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Abstract: Permeation models are often used to determine diffusion properties of a drug through
a membrane as it is released from a delivery system. In order to circumvent problematic in vivo
studies, diffusion studies can be performed in vitro, using (semi-)synthetic membranes. In this
study salicylic acid permeation was studied, employing a nitrocellulose membrane. Both saturated
and unsaturated salicylic acid solutions were studied. Additionally, the transport of salicylic acid
through the nitrocellulose membrane was simulated by computational modelling. Experimental
observations could be explained by the transport mechanism that was revealed by dissipative
particle dynamics (DPD) simulations. The DPD model was developed with the aid of atomistic scale
molecular dynamics (AA-MD). The choice of a suitable model membrane can therefore, be predicted
by AA-MD and DPD simulations. Additionally, the difference in the magnitude of release from
saturated and unsaturated salicylic acid and solutions could also be observed with DPD. Moreover,
computational studies can reveal hidden variables such as membrane-permeant interaction that
cannot be measured experimentally. A recommendation is made for the development of future model
permeation membranes is to incorporate computational modelling to aid the choice of model.

Keywords: skin; nitrocellulose membrane; interaction parameter; diffusion; atomistic molecular
dynamics; dissipative particle dynamics

1. Introduction

Transdermal delivery provides several advantages over other routes of drug administration. These
include the avoidance of regular oral dosing, circumvention of first-bypass hepatic metabolism and
improvement of patient compliance [1]. Diffusion studies performed in skin models aid quality control
and formulation of transdermal delivery systems [2,3]. However, the selected membrane models are
often only useful under certain conditions [4] and could affect the evaluation of bioequivalence of
generic transdermal products [5–7].

Transdermal diffusion studies are often conducted by in vitro studies, utilizing excised skin
tissue or (semi-)synthetic membranes. In vitro tests are preferred to in vivo test methods that often
demonstrate large intra- and intersubject variation, high cost and ethical issues. The Franz cell in vitro
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method [8] is well known and overcame some in vivo difficulties. In vitro models are however, also
problematic since some models cannot account for drug metabolism in the skin. Additionally, large
intra- and intersubject variability of donor skin occurs and tissue preparation can damage the skin
membrane [9]. Although skin models are the most realistic model to evaluate transdermal studies, it is
difficult to find donors and skin is therefore, a scarce resource. Furthermore, ethical approval is often a
difficult hurdle to cross.

In vitro test membranes, synthetic and semisynthetic, are skin-mimicking in vitro model
membranes and include silicone-based membranes [7,10–12], cellulose-based membranes [2,3,13,14]
and chitosan membranes [15,16]. Silicone membranes -limit the diffusion rate while porous cellulose
and polysulfone membranes were proven to be non-limiting [17]. A number of polysaccharides
were previously modelled by AA-MD. Ion conduction through chitosan membranes was reported for
which twelve chitosan monomers were coupled to form a chain model [18]. The chain structure of
cellulose II was investigated for which sixty glucose residues were used as a model cellulose chain [19].
Deformation of regenerated cellulose fibres was investigated by AA-MD, however the chain length
was not reported [20] and a trinitrocellulose model was used to study the material as a propellant.
Trinitrocellulose was used as the closest model reference to our study [21].

Numerous factors [22] should be considered before drawing conclusions based on in vitro models.
Diffusion through biological membranes is a universally recognized thermodynamic process [22–24]
and greatly affects drug permeation through membranes [25,26]. Finite [27] (typical dosage) or
infinite [26] (saturated) dosing can determine the thermodynamic driving force for diffusion [28,29].
Thus, the observation of steady-state conditions in the transport process from which flux is determined
is affected by saturation. Model membranes should also have a predictable interaction, or lack thereof,
with the drug since it could modify compartment partitioning [30]. To mimic skin barrier properties,
silicone-type membranes are preferred [31].

Several types of modelling have been applied to explain drug transport. Mathematical modelling
has been used to determine diffusion and permeation parameters from experimental data [32–34].
Mathematical models aim to improve predictability of drug release, permeation and penetration of
drugs, optimize formulation and release and estimate toxicology [32]. Structural changes in skin
components that occur during diffusion have been modelled for phospholipid and ceramide layer in
the stratum corneum [35] and solvent-solute-membrane interactions [36–38].

Few studies modelled large scale biological membrane transport via dissipative particle dynamics
(DPD) simulations regarding drug delivery. DPD is a computational method of coarse-graining. This
means that individual atom properties are transferred to representative particle or coarse-grained bead
which have the properties of a number of atoms. DPD allows for a significant lowering of the degrees
of freedom in a computation system and facilitates longer simulations of more expansive systems,
whilst still accurately reflecting atomistic simulations. The properties that coarse-grained beads
assume are typically derived via AA-MD simulations. Effectively, AA-MD information is mapped
onto collective, coarse-grained DPD particles [39–41]. Nanoparticle transport through cell membranes
has been modelled [42], interaction and penetration of charged dendrimers through lipid bilayers were
modelled [43] and lipid membranes have been modelled [44]. Pharmaceutical DPD modelling aided
designing of polymeric nanomicelles [45], studied the microstructures of pH-responsive amorphous
solid dispersions [46] and studied quercetin release from solid dispersions [47]. A number of molecular
dynamics studies were also reported that simulated apply to skin simulation. Prediction of the
permeation of drugs through the skin was modelled by molecular dynamics [48]. The permeation of
water through a lipid bilayer, that was representative of the stratum corneum, was also successfully
modelled by AA-MD [49]. The permeation of various molecules through the skin lipid bilayer was
also recently reported [50].

Here, it is shown that the finite dose approach may produce flux results that is difficult to explain
if the possible effect of the membrane on drug transport is not considered. Salicylic acid is one
the most commonly employed drugs in topical delivery systems. It provides a simple model for
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experimental transport studies and also for computational studies. It is a highly water-soluble drug
and its pH-pKa-dependent state of ionization makes it an interesting substance to confirm or exclude
interactions with model membranes which might in turn also demonstrate different states of ionization.
In this study, experimental investigation of the transport of salicylic acid through a commonly used
model membrane, nitrocellulose, is presented. It is subsequently shown that a computational approach
can be used to simulate the experimental findings. Computational modelling is suggested as means of
revealing drug transport through a model membrane. Computational simulation is suggested as a tool
to aid selection of membrane models. The experimental and DPD model results confirmed each other.

2. Results

2.1. Experimental Results

2.1.1. Solubility and Release Studies

The solubility, swelling degree and degree of ionization of salicylic acid at different pH values are
summarized in Table 1.

Table 1. Saturated solubility of salicylic acid in the aqueous phases at different pH values. In all cases
n = 3 and the standard deviation is indicated by ±.

pH Solubility (mg/mL) Ionized Salicylic Acid (%)

2.00 15.3 ± 0.9 9.9
3.00 23.0 ± 1.3 51.7
4.00 30.6 ± 1.7 91.5
5.00 >34.9 ± 3.2 99.1

It was observed that an increase in solubility of salicylic acid occurred with an increase in pH
that confirmed experimental observations [51]. The increase in solubility with increasing pH could be
explained by a rise in the degree of ionization of salicylic acid (as indicated in Table 1) since the pKa of
salicylic acid is ~2.97.

The cumulative release of salicylic acid per surface area was plotted against the square root of
time, Equation (1), which is the simplified Hiquchi model [52]:

ft = KHt1/2 (1)

where ft is the cumulative amount of salicylic acid released per surface area, KH is the Higuchi
dissolution constant, that is, release rate and t1/2 represents the square root of time. KH was calculated
from the linear part (t1h–t12h) of the curve. KH and corresponding regression coefficients as well as the
cumulative amount of released salicylic acid in 12 h are presented in Table 2.

Table 2. Average values ± standard deviation (n = 4) of kH, cumulative release in 12 h, % swelling and
pH values of the donor phase in nitrocellulose membrane test models.

pH kH (µg/cm2/h1/2) R2 % Swelling Cumulative Release
at 12 h (µg/cm2)

Donor
pH t0

Donor pH
t12h

Unsaturated solutions

2.00 237.0 ± 18 0.99 68.0 ± 3.5 180.7 ± 7.5 2.1 2.3
3.00 246.4 ± 33 0.99 71.0 ± 8.6 171.3 ± 7.4 3.0 2.9
4.00 197.5 ± 8.3 0.99 60.6 ± 1.6 234.3 ± 38 4.0 3.9
5.00 207.9 ± 22 0.99 63.1 ± 7.1 195.7 ± 8.4 5.0 4.9

Saturated solutions

2.00 6343.3 ± 658 1.0 >140.4 ± 13 189.0 ± 4.0 2.1 2.6
3.00 6410.3 ± 359 1.0 >96.4 ± 5.0 201.2 ± 12 3.0 3.1
4.00 48,587.3 ± 2240 1.0 >569.9 ± 22 199.1 ± 8.5 4.1 3.6
5.00 89,877.5 ± 3233 0.99 >919.3 ± 25 221.1 ± 3.5 5.1 4.2
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As seen in Figure 1 and the regression coefficients in Table 2, the amount of salicylic acid released
per surface area showed a linear relationship with the square root of time (R2 ≥ 0.99) for all the
drug-saturated or unsaturated buffer solutions.
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Unsaturated solutions did not show statistically significant differences (p > 0.05) in the release rate
or cumulative amount of salicylic acid released over 12 h between the different pH values although
the degree of swelling was high for saturated and unsaturated solutions at different pH levels, there
was no clear relationship with the cumulative release in different buffer solutions. The cumulative
release remained consistent for the unsaturated solutions despite differences in the degree of swelling.
Furthermore, the pH of the donor solutions at all pH values remained stable over the 12 h release
study for both saturated and unsaturated solutions. The insignificant difference in the cumulative
release from the unsaturated solutions suggested that charged salicylic acid might interact with the
charged nitroso groups of the nitrocellulose membrane. This resulted in some saturation of membrane
pores that prevented significant increases in cumulative release into the acceptor phase.

In case of the saturated solutions, the saturation of pores will still occur; however, an equilibrium
level of saturation is reached after which cumulative release of the non-interacting charged salicylic
acid will increase. This increase is in accordance with the pH of the buffer solution therefore, the degree
of ionization. In buffers where the pH is lower than the pKa, the drug is relatively less soluble in the
medium. This explains the lower cumulative transport of the neutral drug molecules, although it
was comparatively higher in the saturated systems than in unsaturated systems. The solubility-pore
saturation interplay could be one of the mechanisms to explain the difference in transportation of
salicylic acid from saturated and unsaturated solutions.

2.1.2. Membrane Morphology

No differences in membrane structure were observed by SEM imaging for the membranes that
were subject to donor solutions of salicylic acid at various pH values. Therefore, membrane integrity
was maintained over the range of pH values (Supplementary Materials S3, Figure S1).

2.2. Computational Studies

2.2.1. AA-MD Computational Studies—Interaction Parameters

Uragami et al. [53] found that the interaction between nitrocellulose and solvents or solutes played
an important role in the permeation of actives through the membrane. A higher cumulative release of
the tested analytes was found for cellulose membranes compared to nitrocellulose membranes. This
observation pointed to different interactions between the functional groups on the different membranes
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with the solvent and solute. χij and Emix values were calculated (Supplementary Materials S4,
Figure S2). χij indicated significant differences in the interaction between charged and non-ionized
species as seen in Figure S4. Two populations of interactions could be classified. Interactions between
the charged salicylate species are markedly stronger than for the interactions of neutral salicylic acid.
Significant miscibility of salicylate and the other species were indicated by virtue of negative χij values.
The unionized species illustrated immiscibility seen from positive χij values., the χij for various bead
pairs is given for the temperature range 273–373 K in Supplementary Materials S5, Figure S3, showing
no significant change over this temperature range.

2.2.2. AA-MD—The Choice of the Polymer Chain Length

Choosing an appropriate, representative chain length can ensure optimal computation duration as
well present realistic physical properties of the nitrocellulose membrane. The CED and simulation cell
density were monitored as criteria to determine the suitability of the oligomer length as representative
chain length for a polymer (Supplementary Materials S6, Figure S4).

It was observed that the CED and density values were virtually invariant as observed for different
oligomers. The maximum difference in CED between the oligomers was ~5.4%, ranging between
4.05–4.55 × 108 J/m3. The density value of all the chain models deviated by a maximum of~2.6%
from the target density of 1.49 g/cm3. This density was chosen from the closest model reference
that was found in literature, for example, trinitrocellulose propellant model studies [21]. A 13mer
(26 monosaccharides) chain was chosen as best representative oligomer of the polymer chain and its
density deviated by only ~1.4% from the target density of 1.49 g/cm3, supporting the choice of a 13mer
chain as model.

2.2.3. DPD Simulations

The trajectories of the various simulations (Figures 2–4) show snapshots at various time steps in
the simulation of selected models. Additional models are demonstrated in Supplementary Materials S7,
Figures S5–S7). All simulation boxes contained ~29,000 beads.

The DPD models all showed that the charged drug beads diffused faster than neutral beads. Some
charged particles remained in the membrane in all the models. However, as seen from the models,
a portion of neutral particles assembled close to or inside the membrane.

Eventually, the neutral particles are transported to the acceptor side and this can be ascribed
to the concentration gradient. Since the ionized (charged) particles are more water soluble than the
unionized particles, they are transported faster and to a larger extent.Pharmaceuticals 2018, 11, x FOR PEER REVIEW  6 of 20 
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Figure 2. (A), the total simulation box containing neutral salicylic acid only with wall beads
(purple), nitrocellulose (grey), salicylic acid (blue), water (green) and propylene glycol (yellow). Only
nitrocellulose and salicylic acid beads are shown at different times as multiples of τ during the trajectory
simulation; (B) 1 τ, (C) 75,000 τ, (D) 250,000 τ, (E) 500,000 τ, (F) 1,000,000 τ.Pharmaceuticals 2018, 11, x FOR PEER REVIEW  7 of 20 
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Figure 3. A simulation box of 1:4 charged:neutral drug beads. Nitrocellulose (grey), neutral salicylic
acid (blue), charged salicylate (red). Only nitrocellulose, neutral and charged drug beads are shown at
different multiples of τ during the trajectory simulation; (A) 1 τ, (B) 25,000 τ, (C) 187,000 τ, (D) 250,000 τ,
(E) 500,000 τ and (F) 1,000,000 τ (nitrocellulose is not shown).
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Figure 4. A simulation box of 4:1 charged:neutral drug beads, with wall beads (purple), nitrocellulose
(grey), salicylic acid (blue) and salicylate (red). Only nitrocellulose, neutral and charged drug beads
are shown at different multiples of τ during the trajectory simulation; (A) 1 τ, (B) 7500 τ, (C) 25,000 τ,
(D) 125,000 τ, (E) 250,000 τ and (F) 500,000 τ (nitrocellulose is not shown) (see electronic version for
colour figure).

The number of time steps, τ taken to reach equilibrium transport clearly became less as the amount
of charged drug beads in the system increases relative to neutral beads. For the fully neutral system
shown previously in Figure 2, the beads reach equilibrium in both compartments only after 1,000,000 τ.
The fully charged system shows that charged molecules are already approaching equilibrium after
50,000 τ. Concentration profiles of the fully charged and neutral systems are plotted in Figure 5.
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Figure 5A indicated that some salicylic acid accumulates in the nitrocellulose membrane or close
to the membrane in the region of 80–100 Å. This again reflects that the χij between nitrocellulose and
charged salicylate particles would favour transport, with a fraction of the charged drug interacting
with the membrane before the excess will diffuse to the receptor compartment. The neutral beads will
eventually diffuse once the diffusion gradient forces particles to the acceptor side.

Figure 5B illustrates that the charged drug particles reach equilibrium between the compartments
as seen from the flat top curve achieved at 250,000 τ.

The root mean square displacement (MSD) of charged and neutral beads was also determined for
fully neutral and charged systems as well as for their ratios of 1:4, 1:1 and 4:1. MSD gives an estimation
of the rate of diffusion of the species as function of time. Figure 6 illustrates the findings.
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Figure 6. MSD plots of charged (top group curves) and neutral salicylic acid species (bottom group
curves) for various compositions as mentioned in the text. A is the system where only charged salicylate
beads are present, B charged to neutral salicylic acid beads in 4:1 ratio, C is the system with charged
to neutral salicylic beads in 1:1 ratio, D is the 1:4 charged to neutral bead system, E is 1:99 charged to
neutral salicylic/particles, F is the fully neutral salicylic acid model.

Figure 6 depicted two groupings of continuances of linear curves with R2 > 0.9999, indicating the
free diffusion regimen was reached. The top group of curves indicates the MSD for charged salicylate
beads and the bottom group that of the neutral salicylic acid particles. Differences in the slopes for each
curve within a group were seen. The charged group showed a slope of ~101.7 ± 7% (% CV) and the
neutral group a slope of ~30.4 ± 6%, indicating that charged particles diffused 3.33 times faster than
neutral ones. These rates are not physically accurate since it is known that DPD simulations either can
under- or overestimate the values of measured diffusion constants [54]; however, the relative diffusion
trends are still seen. These curves also illustrate that the beads in the model demonstrated a consistent
behaviour irrespective of the proportion of charged and neutral particles. Charged salicylate always
diffused faster than neutral salicylic acid. This validates the DPD model as a discriminatory mechanism
to study the effect of pH and therefore the charge of particles, on rates of diffusion. The diffusion rates
again correspond to the calculated χij values.

A question that arose was if the diffusion of propylene glycol in the model from the acceptor
compartment to the acceptor compartment would be different for each of the systems with different
ratios of charged and neutral beads. A concentration profile was constructed for propylene glycol;
at the start and end of the simulations, that is, at 0 τ and 1,000,000 τ for selected systems and depicted
in Supplementary Materials S8, Figure S8.

Propylene glycol diffused to the same extent for the 1:1 and fully charged systems. Approximately
one third of all the propylene glycol diffused from the donor to acceptor side. It can be deduced from
the more favourable χij value of propylene glycol and charged species that more propylene glycol
would be accommodated by charged particles if propylene glycol were also present on the acceptor
side. Conversely, due to the diffusion gradient, propylene glycol diffused to the acceptor chamber in
the fully neutral system. The diffusion of propylene glycol is much slower as was expected from the
less favourable χij value of propylene glycol and neutral particles.
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3. Discussion

3.1. Release, Partition and Morphology Studies

No statistically significant differences were observed in release of salicylic acid from the unsaturated
buffer solutions at different pH values. Conversely, the release of salicylic acid from saturated solutions
increased proportionally with an increase in pH.

No correlation was found between the release of salicylic acid and the degree of swelling.
No differences in the structure of nitrocellulose membranes were observed at the different pH values,
indicating that the pore size of the membrane was independent of pH.

Our experimental release study of unsaturated salicylic acid solutions contradicted the results
obtained by Asman et al. [55] where the release of salicylic acid from unsaturated aqueous donor
phases through poly(vinyl alcohol-g-itaconic acid) and poly(vinyl alcohol) membranes increased with
decreasing pH. Our study found no statistically significant release differences for unsaturated solutions
of salicylic acid through nitrocellulose membranes.

However, different explanations were given by Asman et al. [56], investigated the effect
of the model membranes that they used. The decrease in release through poly(vinyl alcohol)
membranes, with increasing pH, was related to a decline in the swelling of the membrane, limiting
the free volume in the membrane that is available for transport. The release results, obtained from
poly(vinyl alcohol-g-itaconic acid) membranes were attributed to electrostatic repulsion between the
anionic carboxylate groups of both itaconic acid and salicylic acid. This led to the conclusion that
only the unionized molecules of salicylic acid determined the release of salicylic acid through the
poly(vinyl alcohol-g-itaconic acid) membranes.

However, Asman et al. [56], also found contradictory results when poly(vinyl alcohol-g-acrylamide)
membranes were used. In that study, release increased proportionally to an increase in pH. This was
ascribed to an increase in release of salicylic acid that contributed to the bonding of ionized salicylic acid to
the membrane on the receptor side by hydrogen bonding.

Furthermore, it was seen that the percentage salicylic acid released at pH 2.10 and 7.40 were similar.
This similarity was explained by the hydrolysis of the amide groups of the poly(vinyl alcohol-g-acrylamide)
membranes at pH 2.10 that resulted in higher degrees of swelling.

Both studies by Asman et al. [55,56], showed contradictory results, depending on the membranes
used and it could be concluded that the membranes as well as the method affected the release. It does
not invalidate these experimental models though. They do however; show that the results of a flux
study on the same drug depend strongly on the experimental conditions and the chosen model
membrane. This is also the case for the experimental results in this study.

3.2. Computational Studies

3.2.1. AA-MD Computational Studies—Chain Length and χij

The 13mer nitrocellulose model of this study has shown an accurate agreement concerning material
density for the chosen model oligomer close to the value of 1.49 g/cm3 [21] as well as the minimal
variation in CED. In this study, the final production AA-MD trajectories were significantly longer than
the picosecond runs performed previously for polysaccharide models (see introduction).

As far as χij is concerned, it was not surprising that the charged, dissimilar pairs would show
stronger, attractive interactions than compared to the situation where only one component of the pair
was charged. Furthermore, the neutral species showed weaker interaction in their dissimilar pairs
than for the electrostatically interacting beads.

It is advocated that AA-MD simulations could be used in future studies to predict how an
experimental system would perform. Using χij screening, the choice of experimental membrane could
be made and possibly predict the interactions between the membrane and transportable species. In
this way, potential transport-limiting membrane effects could be identified. The CED values that are



Pharmaceuticals 2018, 11, 134 10 of 19

derived from the AA-MD simulations are converted to solubility parameters. The solubility parameters
are then factorized in dispersive and electrostatic components that could further aid the choice or
design of the model membrane in relation to the drug solubility parameters.

3.2.2. DPD Computational Studies

DPD simulation is a powerful tool to visualize the diffusion of various components through
the membrane. Since the AA-MD methods are limited to lower timescale simulations and are
computationally expensive, DPD provides the bridge to access longer simulations.

DPD simulations of this study illustrated that the atomic scale properties were transferred
accurately to the DPD scale since the bead-based models exhibited the expected diffusion behaviour
as predicted from AA-MD. DPD simulations showed that bead interactions could be modelled.
Furthermore, modelling also demonstrated the difference between the transport rates in terms of τ for
charged and neutral particles.

The models also indicated the presence of charged drug particles that associate with the membrane,
before the remaining bulk will be transported from the donor to the acceptor chamber once saturation
of the membrane was reached.

DPD could also discriminate between neutral and charged particles in terms of MSD versus time
and showed that neutral and charged species diffusion behaviour was the same in different proportions
of these particles. The charged particles diffused faster than the neutral particles in all models.

Therefore, the DPD model did not introduce artefacts due the presence of either neutral or charged
particles or their combinations.

4. Materials and Methods

4.1. Materials

Miglyol 812 N® was donated by Cremer (Hamburg, Germany). Salicylic acid (>99%) was
obtained from (St. Louis, MO, USA). Potassium chloride and citric acid anhydrous were purchased
from Sigma Aldrich (Johannesburg, RSA). Sodium dihydrogen orthophosphate, disodium hydrogen
orthophosphate anhydrous, propylene glycol, 1 N hydrochloric acid, 1 N sodium hydroxide solution
and methanol were purchased from ACE Chemicals (Johannesburg, RSA). Acetonitrile (LiChrosolv®)
and glacial acetic acid were purchased from Merck Chemicals (Johannesburg, RSA).

4.2. Experimental Methods

4.2.1. Aqueous Phase Preparation

Citric acid-phosphate buffer solutions were prepared at pH 2.00, pH 3.00, pH 4.00 and pH 5.00.
Unsaturated salicylic acid solutions were prepared in citrate-phosphate buffers at various pH and
stirred for 12 h to yield a concentration of 1 mg/mL. Saturated salicylic acid was also prepared using
the buffer solutions. The pH value of these solutions was adjusted to the required value if needed.

4.2.2. Solubility Determination of Salicylic Acid

Saturated salicylic acid solutions were prepared in the buffer solutions. Salicylic acid was added to
20 mL buffer solution until it did not dissolve any more. The excess settled at the bottom. The medium
in which solubility was determined was the same as the receptor phase that was employed for the
permeation studies. The solutions comprised of phosphate buffer and propylene glycol (1:1, v/v) at
pH 7.40. Solutions were stirred at 37 ± 1 ◦C with continuous adjustment of the pH to the required
value [57]. After 24 h, the solutions were filtered through syringe filters with a pore size of 0.45 µm
(Agela Technologies Inc., Newmark, New York, NY, USA, USA) and immediately diluted 1:100 with
methanol and analysed by HPLC. UV detection was employed at 236 nm (Section 4.2.8).
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4.2.3. Determination of Percentage Ionized Salicylic Acid

The percentage of ionized salicylic acid in the solutions was determined using the
Henderson-Hasselbalch, Equation (2) [58–60]:

pH− pKa = log

[
A−

]
[HA]

(2)

where pKa is the logarithmic acid dissociation constant, (for salicylic, pKa ~2.97), [A−] is the molar
concentration of the conjugate base and [HA] is the molar concentration of the undissociated weak acid.

4.2.4. In Vitro Release Study

Salicylic acid release was studied using Franz type diffusion cells with a diffusion area of 1.13 cm2

exposed by nitrocellulose membranes (0.2 µm pore size, Whatman, Dassel, Germany). Four cells were
used per solution. Temperature was maintained thermostatically at 37 ± 1 ◦C for 12 h.

Nitrocellulose membranes were soaked overnight in buffer/propylene glycol (PG) (1:1, v/v) and
also in pure buffer solutions. The receptor compartment was filled with 2 mL preheated, degassed
receptor fluid and allowed to equilibrate before adding the donor phase by stirring at 750 rpm.
The donor compartment was subsequently filled with 1 mL of salicylic acid solutions prepared in
the buffers. Samples were taken at 1, 2, 3, 4, 6, 8 and 12 h and comprised of the full 2 mL of the
receptor phase. After sampling 2 mL fresh receptor phase was immediately replenished in the receptor
compartment. Samples were prepared for HPLC and analysed by UV detection at 236 nm (Section 4.2.8).
pH was monitored at the time of sampling.

After completion of the release study, the nitrocellulose membranes were removed, dried and
imaged by SEM. Two Franz cells were also exposed to blank donor buffer solutions. After 12 h,
the blank membranes were removed, dried and imaged by SEM.

4.2.5. Statistical Analysis

Data were analysed by one-way ANOVA using STATISTICA® (StatSoft Inc., Tulsa, OK, USA).
Tukey’s HSD (Honestly Significant Difference) test was performed to compare the release at different
pH values with each other at a significance threshold of p < 0.05.

4.2.6. Degree of Swelling

Membranes were removed from the cells and excess droplets were removed and the membrane
was immediately weighed (wet mass). In addition, an untreated, dry nitrocellulose membrane was
weighed (dry mass). The degree of swelling was calculated according to Equation (3):

% swelling =
w−w0

w0
(3)

where W is the wet mass after swelling and W0 the dry mass of the membrane before swelling.

4.2.7. Scanning Electron Microscope (SEM)

Membranes sections were mounted on double-sided carbon tape. Au/Pd (67/33) was sputtered
on the membranes forming a 15 nm coating. Membranes were imaged using a FEI Quanta FEG 250
scanning electron microscope at 5 kV under high vacuum mode.

4.2.8. HPLC-UV method

An Agilent® 1100 Series HPLC system was used (Agilent Technologies, Palo Alto, CA, USA) using
a reversed phase C18-2 column (150 × 4.60 mm, 5 µm particle size) (Venusil XBP Agela Technologies,
Wilmington, DE, USA). Temperature was controlled at 25 ± 1 ◦C.
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Degassed mobile phase (v/v) consisted of 1% acetic acid, 45% acetonitrile and 54% Milli-Q® water.
Flow rate was set at 1 mL/min and analysed at 236 nm. Samples were injected in duplicate.

4.3. Computational Modelling Methods

All computational modelling was performed using the Materials Studio 6.1 (Accelrys Software
Inc., San Diego, CA, USA) suite of packages. The modules used for modelling all refer to the proprietary
names of the modules.

4.3.1. All-Atomistic Molecular Dynamics (AA-MD) Theory

The theoretical background of AA-MD is discussed in the Supplementary Materials S1.
The references are listed in the supplementary text as well as in the references below.

Figure 7 illustrates the model that was developed and used for AA-MD. AA-MD is a
thermodynamics modelling process which has been used to successfully study the thermodynamics of
diffusion and therefore applicable to transdermal diffusion studies.

Pharmaceuticals 2018, 11, x FOR PEER REVIEW  13 of 20 

 

All computational modelling was performed using the Materials Studio 6.1 (Accelrys Software 
Inc., San Diego, CA, USA) suite of packages. The modules used for modelling all refer to the 
proprietary names of the modules. 

4.3.1. All-Atomistic Molecular Dynamics (AA-MD) Theory 

The theoretical background of AA-MD is discussed in the supplementary material S1. The 
references are listed in the supplementary text as well as in the references below. 

Figure 1 illustrates the model that was developed and used for AA-MD. AA-MD is a 
thermodynamics modelling process which has been used to successfully study the thermodynamics 
of diffusion and therefore applicable to transdermal diffusion studies. 

 
Figure 7. (A) the 2,6-dinitroester-pyranose disaccharide of nitrocellulose that was used to simulate 
the nitroester with a degree of substitution of 2 (the carbon atoms are denoted by numbers). Head-
to-tail addition was performed for polymer formation. The β-D(1→4) glycosidic bond is also shown 
in the disaccharide structure. (B) the geometrically optimized structure of the disaccharide repeat 
unit, (C) an example of a geometrically optimized 30mer chain and (D) a periodic simulation box 
packed with 10mer chains. 

4.3.2. AA-MD Methodology 

At the time of writing, no parameters for an AA-MD study on nitrocellulose were reported. It is 
therefore, imperative to determine the appropriate length of a model polymer chain to represent the 
bulk polymer chain. Unsubstituted cellulose has a syndiotactic tacticity [61]. It was therefore, 
assigned to nitrocellulose. Nitroester functional groups were substituted for the 6-hydroxyl and 2-
hydroxyl substituents of cellulose to produce nitrocellulose molecules [62] with a degree of 
nitroesterification of 2, typical for nitrocellulose filter materials [63]. 

Subsequently, nitrocellulose chains with 1–40 disaccharides, designated as 1mer–40mer, were 
constructed. These models were optimized geometrically with COMPASS force field [64]. Dispersive 
force summations were applied with a cut-off distance of 12.5 Å.  

The energy tolerance was 4 × 10−4 kJ/mol, force tolerance was 0.02 kJ/mol/Å and displacement 
tolerance was 5 × 10−5 Å. The number of iterations was limited to 1 × 105 steps. 

Figure 7. (A) the 2,6-dinitroester-pyranose disaccharide of nitrocellulose that was used to simulate the
nitroester with a degree of substitution of 2 (the carbon atoms are denoted by numbers). Head-to-tail
addition was performed for polymer formation. The β-D(1→4) glycosidic bond is also shown in
the disaccharide structure. (B) the geometrically optimized structure of the disaccharide repeat unit,
(C) an example of a geometrically optimized 30mer chain and (D) a periodic simulation box packed
with 10mer chains.

4.3.2. AA-MD Methodology

At the time of writing, no parameters for an AA-MD study on nitrocellulose were reported. It is
therefore, imperative to determine the appropriate length of a model polymer chain to represent the
bulk polymer chain. Unsubstituted cellulose has a syndiotactic tacticity [61]. It was therefore, assigned
to nitrocellulose. Nitroester functional groups were substituted for the 6-hydroxyl and 2-hydroxyl
substituents of cellulose to produce nitrocellulose molecules [62] with a degree of nitroesterification of
2, typical for nitrocellulose filter materials [63].
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Subsequently, nitrocellulose chains with 1–40 disaccharides, designated as 1mer–40mer, were
constructed. These models were optimized geometrically with COMPASS force field [64]. Dispersive
force summations were applied with a cut-off distance of 12.5 Å.

The energy tolerance was 4 × 10−4 kJ/mol, force tolerance was 0.02 kJ/mol/Å and displacement
tolerance was 5 × 10−5 Å. The number of iterations was limited to 1 × 105 steps.

Optimized oligomers were subsequently packed in cubic periodic simulation boxes. Thirty
disaccharide chains could be packed successfully. Five 1–20mer chains could be packed successfully.
Four 30- or 40mer chains could be packed successfully. All periodic cells were packed to a target density
for nitrocellulose of 1.49 g/cm3. Box dimensions were set large enough to avoid self-interaction of the
chains [65]. Ten optimized simulation boxes of each oligomer cell packing were generated and the
lowest energy box was selected for further simulations. All the AA-MD simulations were conducted
with time increments of 1 fs.

The boxes underwent simulated annealing [50,66–68] via an NVT (constant number of particles,
volume and temperature) canonical, ergodic ensemble, employing the Andersen thermostat [69],
to ensure initial energy relaxation. Five annealing cycles were simulated at temperatures ranging
between 300–500 K for heating and vice versa for cooling in 40 K steps (5 heating and 5 cooling steps).
10,000 dynamic steps were followed for each heating and cooling ramp.

After annealing, the boxes were relaxed further by alternating NVT and NPT (constant number
of particles, constant pressure and constant temperature) AA-MD runs of 100 ps employed the
Nosé thermostat [70] at 310 K (experimental temperature). The NPT runs employed the Berendsen
barostat [71] at ~0.1 GPa. After each NPT and NVT cycle, cell dimensions and cell density were
analysed. Once these parameters were consistent, a production run of 5 ns NPT run was performed.

Cohesive energy density (CED) was calculated from the production run for each model. Once the
CED assumed a constant value, this was identified as the minimum oligosaccharide chain length that
will represent the CED of long chain polysaccharides [72,73].

4.3.3. Dissipative Particle Dynamics (DPD) Simulation Theory

The theory of DPD simulations is discussed in the Supplementary Materials S2. The references
are listed in the supplementary text as well as in the references below.

4.3.4. DPD Methodology

The average values for χij were calculated from the AA-MD production runs and converted to
reduced DPD interaction parameters [73], aij, that was assigned to the beads as seen in Table 3.

Table 3. aij values used for DPD simulations.

aij Neutral Charged Propylene Glycol Nitrocellulose Water Wall

Neutral 25.00 a

Charged 2.000 b 25.00
Propylene glycol 32.64 2.000 25.00

Nitrocellulose 20.35 2.000 41.04 25.00
Water 37.49 2.000 26.16 56.90 25.00
Wall 999 b 999 999 999 999 25.00

a A value for aij > 25 indicates repulsion between beads. Wall beads repelled all the beads within rc. This ensured
that beads remained in the simulation box to improve statistical sampling of their Cartesian coordinates of the
beads; b The Flory-Huggins theory [74] proved that polymer-solvent interaction parameters, χij~ 0.5 will be miscible.
However, the theory does not account for ionic interactions as employed in this study [75]. The χij values obtained
here were negative for ionic interactions. However, to apply in the simulation aij values below 25 indicate strong
miscibility and since χij was negative, the values were set to 2 to indicate a strong attractive interaction. Wall beads
were set such that they repelled all other particles.

χij was <<0.5 and an average bead volume of 170 Å3 and a cut-off radius, rc of ~9 Å, were
calculated by the Connolly method [76,77]. A simulation box of 20rc × 20rc × 20rc was used as
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template and surrounded by the wall beads. Simulation boxes with different ratios of the charged
to neutral beads were evaluated at ratios of 1:1, 1:4 and 4:1. Trajectories of the different components
were evaluated during a preliminary run and it was observed that a million steps could be used at a
simulation time step of τ = 0.001, corresponding to ~5 fs. The short time step was chosen to ensure
high resolution of the integration grid [50] with respect to t. The time scale falls within measured time
scale parameters for a diffusion process [78,79]. DPD trajectories were constructed as a function of
time by integration of the Newtonian laws of motion by Equation (4) [80,81]:

dri

dt
= vi,

dvi

dt
= fi (4)

where, ri is the position of the bead i, t is the time point at which the trajectory of bead i is calculated,
vi is the velocity of i at t and fi is the derived force experienced by i at t. fi can be described further
according to Equation (5) [75,81]:

fi = ∑
i 6=j

(
FC

ij + FD
ij + FR

ij

)
(5)

where i and j are dissimilar beads, FC, FD and FR represent the conservative, soft-repulsion force
between the beads, the dissipative force due to viscous drag or friction between beads which depends
on their position and the random force, respectively. The random force is determined by the amount of
energy input at t, by the barostat and thermostat to ensure that the energy in the system does not show
a too large fluctuation over time. Summation of forces in the simulation box is performed over rc.

In case of polymer membranes, or other CG models where many beads are connected, a spring
constant determines the stiffness of the connection between the beads by Equation (6) [81]:

FS
i = ∑

i
Crij (6)

where FS is the total spring force summed over the connected beads i and j, C is the spring constant
with a value of 4 which adequately describes polymers and other organic molecules [75]. Large spring
constants indicate an increase in chain rigidity.

Geometry optimizations were performed on each simulation box until the convergence limits of
0.004 kJ/mol and a force of 0.5 N were met. Density of the simulation boxes was monitored up to the
point of consistency. After optimization, the membrane and wall beads were constrained positionally.
This reflected the experimental findings where it was found that the nitrocellulose membrane did
not swell nor showed differences in the pores as imaged by SEM (Supplementary Materials S3).
Therefore, the water, propylene glycol and drug beads could diffuse whilst the membrane and wall
beads remained in position.

5. Conclusions

The study revealed that an increase in pH did not significantly affect the amount of salicylic acid
that was released from unsaturated solutions. However, the opposite effect was observed for saturated
solutions. No effect of the pH of the donor solution on nitrocellulose could be observed, nor any
correlation to swelling of the membranes.

The choice of a specific membrane as a model for finite dose diffusion through skin should be
made cautiously. This is especially true for quality control studies where a porous membrane such
as nitrocellulose could be selected. As shown by the experimental results, the expected effect of pH
on drug flux could not be observed in the unsaturated solutions. This study therefore, suggests that
a membrane-solute interaction took place that affected the observed diffusion of salicylic acid from
unsaturated solutions. This membrane interaction could be absent in the skin and therefore, the model
membrane will not reflect the experimental results correctly. We therefore, suggest that modelling could
aid the identification of drug-membrane interactions which might not occur, or could occur, in the skin.
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In general, it is apparent that the nitrocellulose membrane does not accurately reflect the nature of the
stratum corneum which is highly lipophilic. Due to the permanent charge of the nitrocellulose nitroso
groups, one should not discount the interaction that is possible due to polar groups in the membrane.
Numerous hydroxyl groups are present and could interact with polar molecules.

Considering that nitrocellulose is a charged molecule, it is suggested that it should rather be
used as a model that mimics interactions between solutes and skin components, especially when
finite dose studies are performed. Where saturated solutions of salicylic acid were used, the expected
effect of pH on salicylic acid ionization and transport could be observed. It could be attributed
to the membrane-solute interaction that resulted in the salicylic acid saturation of the membrane
and subsequently the diffusion equilibrium was achieved after salicylic saturation of the membrane
was reached.

Computational modelling was also developed to provide a means to study the commonly used
in vitro model membrane, nitrocellulose. Computational modelling negates guesswork from choosing
a suitable membrane since it is based on fundamental and well-known physical theory. Numerous
studies have reported the computed effects of chemicals on skin components such as ceramide;
however, very few reports could be found that simulated the in vitro model membranes in the context
of skin diffusion studies.

Due to the numerous advantages of in vitro models based on artificial membranes compared
to in vivo test subjects, it is suggested that AA-MD and DPD could become additional modelling
tools too rationally select model membranes. The modelling can be used either as a predictive tool
to select the suitable membrane prior to experimental studies or can provide post hoc insight into
the mechanism that resulted in experimental observations. Here we report passive diffusion of both
charged and uncharged drug particles, where charged particles diffused much faster than the neutral
species. The experiments and computational models confirmed one another.

Supplementary Materials: Available online at http://www.mdpi.com/1424-8247/11/4/134/s1. S1: Background
on mixing energy (Emix) and interaction parameter (χij) of binary pairs employing a Monte Carlo method, S2:
Background on DPD, Figure S1: SEM images, Figure S2: The aij values calculated for the dissimilar pairs, Figure S3:
(A) χij for miscible pairs at various temperatures. (B) χij for immiscible pairs at various temperatures. H2O refers
to water, Figure S4: The CED and density values that were obtained for the various chain lengths of nitrocellulose
oligomers. The scatter of values is smaller than would be indicated by the depiction if the magnitudes of the axes
are inspected, Figure S5: A simulation box of 1:99 (charged:neutral). Nitrocellulose beads (grey), neutral salicylic
acid beads (blue) charged salicylate beads (red). Only nitrocellulose, neutral and charged beads are shown at
different times as multiples τ of during the trajectory simulation; (A) 1 τ, (B) 12,500 τ, (C) 25,000 τ, (D) 125,000 τ,
(E) 500,000 τ and (F) 1,000,000 τ, Figure S6: A simulation box (1:1 charged:neutral) with nitrocellulose beads
(grey), neutral beads (blue) and charged salicylate beads (red) shown at different times in multiples of τ of during
the trajectory simulation; (A) 1 τ, (B) 7,500 τ, (C) 25,000 τ,( D) 125,000 τ, (E) 250,000 τ, (F) 1,000,000 τ, Figure S7.
(A) the simulation box of 100% charged beads with nitrocellulose beads (grey), wall beads (purple), propylene
glycol beads (yellow) and water beads (green) Only charged salicylate and nitrocellulose beads are shown at
different times as multiples τ of during the trajectory simulation; (B) 1 τ, (C) 5,000 τ, (D) 12,500 τ, (E) 25,000 τ
and (F) 1,000,000 τ. Figure S8: The concentration of propylene glycol as snapshots taken at τ = 1 (solid lines)
and τ = 1,000,000 (dashed lines). C is the abbreviation for charged and N for neutral. The 1:1 system is denoted
by 50C50N.
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