. Lefkowitz et al. later modified this model to include an explicit 
isomerization of the receptor to an active state [39]. In the revised model, the receptor can interact with a 
ligand (L) or could isomerize to the active state (R*). If it has interacted with the ligand, it can then 
isomerize to the active state. If it has isomerized, it can either interact with the ligand or with the G 
protein (G). All complexes eventually resulted in an activated receptor LR*G complex. This model is 
shown in Figure 1B. Gether and Kobilka further modified the ternary complex model to redefine R. 
Their starting ensemble of conformations has no preference for agonists or antagonists. R can transition to 
at least two other states, Ro, which has a higher affinity for antagonists, and R*, which has a higher affinity 
for agonists [40] They also proposed the possibility of a series of states between R and R* that would 
account for partial agonists and sequential binding. To account for basal activity, this model does allow for 
activation of the receptor without an agonist being present. This model is summarized in Figure 1C.  
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Figure 1. Ternary Complex Models. Panel A illustrates the classic ternary complex model [38] 
The receptor (R) interacts either with the ligand (L) or the G protein (G). The activated 
complex is generated by interaction with the remaining component resulting in LRG. Panel 
B illustrates the Extended Ternary Complex model as proposed by Samama et al.[39] The 
receptor can either interact with the ligand to form LR or isomerize to form R*. R* can 
either interact with G or with L. The two possible complexes then interact with the 
remaining component to form LR*G. If R interacts with L prior to isomerization, then the 
conformation of R will result from interaction with L generating LR*. LR* then interacts 
with G to form the activated complex LR*G. Panel C illustrates the method of receptor 
activation as proposed by Gether and Kobilka [40] In this model, the receptor is in a 
neutral conformation that can interact with either agonists or inverse agonists. Agonists 
would shift the equilibrium towards the activated complex and inverse agonists would shift 
the equilibrium towards in inactive complex. Partial agonists would stabilize an 
intermediate that could then change conformation to the activated complex. This model 
still allows for activation of the receptor without any ligand accounting for basal activity.  

 

2.2. Insights from Spectroscopic Studies 

An early conceptual model of GPCR activation indicated that rigid-body movement of the 6th 
transmembrane domain (TM6) occurred. This hypothesis was founded on studies using cysteine 
mutants of bovine rhodopsin [41,42] Eight single mutants were expressed and reacted with cysteine 
specific reagents to introduce either nitroxide spin labels for electron paramagnetic resonance studies 
to investigate distance changes between labeled sites upon activation or fluorescent groups to 
investigate environmental changes at single sites upon activation. Both methods suggested movement 
of TM6 after activation. A more precise timeline for the conformational changes in rhodopsin during 
the activation process has been established using azide probes introduced genetically using non-natural 
amino acid mutagenesis [43,44] Initial small rotations or tilts in TM segments 5 and 6 as early as the 
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inactive Meta I state are consistent with the infra-red difference spectra, and are followed by more 
substantial rigid-body motions of these same segments.  

Fluorescent labeling has been used as a staple technique to determine key structural changes in 
GPCRs [45-48]. A cysteine reactive fluorescent probe was used to study the β2 aderenoceptor [46]. 
Reversible changes in fluorescence consistent with a single binding domain and the response 
correlated to activity of a series of agonists. It was also noted that antagonists affected fluorescence 
resulting in the proposal that the resting state and the inactive state were not identical. Similar 
experiments were later performed by the same group with slightly different interpretation [47,48] In 
their more recent experiments, they covalently attached the fluorophore and determined that in the 
absence of any ligand, the β2 aderenoceptor exists in one conformation but that flexibility exists in that 
structure, giving a dynamic ensemble of closely related structures. They concluded that an antagonist 
does reduce flexibility, but does not change the conformation as they had previously reported. Both 
experiments led to the conclusion that in the presence of an agonist, the response correlates to activity. 

Baneres et al. combined fluorescence emission with circular dichroism (CD) spectroscopy to 
examine the serotonin 5-HT4(a) receptor [45] These experiments provided the first direct evidence for 
involvement of the second extracellular loop of 5-HT4(a) in the binding and/or conformational changes 
induced upon binding of full, partial and inverse agonists using the C93-C184 disulfide bridge as a 
near-UV chromophore for CD studies. They investigated the conformational changes that resulted 
from treatment with an agonist, a partial agonist, an inverse agonist and a neutral antagonist on this 
mutant receptor using difference spectroscopy, in which the spectra for the isolated ligand and receptor 
were subtracted from that of a ligand-loaded receptor. An agonist, partial agonist and inverse agonist 
all showed clear differences between bound and unbound receptors, in contrast to the antagonist, 
which did not. This data was further confirmed using fluorescence of different Trp residues. The 
partial agonist had a decrease in intensity of fluorescence and the full agonist had an increase in 
intensity and the inverse agonist was similar to the unoccupied mutant receptor. A more recent study 
used reductive amination to introduce 13C-methyl groups as nuclear magnetic resonance (NMR)-active 
nuclei at lysine residues [49] NMR studies of receptors with no ligand, an inverse agonist, an agonist, 
and an antagonist indicate that spectra in the presence of antagonist match that in the absence of ligand, 
and that agonist binding induces either added mobility of K305 in extracellular loop (EL) 3, or 
breakage of an ionic interaction between K305 and D192 in EL2. Spectral differences in the presence 
of inverse agonist were consistent with a stabilizing interaction between K305 and F193 that was 
unique to the inverse agonist-bound receptor. These data provided further support for the existence of a 
spectrum of GPCR conformations, each giving differing levels of activity. 

NMR has also been applied to investigate the properties of ligands when bound to GPCR. Such 
studies have been recently reviewed [50] and have demonstrated ligand-receptor interaction sites, 
differences between bound and free ligand conformation, as well as changes in ligand ionization state 
upon GPCR binding. More recently saturation-transfer difference NMR has been applied to 
demonstrate specific ligand binding to a GPCR, and subsequent transfer-NOE (INPHARMA) experiments 
were used to investigate how two ligands overlap within the same GPCR binding pocket [51]. The atoms 
from the two ligands sharing common receptor interactions allowed discrimination between candidate 
pharmacophore models for agonist activity at GPR40, and show promise for substantial impact on 
GPCR-based drug design and discovery. 
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2.3. Insights from Mutagenesis Studies 

Site-directed mutagenesis has been extensively utilized in GPCR systems to investigate a variety of 
topics including constitutively active mutants (CAM), specific domains/motifs, ligand binding, 
receptor conformations upon binding agonists, antagonists, inverse agonists and the G-protein partner. 
The specific mutagenesis methods reviewed here are limited to Scanning Alanine Mutagenesis (SAM) 
and Scanning Cysteine Accessibility Method (SCAM).  

Scanning Alanine Mutagenesis (SAM) was developed by Cunningham and Wells to determine the 
key side chain interactions between a receptor and ligand in the human growth hormone system [52]. 
In alanine-scanning mutagenesis, a series of mutants are generated that modify individual residues 
sequentially to alanine. The mutant receptors are tested for binding affinity and activity. If the activity 
or binding is changed, the mutated amino acid is interpreted to play some role in binding or activation 
of the receptor. Expression levels are closely monitored to ensure mutant receptors are present at near 
normal levels and have been transported to the cell surface. Alanine replacement is predicted to cause 
the least disruption in the main-chain conformation (unlike glycine and proline) since the amino acid is 
truncated at the beta carbon. It is also expected that replacement by alanine will not impose drastic 
electrostatic or steric constraints on the position mutated. This method is time consuming, but 
generates information regarding a protein when very little information is known about the active site or 
overall structure. However, interpretation of mutagenesis data is complicated by the possibility that a 
gain or loss of function could be attributed to either a local interaction of the mutated residue or a 
global structural effect [53]. 

SAM has been used in numerous GPCR systems and receptor locations. This method has been used 
to examine: activation [54-56], cell surface expression [57], binding of ligands [57-61] G-protein 
interactions [62,63] and various structural features [59,62-71]. The systems studied are just as widely 
ranging including: CXCR4 [61], parathyroid hormone receptors [67], corticotrophin-releasing factor 
receptor [68], aderenoceptors [64], histamine receptor [54], muscarinic cholinergic receptor [62,71] 
serotonin receptor [65], adenosine receptors [59,69], and the lutropin receptor [72].  

SAM has been productively applied to define the roles of various domains and motifs of GPCRs in 
activation. By 1994, Moro had published two papers regarding the importance and function of the 
DRY motif in the muscarinic cholinergic receptors [62,71]. This group determined the effect of single 
point mutations in the intracellular loops that impeded G-protein binding and receptor internalization 
and sequestration. Parrish et al. also investigated the E/DRY motif, in the context of the 
Saccharomyces cerevisiae G-Protein-Coupled α-Factor Receptor, which lacks this motif. They found 
that a similar activation mechanism occurs, extending the role of the intracellular end of TM3 to 
GPCRs outside of class A [63]. They employed SAM and molecular modeling to examine the TM3 
and the second intracellular loop. Mutation of one residue that aligns with the D of the DRY motif 
resulted in a CAM. Molecular modeling supports the prediction that the residues corresponding to the 
DRY motif would be in close enough proximity to each other to cause helical movement if one was 
mutated. SAM has also been used to study the role of the extracellular loops in ligand binding and 
receptor structure. Gkountelais et al. investigated the interactions of the highly flexible loops of the 
corticotrophin releasing factor receptor with peptide ligands [68]. The role of cysteines in disulfide 
bridges on the extracellular surface of GPCRs was also defined prior to the publication of the crystal 
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structure of bovine rhodopsin, proving the value of the technique [69,73]. SAM has also been 
employed at the intracellular loops and carboxy terminus in class A [74], class B [67], and class C [66] 
GPCRs. Numerous studies have utilized SAM to identify residues involved in agonist recognition. 
Ward et al. examined seven alanine mutants in TM 6 and evaluated surface expression, binding of 
agonists and antagonists, and signaling efficacy [75]. They were able to determine residues that are 
likely to interact with agonists and antagonists and residues that are needed for receptor activation. 
Interestingly, these residues correspond to residues predicted for similar functions in other GPCRs 
based on traditional mutagenesis results [76-78]. Recent use of SAM has been to increase thermal and 
detergent stability [59,64]. In these studies, the protein was modified to increase stability of either the 
agonist or antagonist bound structures of adenosine and beta aderenoceptors. This approach will likely 
lead to major advances in structure elucidation of GPCRs. 

SCAM [79] analysis was first applied in the GPCR superfamily to the dopamine D2 receptor [80]. 
This method utilizes a combination of site-directed mutagenesis and subsequent reaction with 
sulfhydryl-specific reagents. Polar derivatives of methanethiosulfonate (MTS) are used, such as 
positively charged MTS ethylammonium (MTSEA), MTS ethyltrimethylammonium (MTSET) and 
negatively charged MTS ethylsulfonate (MTSES). SCAM requires wild type response after treatment 
of either the parent receptor or a cysteine-free mutant with sulfhydryl-specific reagents. Mutant 
receptors with single additional cysteine residues are expressed and ligand binding is determined with 
and without MTS derivative treatment. Normal binding in the absence of an MTS derivative indicates 
the receptor structure is unaffected by the mutation. If the residue that was replaced faces a solvent 
accessible area then the sulfhydryl-specific reagent will react with the S-H of the cysteine (Scheme 1). 
If the reagent has reacted with a cysteine in the binding crevice, it should decrease binding. If binding 
is unaffected, then interpretation must be done with caution. The cysteine is either not accessible to the 
solvent, or the mutation site is distant from the binding site. The technique has been used in numerous 
GPCR systems as reviewed by Javitch [81]. The method provides interesting insights into 
conformational differences between active and inactive GPCR conformations when applied to pairs of 
wild type (WT) receptors and their CAM. The difference between cysteine accessibility in WT and 
CAM backgrounds reflects the conformational change that occurs upon receptor activation. One 
interesting observation from SCAM studies in WT, partially, and completely activated CAM 
backgrounds in both the α1B-adrenergic [82] and µ-opioid [83] receptors is that sensitivity of ligand 
binding to MTS derivative treatment for cysteine mutations at certain sites (3.36 [82] and 7.38 [83]) 
paralleled the degree of constitutive activation. Additionally, the degree of conformational change 
upon activation as a function of TM helical segment can be inferred from a series of publications from 
the Leduc and Guillemette groups that systematically compared SCAM in WT and CAM backgrounds 
for the angiotensin II type 1 receptor [84-89]. These studies in aggregate show few differences in 
cysteine accessibility in WT and CAM backgrounds when cysteine mutants appeared in TM1 [85], 
TM4 [85], and TM5 [86] in contrast to very substantial differences when cysteine mutants were placed 
in TM2 [87], TM3 [89], TM6 [88], and TM7 [84]. On a smaller scale, TM6 was also highlighted as 
showing conformational differences between WT and three different CAM of the β2-aderenoceptor, as 
ligand binding to the WT receptor was insensitive to MTS derivative treatment, but all three CAM 
required mutation of the endogenous cysteine at position 285 (6.47) to serine in order to show similar 
insensitivity [90-92]. 
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Scheme 1. SCAM reaction. The sulfur of the amino acid sidechain is able to react with the 
sulfhydryl-specific reagent creating a disulfide bond when exposed to aqueous solvent. If 
this reaction takes place in the binding domain, the binding affinity of the ligand should 
decrease. Changes in the amount of reagent that reacts between inactive and active states 
can indicate the movement of a helical domain. 
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While crystal structures of GPCRs are becoming more prevalent, the use of mutagenesis methods 
such as SAM and SCAM will continue since these techniques can be applied at lower cost and faster 
pace to a larger cross-section of GPCR family members, and are additionally able to examine dynamic 
processes. These techniques allow examination of activation, helical movements upon binding a 
variety of ligands, specific amino acid interactions and how those micro environments change over time. 

3. Direct Reflections of GPCR Structure 

3.1. Crystallographic Structures 

The first crystallographic structure of a class A GPCR, rhodopsin, was reported in 2000 (PDB ID 
1F88) [93]. Seven additional years were required before the first crystal structures were reported by 
two different research groups of a GPCR activated by a noncovalently-bound ligand, the β2-
aderenoceptor (PDB ID 2R4R, 2R4S, 2RH1) [12,14,33,94]. Solution of these structures relied on two 
techniques to produce a homogeneous population of receptors with sufficient interactions to produce 
diffraction-quality crystals. First, both have an inverse agonist, carazolol, bound to stabilize the protein 
in a single conformation. Second, intracellular loop three was either replaced with T4 lysozyme [14] or 
bound to a monoclonal antibody [95] to reduce its flexibility. The former strategy has also been 
applied characterize the crystallographic structure of another GPCR, the adenosine A2a receptor [16]. 
The transferability of this strategy suggests that additional GPCR structures will be reported with 
smaller time lags than that between the report of the first rhodopsin structure and the β2-aderenoceptor 
structures. A third strategy has recently emerged, in which thermostabilization of the turkey β1-
aderenoceptor [64] allowed its successful characterization by x-ray crystallography [15]. Although 
only four different full-length examples of GPCR family members have been published to date, a 
number of interesting comparisons can be made from the reported structures. First, rhodopsin has been 
characterized in multiple photostates (Table 1) as well as in the presence and absence of 11-cis-retinal. 
These structures allow comparisons of different crystallographic forms of a single protein. Second, 
four different GPCR family members have been characterized, allowing analysis of the similarities and 
differences among them. 
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3.1.1. Conformations of a single protein 

Rhodopsin has long been an object of research due to its availability, high concentration in natural 
sources, and central role in the biologically important process of visual signal transduction. The first 
atomic-resolution crystallographic structure of rhodopsin was reported in 2000, leading to numerous 
additional structures as shown in Table 1. These structures include several examples of the ground 
state, dark-adapted form with the covalently bound inverse agonist, 11-cis retinal. Also included in this 
list are several photoactivated forms in which the original 11-cis retinal has photoisomerized to the 
agonist, all-trans retinal.  

Table 1. Crystal structures of rhodopsin available in the protein databank [96]. 

PDB ID Year 
Resolution 
(Å) 

Ligand 
Reported 
Photostatea 

1F88 [93] 2000 2.80 11-cis retinal  
1HZX [97] 2001 2.8 11-cis retinal   
1GZM [98] 2002 2.65 11-cis retinal  
1L9H [99] 2002 2.60 11-cis retinal   
1U19 [100] 2004 2.2 11-cis retinal  
2G87 [101] 2006 2.60 strained all-trans retinal  Bathorhodopsin 
2HPY [102] 2006 2.80 all-trans retinal Lumirhodopsin 
2I35 [103] 2006 3.80 11-cis retinal  
2I36 [103] 2006 4.10 11-cis retinal (unresolved)  
2I37 [103] 2006 4.15 all-trans retinal (unresolved) Photoactivated 
2J4Yb [32] 2006 3.40 11-cis retinal (not modeled)   
2PED [104] 2007 2.95 9-cis-retinal  

3C9L [105] 2008 2.65 
11-cis retinal  
(reinterpretation of 1gzm) 

 

3C9Mb [105] 2008 3.40 
11-cis retinal  
(reinterpretation of 2j4y) 

 

3CAP [106] 2008 2.90 ligand-free opsin   

3DQB [107] 2008 3.20 
ligand-free opsin complexed with Gα c-
terminal peptide 

 

2Z73c [108] 2008 2.50 11-cis retinal  
2ZIYc 
[20,29,109] 

2008 3.70 11-cis retinal 
 

a Dark-adapted forms were characterized unless otherwise noted; 
b Thermally stable mutant; 
c Squid rhodopsin, unmarked entries are structures derived from bovine rhodopsin. 

None of the crystallized photoactivated forms provides a high-resolution structure for 
metarhodopsin II, the final deprotonated active state. However, structures of two earlier 
photointermediates, bathorhodopsin and lumirhodopsin, provide concrete confirmation of the timeline 
of structural changes in the retinal chromophore, many details of which had been initially proposed 
based on spectroscopic studies. Figure 2 shows that the structural differences between the retinal 
chromophore in the ground state (dark grey) and in bathorhodopsin (red) include isomerization of the 
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Table 2. Amino acids conserved at both the primary and tertiary (mainchain RMSD < 2 Å) 
structure levels among the transmembrane segments of rhodopsin (PDB ID 1f88) [93], the 
β2- (PDB ID 2RH1) [110], and β1-adrenoceptors(PDB ID 2VT4) [15] and the adenosine 
A2a receptor (PDB ID 3EML) [16]. 

TM1 TM2 TM3 TM4 TM5 TM6 TM7 
N1.50 
L1.52 

N2.40 
L2.46 
A2.47 
A2.49 
D2.50 

C3.25 
L3.43 
A3.47 
R3.50 
Y3.51

A4.42 
W4.50 
P4.60 

P5.50 
L5.51

I6.39 
F6.44 
C6.47 
W6.48 
L6.49 
P6.50 

N7.49 
P7.50 
I7.52  
Y7.53 

A second structural feature that can be investigated with these GPCR crystal structures, is the 
degree to which similar amino acids can play the same structural roles in different sequences. In this 
analysis we compare the interactions in which at least one partner is found in the set of amino acids 
conserved both at the primary and tertiary structure levels. Figure 4 shows these interactions both with 
(left) and without (right) several rhodopsin/opsin crystal structures. These structures demonstrate that 
even the most diverse sampling of currently available GPCR crystal structures share a common core of 
interactions involving conserved residues. Elimination of the rhodopsin/opsin structures substantially 
expands this set, reflecting the unique features of rhodopsin such as its covalent interaction with retinal 
and substantially lower sequence identity to the remaining crystallized GPCR structures. Five of six 
interactions highlighted in the left panel involve only one absolutely conserved amino acid sidechain, 
providing direct structural evidence in favor of the common expectation that conservative substitutions 
often produce negligible structural changes. Table 3 shows the interacting sites displayed in the left 
panel of Figure 4. 

Figure 4. Locations of conserved contacts among class A GPCR crystal structures. Left 
Panel: Conserved contacts among dark-adapted rhodopsin (1f88 [93], green trace), ligand-
free opsin (3cap [106], magenta trace), opsin with Gα peptide (3dqb [107], orange trace), β2-
adrenoceptor(2rh1 [110], red trace), β1-adrenoceptor(2vt4 [15], blue trace) and adenosine 
A2a receptor (3eml [16], yellow trace) crystal structures. Right Panel: conserved contacts 
among the β2-adrenoceptor(2rh1 [110], red trace), β1-adrenoceptor(2vt4 [15], blue trace) 
and adenosine A2a receptor (3eml [16], yellow trace) crystal structures. 
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Table 3. Common contacts exhibited by residues conserved at both the primary and 
tertiary structure levels. 

Conserved 
position 

Interaction 
partner 

Exposure 

W4.50 S/N 2.45 Surface-exposed 
W4.50 I/V 4.46 Surface-exposed 
L5.51 F/V 5.47 Buried 
F6.44 I/L 3.40 Buried 
F6.44 W6.48 Buried 
I7.52 I/M 6.40 Buried 

These comparisons indicate that the most reliable features of any comparative model of class A 
GPCR developed using these templates will be the intracellular ends of the transmembrane segments, a 
finding also reported by Mobarec, et al. [112] Unfortunately, this suggests that use of such comparative 
models to understand the binding of both natural signaling molecules and candidate therapeutics will be 
challenged by the greater differences in the vicinity of the binding pockets at the extracellular ends of the 
transmembrane segments. Thus additional methods that focus on identifying structural differences 
between the extracellular regions of different GPCR sequences have substantial value. 

3.2. Fragment Methods 

The combination of experimental and computational structural methods perhaps provides the best 
balance between accuracy and speed for the construction of sufficiently accurate models of GPCR 
structures for many applications. NMR spectroscopy, as recently reviewed, has been used extensively 
to characterize structural characteristics of GPCR segments as well as ligand interactions and dynamic 
properties [50]. The earliest study on conformational properties of GPCR segments focused on CD 
studies of TM, loop and terminal segments of the Saccharomyces cerevisiae Ste2p receptor [113]. 
Comparison of water, trifluoroethanol (TFE), dimyristoyl phosphatidylcholine (DPC) liposomes and 
sodium dodecyl sulfate (SDS) micelles demonstrated that synthetic peptide segments from different 
environments within the receptor required different solution environments to exhibit ordered 
structures. NMR was then applied to study the structure of individual domains of rhodopsin [114-120]. 
These studies provided important early insights into the structures of the aqueous-exposed loops of 
rhodopsin prior to the availability of an experimental structure. In many cases, the NMR data proved 
insufficient to define a single conformation. This is in part due to the likely flexibility of the loops 
within the context of the full-length receptor, as well as due to the lack of a well-folded transmembrane 
domain to provide a conformational restraint. NMR-based structural characterization of peptide 
segments from the β-adrenoceptor [121], parathyroid hormone receptor [122], angiotensin II AT1A 
receptor [123], neurokinin-1 receptor [124,125], thromboxane A2 receptor [126-128], V1A vasopressin 
receptor [129], corticotrophin releasing factor receptor 2β [130], Ste2p [131,132], the muscarinic 
acetylcholine M2 receptor [133], the fourth sphingosine 1-phosphate receptor, S1P4 [134], and the 
CCR5 receptor [135] then followed. Unique features of these subsequent studies include the use of 
conformational restraints such as an octamethylene linker between the peptide termini [122], disulfide 
linkages between the termini [126,127,132], or between helical loop extensions [134], use of bacterial 
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expression systems to produce isotopically-labelled peptides to simplify chemical shift 
assignments [130,133,134], inclusion of coiled-coil motifs at the termini to promote self-association of 
the loop termini [134] and use of saturation transfer NMR to investigate interactions with binding 
partners [135]. Any critical scientist would naturally question the relevance of these segment 
conformations to the conformation of the same sequence in the context of a full-length receptor. 
Multiple types of validation studies have been used to address this question. One testament to 
relevance is the ability of intracellular segments from several GPCRs to inhibit the effect of receptor 
activation on downstream signaling events such as phosphodiesterase (PDE) or adenylyl cyclase 
activity [114,115,117,121]. The third cytoplasmic loop of the parathyroid hormone receptor has been 
shown to activate G proteins [122]. Fluorescence intensity changes on antagonist treatment [126,127] 
as well as chemical shift perturbation in response to specific agonists or agonist 
headgroups [125,130,134] have been used to show that extracellular segments are capable of specific 
ligand recognition. Table 4 summarizes segment characterization studies and the experiments utilized to 
validate the structures obtained as representative of the corresponding segment in the full-length GPCR. 

Table 4. NMR structural studies on GPCR segments, organized by parent receptor. 

Receptor Segment Validation Findings Solvent 
Rhodopsin [115] IL3 Inhibits transducin 

activation 
30% unstructured 
Helix-loop-helix motif 

water 

Rhodopsin[114] C-terminus Inhibits transducin 
activation 

β-sheet, exposure of serine 
residues consistent with 
phosphorylation sites 

water 

Rhodopsin[116] C-terminal 
loop, C-
terminus 

 Helical c-terminal loop phosphate 
buffer, pH 
5.9 

Rhodopsin[136,137] C-terminus, 
7-phospho-C-
terminus 

arrestin-bound, 
induces arrestin 
conformational 
changes similar to 
rhodopsin 

Only phosphorylated segment 
becomes ordered upon 
interaction with β –arrestin, 
forming compact helix blocking 
transducin binding 

phosphate 
buffer, pH 
6.5 

Rhodopsin [117] IL1, IL2 IL2 inhibits 
transducin activation 

Both form similar β-turns phosphate 
buffer, pH 
5.9 

Rhodopsin [118] Cytoplasmic 
face 

 Individual peptide segments 
make intermolecular contacts in 
solution 

phosphate 
buffer, pH 
5.9 

Rhodopsin [120] 6th TM  Proline has little impact on 
helicity 

DMSO 

Rhodopsin [138] 7th TM  Two structural families observed 
with helix-break-helix 
architecture 

DMSO 

Rhodopsin [139] EL1, EL2, 
EL3 

 Central turns in each loop DMSO 
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Table 4. Cont. 

CB1 [140] IL3 Binds to Gαi1  Helical structure when bound to 
Gαi1, mutant with reduced Gαi1 
coupling adopts turn 

acetate 
buffer, pH 
6.0 

CB1[141] C-terminal 
loop 

Inhibits adenylyl 
cyclase activity 

Extended in water, 310 helix in 
presence of SDS micelles 

water 
SDS 

β-aderenoceptor 
[121] 

C-terminal 
loop 

Inhibited adenylyl 
cyclase activity 

Amphipathic α-helix, no 
structural effect of different 
solvents 

TFE, 
micelles, 
vesicles 

α2A-
aderenoceptor 
[142] 

IL2  Extended helix with bend 
induced by DRY to IRY 
mutation 

micelles 

Parathyroid 
hormone receptor 
[122] 

IL3  Linear and cyclic both 
unstructured in water, shorter 
flexible segment in cyclic than 
linear peptide in SDS 

water 
 
SDS 

Parathyroid 
hormone receptor 
[143] 

N-terminal 
fragment 

 Amphipathic α-helices separated 
by flexible region lead into TM1 
through a 90 degree turn 

micelles 

Angiotensin II 
AT1A [123] 

IL3 N-terminal IL3 
fragment activates 
purified G proteins 

Conformational variability of 
overlapping region in two 
fragments suggests proline 
‘switch’ 

30% TFE 

Neurokinin-1 
receptor [124] 

EL2 Structure consistent 
with photoaffinity 
labeling 

Helices at termini and center, 
unstructured between 

water, pH 5 

Neurokinin-1 
receptor [125] 

N-terminus 
EL3 

Chemical shift 
perturbation of EL3 
in response to 
agonist 

EL3 structure has non-
associating helical termini which 
can be induced to fit TM 
template 

DPC micelles 

V1A Vasopressin 
Receptor [129] 

IL2 Uncompetitive 
inhibition of agonist 
binding 

Structure of linear and cyclic 
comparable to IL2 of rhodopsin 
crystallographic structure, cyclic 
peptide exhibits more stable 
termini  

50% TFE 

Thromboxane A2 
[126] 

EL2 antagonist-induced 
change in 
fluorescence 
intensity  

Terminal disulfide required for 
function, Two β-turns 

phosphate 
buffer, pH 6 

Thromboxane A2 
[127] 

EL3 antagonist-induced 
change in 
fluorescence 
intensity 

Terminal disulfide required for 
function 
β-turn 

phosphate 
buffer, pH 
5.5 

Thromboxane A2 
[128] 

EL1  β-turn 
External binding site for 
preliminary antagonist 
association suggested 

phosphate 
buffer, pH 6 
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Table 4. Cont. 

CRF 2β [130] N-terminus Chemical shift 
perturbation by 
peptide hormones 

Short consensus repeat fold 
identified 

BisTris (HCl) 
buffer, pH 
7.4 

Ste2p [132] IL1  N-terminal helix 
Even cyclic form highly flexible 

DMSO 

S1P4 [134] EL1 Chemical shift 
perturbation specific 
to agonist headgroup 

Disulfide cross-link coupled 
with coiled-coil provided 
receptor-like conformational 
restraint 
Ordered 310 helix followed by 
more flexible sequence  

20% TFE 

α-factor [144] 6th TM  Proline shows little impact on 
helicity 

oriented lipid 
bilayer 
(solid) 

M3 muscarinic 
[145] 

IL3  Type IV and Type I turn at 
residues responsible for 
basolateral sorting 

phosphate 
buffer, pH 
6.4 

Cholecystokinin A 
[146] 

EL3 Intermolecular NOE 
with 
cholecystokinin-8 
consistent with 
mutants 

Central amphipathic helix found 
at zwitterionic micelle surface 
Ligand binding contacts at end 
of TM6 

DPC micelles 

Cholecystokinin A 
[147] 

N-terminus Intermolecular NOE 
with 
cholecystokinin-8 
consistent with 
mutants 

N-terminal helix followed by 
disulfide crosslinked β-sheet 

DPC micelles 

Cholecystokinin B 
[148] 

EL3 Intermolecular NOE 
with 
cholecystokinin-8 
consistent with 
mutants 

Central amphipathic helix found 
at zwitterionic micelle surface 
Ligand binding contacts at end 
of TM7 

DPC micelles 

Several of the GPCR segments characterized using NMR have been deposited in the Protein Data 
Bank [94]. A list of the publicly available GPCR segment structures is provided in Table 5. Several 
comparisons are of particular interest either due to significant similarities or significant differences. 
The structures obtained for the cytoplasmic loop between the end of TM7 and the myristoylation site 
of the β-adrenoceptor and the CB1 cannabinoid receptor are both helical, and exhibit a root mean 
square deviation (RMSD) between backbone atoms of 1.6 angstroms (Figure 5A). These structures 
additionally place hydrophobic amino acids in common locations in the amphipathic helix, and 
compare well to the eighth helix observed in the rhodopsin crystal structures [11]. This similarity 
between cytoplasmic helical segments from two different GPCR and the full length rhodopsin structure 
suggests that any GPCR with an appropriately amphipathic sequence following the end of TM7 is 
likely to exhibit a similar structure. Another segment that shows excellent structural consistency when 
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characterized in isolation versus within a full-length receptor is TM6 (Figure 5B). The sixth TM 
segment of the alpha factor receptor from S. cerevisiae [144] characterized in oriented lipid bilayers by 
solid-state NMR superposes upon the corresponding segments of the rhodopsin crystal structure [11] 
and the β2-aderenoceptor crystal structure [12] with a 1.2 Å RMSD. Notably all three structures show 
that the conserved proline residue from TM6 does not disrupt the helical structure, as also reported 
based on solution-phase characterization of an isolated TM6 sequence from rhodopsin in DMSO [120]. 
In contrast, comparison of the two characterized first extracellular loop (EL1) structures highlights 
substantial structural differences (Figure 5C). Figure 5C compares the rhodopsin [139] and S1P4 [134] 
EL1 NMR segment structures to the corresponding segment from the rhodopsin crystal structure [11]. 
The superposition demonstrates that only the carboxy terminal end of the rhodopsin EL1 segment 
displayed a compact structure that compared well to the full-length receptor. In contrast, the S1P4 EL1 
segment overlapped best on the full-length rhodopsin structure at the amino-terminal end, and showed 
a distance between the segment ends quite similar to full-length rhodopsin structure.  

Figure 5. Comparisons between structures solved as GPCR fragments. Colors used are 
coded by GPCR and method; red (β2 fragment, 1DEP [121]), green (CB1 fragment 
2B0Y [141]), orange (alpha factor receptor fragment from S. cerevisiae, 1PJD [144]), blue 
(β2-aderenoceptor crystal structure, 2RH1 [110]), cyan (rhodopsin crystallographic 
structure, 1F88 [93]), blue-green (rhodopsin fragment, 1EDS [139]), purple (S1P4 
engineered fragment, 2DCO [149]), yellow (α2A-adrenoceptor fragment, 1HLL [142]), 
gold (DRY to IRY mutant α2A-adrenoceptor fragment, 1HOD [142]). A. Comparison of 
cytoplasmic loop (helix 8) structures. Hydrophobic amino acids are shown and colored to 
match the backbone. B. Comparison of TM6 structures. The conserved TM6 proline 
residue is shown as a stick model in all three structures. C. Comparison of EL1 structures. 
Superposition of segment structures onto 1F88 was based on best-matched structural 
segments involving the amino-terminal helix of 2DCO and the carboxy-terminal helix of 
1EDS. D. Comparison of IL2 structures. 

 

Differences between these structures stem from a substantial number of differences both in the 
design of the peptide segment characterized, as well as the composition of the solutions in which they 
were characterized. The S1P4 EL1 segment utilized sequences producing an antiparallel coiled-coil on 
either side of the EL1 sequence as well as a disulfide bond near the center of the coiled-coil sequences 
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to provide a structural constraint analogous to the full-length receptor. In contrast, the rhodopsin EL1 
segment was completely unrestrained. The S1P4 EL1 segment was also characterized in a solvent 
system that promoted secondary structure formation, 20% trifluoroethanol. In contrast, the isolated 
EL1 segment of rhodopsin was characterized in DMSO due to aggregation in aqueous solution. Further 
studies on additional EL1 segments will be required in order to determine the true structural variability 
of this segment in the GPCR family. A striking difference is evident by comparison of the second 
intracellular loop (IL2) of the α2A aderenoceptor [142] and the β2-aderenoceptor crystal structure [12] 
(Figure 6D). The sequences have more than 40% identical amino acids, suggesting that their structures 
should share common features. The isolated segment, however, fails to form a loop, although the 10 
amino acids at the amino terminal end of the α2A adrenoceptor IL2 segment superpose on the 
corresponding residues of the β2-aderenoceptor crystal structure with a 0.5 Å RMSD. Notably, a 
mutation of the conserved DRY motif in the α2A adrenoceptor segment to IRY produces a more 
substantial bend, improving the conformational resemblance between the isolated segment and the 
closely related full-length receptor. The apparent environmental dependence of the segment 
conformation may reflect a role in providing the flexibility needed to allow multiple conformational 
states of the receptor. 

Figure 5 demonstrates that care must be taken when deriving insights about GPCR conformations 
from characterization of isolated segments. Segments with extensive short-range interactions, such as 
helices, seem to fold independently and can be characterized in isolation. Loop structures should be 
approached with carefully engineered designs that include disulfide constraints, interacting helical 
ends, or micelle-embedded ends, in order to derive useful structural insights. It is particularly 
important to provide functional validation of the segments characterized before drawing significant 
structural conclusions. 

3.3. Modeling 

Since GPCRs are extremely difficult to crystallize, researchers have utilized computational 
techniques to address difficult questions regarding ligand-protein interactions [150], structural requirements 
for binding [151], helical packing interactions [152], and movement of helical domains [153]. These 
studies have utilized either ab initio [153-157] or homology modeling of the protein.  

Homology modeling studies have used a variety of template structures including 
bacteriorhodopsin [158,159], the theoretical model developed by Pogozheva 
(PDB ID: 1BOJ [152]) [160-162], the bovine rhodopsin crystal structure published in 2000 (PDB ID 
1F88 [93]) [61,163-169], the rhodopsin structure published in 2004 (PDB ID 1GZM [98]) [170], and 
the crystal structure of the β2 aderenoceptor (PDB ID: 2R4R [33]) [171-173]. Recently groups have 
begun to address the issue of quaternary structure within the lipid bilayer [61] or homo or hetero-
dimers [174,175].  

Early homology modeling studies used the crystal structure of bacteriorhodopsin as a template for 
various GPCRs [176-180]. Bacteriorhodopsin was crystallized at 3.50 Å resolution in 1995 (PDB ID 
2BRD) [181]. The resolution was later refined to 2.3 Å (PDB ID 1BRX) [182] and finally to 1.55 Å. 
(PDB ID 1C3W) [183] These structures were widely used to develop computational models of GPCRs 
due to the lack of a more closely related structure. The lack of overall homology, the differences in 
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helical packing and arrangement as well as the difference in function soon called this practice into 
question [184,185].  

A new era of computational modeling of GPCRs began with the publication of an experimentally-
guided theoretical model for bovine rhodopsin. This model was developed using an iterative 
refinement process and allowed modeling of GPCRs using a GPCR template. Pogozheva, Lomize and 
Mosberg published a structure for the transmembrane domains of bovine rhodopsin (PDB ID 1BOJ) [93] 
developed with an all-trans-retinal ligand using distance geometry and hydrogen bonding calculations. 
Pogozheva et al. used the electron microscopy coordinates of the helices of frog and bovine 
rhodoposin to determine the spatial arrangement of the seven TMD helices. The sequences of 410 
GPCR sequences were aligned from four subfamilies; peptide, protein, opsins and cationic amine 
receptors. The initial model was generated using limited mutagenesis and cross-linking data for 
distance constraints. An iterative distance geometry refinement was employed to refine this structure 
and to develop a series of interhelical side-chain hydrogen bonds resulting in an average model for 
each TMD. They assumed that hydrophilic conserved residues were likely to be inward facing and 
would be important for proper protein folding and interhelical hydrogen bonding as originally 
proposed by Zhang and Weinstein [186]. These residues defined a lipid inaccessible core and this 
helped to delineate the rotation and insertion depth in the membrane. Lowest energy helical-coil 
calculations were used to determine the seven helical domains. Each predicted helix was slightly 
longer than those predicted by Baldwin [187]. In addition, the rhodopsin model lacked the helix 8 
predicted by Mosberg et al. (residues 311-320) [168], observed by Yeagle et al. using NMR studies of 
peptide fragments [188], and confirmed in the crystal structure by Palczewski [93] Even considering 
these differences, this model was a significant improvement over other atomic level models in that the 
helices were no longer rigid and side chains were used in hydrogen bonding rather than randomly 
assigned positions.  

Now that crystallographic structures of rhodopsin have been solved at atomic resolution, it is 
interesting to compare such a carefully-developed and refined model to the experimental structure. 
Figure 6 shows a comparison of the interhelical hydrogen bonding networks in this structure versus the 
same sidechains in a rhodopsin crystal structure.  

Both structures display hydrogen bonds from N2.45(78) to S3.42(127) and from Y7.53(306) to 
N2.40(73). The hydrogen bond from N1.50(55) to D2.50(83) is evident in the theoretical model, but 
not in the rhodopsin crystal structure due to reversed oxygen/nitrogen positions in the terminal amide. 
This hydrogen bond is evident, however, in recent opsin crystal structures, so this hydrogen bond 
prediction is quite likely to be correct. Two hydrogen bonds predicted by the theoretical model are not 
reflected in the crystal structure, from N7.57(310) to N2.40(73) and from Y1.38(43) to T7.44(297). 
Overall, the predicted hydrogen bonding networks show impressive correlation with the crystal 
structure given the low-resolution experimental information that provided only helical tilts and packing 
geometries. Many groups have used this model as a template to develop homology models of various 
GPCRs [152,161,163,189-195] The validity that these systems have had in predicting agonist receptor 
interactions suggests that this template is still suitable to develop models for the active state of class A 
GPCR. 
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Figure 6. Comparison of interhelical hydrogen bonding networks in the 1997 Pogozheva 
1BOJ model (grey carbons) with corresponding residues in the 2.2 Å rhodopsin crystal 
structure (cyan carbons). Segments of TM domains I, II, II and VII are shown as yellow 
ribbons. 

 

The publication of GPCR crystal structures has dramatically altered homology modeling of this 
receptor class. Since this receptor class contains more than 800 members and sequence identity varies 
greatly, it is clear that one template will not suffice for modeling the entire class. To increase the 
difficulty of this endeavor, GPCRs likely exist in multiple conformations. The majority of crystal 
structures likely represent the inactive state since they are crystallized with bound antagonists or 
inverse agonists. Based on these challenges, investigators have attempted to determine the applicability 
of various template structures. The publication of the first bovine rhodopsin crystal structure (PDB ID 
1F88) [93] generated great excitement in the modeling community as it constituted the first atomic-
resolution experimentally-characterized template for modeling GPCR family members. This structure 
was used in a unique experiment by Bissantz [196] that used a homology model for virtual screening. 
Three models for different families (dopamine D3, muscarine M1 and vasopressin V1a) of GPCRs 
were developed and then used in virtual screening that contained both agonists and antagonists for the 
three receptors. The hits contained only antagonists and the authors concluded that the 1F88 structure 
was suitable for developing models useful in virtual screening with the limitation of identifying 
antagonists only. The recent publication of the human beta 2 aderenoceptor crystal structures has 
identified both similarities and differences with the rhodopsin structure. The differences suggest potential 
problems using rhodopsin as the basis for developing models of other GPCR. To evaluate strengths and 
weaknesses of rhodopsin-based homology models, Costanzi compared rhodopsin-based homology 
models of the human beta 2 aderenoceptor to the crystal structure of the β2 receptor (2rh1) [170]. He 
concludes that models approximate interactions but cannot detect all receptor-ligand interactions. He 
also suggests that models can be improved by incorporating published biochemical information such as 
known disulfide bonds in the modeling process. The results from this study were also improved by 
changing the conformation of Phe290 from trans to gauche+. This conformation was only detected in 
the crystal structure and would therefore be difficult to incorporate into new models. However, such a 
conformational difference might be captured by the typical current practice of docking against multiple 
protein structure generated (for example) by molecular dynamics simulations. 
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The value of GPCRs as targets for therapeutic intervention in a vast array of human diseases has 
stimulated a variety of specialized ab initio modeling algorithms focused in part, or solely, on 
generating models of GPCRs suitable to guide drug discovery programs. Other methods applied 
generally to membrane proteins have been reviewed elsewhere [197]. One of the earliest specialized 
GPCR modeling methods is the MembStruk algorithm, which requires an alignment of the GPCR 
family to guide selection of transmembrane alpha-helical segments, and an electron density map used 
to orient the helical segments [156,157]. This algorithm uses helical hydrophobicity moments to 
initially orient the helical segments in the bundle, but performs an iterative coarse-grained rotational 
search followed by rigid body molecular dynamics of the lipid-solvated helical bundle to optimize the 
helical packing. A later report details the PREDICT algorithm, which requires only an estimate of the 
transmembrane helical segments, without requiring well-defined ends [198]. This method uniquely 
performs the rotational orientation of the helical segments in two dimensions, and includes not only a 
hydrophobicity moment, but also consideration of the common occurance of aromatic residues at the 
helical interface to form interhelical π-stacking interactions. GPCR models constructed using the 
PREDICT algorithm were utilized as in silico screening tools and successfully identified novel hits 
with binding affinities less than 60 nM for 5-HT1a, NK1, 5-HT4, and dopamine D2 receptors [199]. 
The only target tested for which a nanomolar hit was not identified was the CCR3 receptor, which 
produced a novel best hit with a 12 μM Ki [199]. Two other methods were reported in 2006, extension 
of the Rosetta methodology to helical membrane proteins [200], and TASSER [201]. The extension of 
Rosetta to membrane proteins is the first true de novo protein folding algorithm applied to GPCRs, 
although TM region prediction is utilized as input to define the approximate membrane normal vector. 
This extension required significant alteration to the potential energy function, including definition of 
environmentally-specific residue interactions with both the environment and other residues. The 
Rosetta method was tested on 12 crystallographically-characterized partial and full-length membrane 
proteins, including rhodopsin [200]. While the method was in some cases able to predict 100% of the 
residues within 4 Ǻ of the native structure, this was not the case for rhodopsin, in which only 33% of 
the residues were predicted within 4 Ǻ of the native structure. Its applicability to develop GPCR 
models for in silico screening applications has not been tested. The TASSER method, in contrast, 
combines threading for fragment template identification, with a fragment assembly algorithm. 
TASSER is best characterized therefore as a hybrid threading/homology modeling algorithm. TASSER 
was applied to model the 907 putative human GPCRs [201]. The resulting models are freely available 
for noncommercial purposes (http://www.bioinformatics.buffalo.edu/GPCR). TASSER was validated 
using 38 crystallographically-characterized membrane proteins, with exclusion of templates sharing 
more than 30% sequence identity with the target. TASSER showed inconsistent results, with root mean 
square deviation (RMSD) versus native structures ranging from 1.86 Ǻ to 40.35 Ǻ. The three best-ranked 
models of the β2-aderenoceptor compare reasonably well to the recently reported crystal structures, with 
all-atom RMSD values of 4.6 Å, although the helix in the second extracellular loop was not accurately 
predicted. This variability is likely due to the relatively inconsistent number of proteins in a given fold 
family that have been characterized, and suggests that TASSER models should be used only when they 
can be validated by comparison to available experimental data. However, of the ab initio model 
construction methods, TASSER and Rosetta are the only methods that can be applied through web 
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interfaces (see http://cssb.biology.gatech.edu/skolnick/webservice/tasserlite/index.html and 
http://robetta. bakerlab.org/, respectively).  

Other algorithms focus on subsets of the GPCR structure prediction problem. Algorithms designed 
to identify the residues located in transmembrane segments provide excellent results as thoroughly 
reviewed by Punta et al. [197] As noted previously, several of the methods utilized to construct GPCR 
models rely on prior identification of the residues comprising each transmembrane segment. A second 
subset of the GPCR structure prediction problem is prediction of whether residues in a transmembrane 
segment are exposed to lipid, or buried against other transmembrane segments. Park et al. recently 
reported application of a support vector classifier to the burial prediction problem [202]. The classifier 
provided 78% accuracy on a benchmark data set composed of 3,138 residues from transmembrane 
regions of 43 protein chains. Finally, a method has recently been reported that uses knowledge-based 
pair potentials to predict helix pair geometries [203]. Distance-dependent pair potentials were derived 
using a training set of 71 crystallographic membrane protein structures and applied to the problem of 
rigidly docking transmembrane helix pairs from 58 test proteins [203]. A critical finding from this 
study is that the native arrangement was found in the largest cluster, rather than at the lowest energy, 
suggesting the means by which the optimal configuration can be identified in cases where the native 
structure is unknown. 

Two characteristic problems associated with characterizing GPCR conformations are not 
specifically addressed by the previous methods. The first neglected problem is that of loop modeling. 
The second is the issue of oligomerization. Both of these issues have been recently reviewed [197,204]. 
Several studies on loop modeling have appeared after these reviews. Gao and Stern compared the 
ability of several energy functions to select the native loop conformations from a set of decoy 
conformations generated by molecular dynamics simulations [205]. They concluded that current 
energy functions, while not perfect, are applicable to the modeling loops of membrane proteins. Thus 
the key problem that must be solved is how to efficiently sample the conformations of each loop, with 
consideration of both the constraints produced by the transmembrane region, as well as the constraints 
produced by the remaining two loops and the terminal segment on the same face of the membrane. The 
loop modeling methods reported to date all sample conformations of only a single loop, and therefore 
must be applied in iterative cycles if loop-loop interaction effects are to be considered. 

The current decade has been marked by the appearance of modeling studies that more accurately 
reflect the surrounding environment of GPCRs, in particular, the surrounding lipid membrane. Trent et al. 
published a model of the CXCR4 receptor in a lipid bilayer in 2003 [61]. They developed their model 
using the 2,000 crystal structure of bovine rhodopsin as the template. The model was inserted into a 
lipid bilayer with water molecules present. A sequence of constrained dynamics lead to the totally 
unrestrained molecular dynamics of all atoms for 4 ns. An inverse agonist (T140) and a weak partial 
agonist (AMD3100) were each separately docked in the resulting receptor-water-lipid complex. This 
system rationalized the mutagenesis data for both the partial agonist and the inverse agonist. One 
question plaguing the field of GPCR modeling is oligomerization. In 2006, Weinstein et al. published 
two studies on the effects of rhodopsin dimerization in a lipid bilayer. In the first study, a monomer 
and a dimer were inserted into the lipid bilayer to determine stability. The α carbon backbone had 
fewer fluctuations in the dimer versus the monomer. In the second study, they presented a unique 
strategy for development of an active conformation of rhodopsin using distance constraints. A series of 
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six active models were developed with constraints from various experimental studies using 
experimental data from a variety of GPCR systems. Dimer models were created by placing helices 4 
and 5 in contact symmetrically. Each dimer was inserted into the lipid bilayer for a one nanosecond 
molecular dynamics simulation. This study observed non-symmetric movement of several helixes 
resulting from interaction of the dimer interface. Specifically they predict that 2.93/5.61 and 6.26/7.59 
should have increased cross-linking These predictions would be interesting candidates for 
experimental testing of the dimer importance in modeling. Much longer simulations than previously 
reported (microseconds) were utilized to explore the ligand entry pathway of the endogenous lipid 
agonist of the second cannabinoid receptor (CB2), 2-arachidonylglycerol [206]. The agonist was 
observed to initiate entry into the GPCR by lateral diffusion from the outer leaflet of the surrounding 
lipid bilayer, with concomitant conformational changes in the intracellular loops consistent with the 
changes expected upon receptor activation. 

4. Perspectives on GPCR Structures in Drug Design 

Both indirect and direct GPCR structure characterization studies have had tremendous impact on the 
optimization and discovery of GPCR-targeted ligands. Further characterization of GPCR structure and 
dynamics will continue to be of broad interest due to the involvement of these receptors in such a vast 
array of physiological and pathophysiological pathways. The currently available GPCR crystal 
structures demonstrate that the largest structural differences are localized to the extracellular ends of 
the transmembrane segments and the loops connecting these transmembrane segments. The most 
valuable direct structural characterization studies will therefore focus on elucidating the structures of a 
diverse subset from the GPCR superfamily defined based on both length and sequence divergence in 
the extracellular loops. A second key value area will be the elucidation of structures for agonist-bound 
active GPCR conformations. Such structures will provide critical insight and guidance for the rational 
discovery and optimization of agonists, analogous to the most successful current applications of 
rational GPCR ligand discovery to date which have produced antagonists. 
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