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Abstract: Up until the first half of the 20th century, silver found significant employment in medical
applications, particularly in the healing of open wounds, thanks to its antibacterial and antifungal
properties. Wound repair is a complex and dynamic biological process regulated by several pathways
that cooperate to restore tissue integrity and homeostasis. To facilitate healing, injuries need to
be promptly treated. Recently, the interest in alternatives to antibiotics has been raised given the
widespread phenomenon of antibiotic resistance. Among these alternatives, the use of silver appears
to be a valid option, so a resurgence in its use has been recently observed. In particular, in contrast
to ionic silver, colloidal silver, a suspension of metallic silver particles, shows antibacterial activity
displaying less or no toxicity. However, the human health risks associated with exposure to silver
nanoparticles (NP) appear to be conflicted, and some studies have suggested that it could be toxic in
different cellular contexts. These potentially harmful effects of silver NP depend on various parameters
including NP size, which commonly range from 1 to 100 nm. In this study, we analyzed the effect of
a colloidal silver preparation composed of very small and homogeneous nanoparticles of 0.62 nm
size, smaller than those previously tested. We found no adverse effect on the cell proliferation of
HaCaT cells, even at high NP concentration. Time-lapse microscopy and indirect immunofluorescence
experiments demonstrated that this preparation of colloidal silver strongly increased cell migration,
re-modeled the cytoskeleton, and caused recruitment of E-cadherin at cell-cell junctions of human
cultured keratinocytes.

Keywords: colloidal silver; wound healing; E-cadherin; keratinocytes; nanoparticles; skin

1. Introduction

The use of silver in therapeutic applications has very ancient origins due to its broad and highly
effective antibacterial activity [1,2]. However, the scientific debate on its mechanism of action is still
an open field. Some authors maintain that the bactericidal activity could be linked to the release of
silver ions [3–8] and their interaction with several bacterial components such as peptidoglycan, the cell
membrane as well as bacterial proteins/enzymes involved in vital processes [8–11]. In contrast, other
authors assert that the effect of silver could be due to a physical effect toward the cell membrane with
consequent penetration of silver inside the cytoplasm and interference with cellular components [10].
More recently, another important effect exerted by silver preparations was described, which regarded
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the inhibition of bacterial biofilm formation [12,13]. Biofilms (aggregates of bacteria embedded
in an extracellular matrix) allow bacterial growth in a protective environment, reducing antibiotic
susceptibility and favoring escape from the immune response.

In addition to these functions, it has been demonstrated that silver has anti-inflammatory effects and
improves the healing of wounds through the modulation of fibrogenic cytokines [12–16] and a decrease
in lymphocyte infiltration [17,18]. Thus, silver has found wide applications in preventing further injury
and bacterial invasion of wounds, therefore improving the efficient recovery of damaged tissues.

All of these characteristics have caused a widespread use of silver, both in medicine and daily life.
Nowadays, medical devices (dressing for wounds, surgical catheters, stitches, bone cement) as well as
cosmetics, cosmeceuticals, and tessils, have a silver component [13,16,19,20]. Nevertheless, although it
is considered relatively non-toxic to mammals, chronic exposure to Ag+ ions determine the formation
of insoluble precipitates in the dermis and the cornea/conjunctiva, causing the so-called argyria or
argyrosis syndromes, blue coloration of the skin, and mucous tissues [3,4].

It is essential to underline that most of the toxicity of silver is because ionic silver (Ag+) is
exceptionally reactive toward molecules and cellular structures [21]. Therefore, especially during
the last few years, ionic silver usage has been superseded by colloidal silver, i.e., as a suspension of
microscopic metallic nanoparticles (NP up to 100 nm in diameter), presenting lower toxicity with
respect to their metallic counterpart [3,4].

Notions about colloidal silver safety and biocompatibility have appeared to sometimes be
contradictory in the literature. Several studies have confirmed silver NP as clinically safe [22], and
dressings based on silver NPs have been declared safe for patients [20,23,24]. However, some studies
have shown that NPs are cytotoxic for several different cell lines, mostly by inducing an increase of
ROS production, a decrease in mitochondrial function, DNA damage, and apoptosis [25–30]. In other
cases, a decrease in cell proliferation without DNA damage has been reported [31]. In contrast, studies
performed in human fibroblasts confirmed that AgNPs could alter mitochondrial functionality without
leading to cell death [16] and one study identified a relationship between NP size and inhibitory effects
on mitochondria [32].

It has to be noted that silver nanoparticles can be very heterogeneous and such heterogeneity
could probably in part explain differences present in the literature. Several methods to produce
silver NP have been developed. Preparations of colloidal silver commercially available (see http:
//www.silver-colloids.com/) can differ for NP size, stability (Zeta potential), concentration, and different
percentages of ionic silver either due to the efficiency or synthesis methods. Parameters that are
influenced by the synthesis method include the mean NP diameter and size, size distribution, shape,
stability, the inclusion of ligand shells, and capping agents [21].

Considering the widespread use of silver NP and the growing interest in its use due to its
versatility, we analyzed the biological properties of a colloidal silver preparation with silver NP of
0.62 nm in size, smaller than those ever described and presenting an extremely low percentage of ionic
silver [33–35]. We first evaluated the antimicrobial activity with results similar to what has already
been published [36–39] with the data not shown. Then, we assessed the effect on a model of human
skin, HaCaT human keratinocytes. We observed no toxicity by the MTT assay, growth curve analysis,
absence of stress granules, and strong efficacy in promoting wound healing in vitro. Interestingly,
colloidal silver induced an evident cytoskeleton reorganization accompanied by an increase in cell–cell
junctions underlined by E-cadherin recruitment.

2. Results

2.1. Effect of Colloidal Silver on HaCaT Cells

Initial experiments investigated the potential toxicity of colloidal silver on human immortalized
HaCaT keratinocytes. For this purpose, HaCaT cells were grown in the presence of colloidal or ionic
silver at 0.5 or 2 µg/mL for 24 and 48 h and cell viability was analyzed by the MTT assay as described
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in [40]. Figure 1 shows that colloidal silver did not exert any toxic effect, while ionic silver caused a
dramatic reduction of cell viability at both concentrations.
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Figure 1. Effects of AgC on HaCaT cell viability. MTT assay of HaCaT cells incubated for 24 or
48 h with colloidal (grey bars) or ionic silver (dark bars) at 0.5 or 2 µg/mL. Data are expressed as
absorbance at 570 nm and presented as mean ± SE of three independent experiments, each done in
sestuplicate. Analysis of variance was performed by two-way Anova followed by the Bonferroni
post-test. **** P < 0.0001 when compared with the control.

Importantly, cell viability increased between 24 and 48 h even when colloidal silver was added at
the higher concentrations of 2 µg/mL, thus suggesting no toxicity under these conditions. We therefore
addressed whether colloidal silver could function as a stressor agent by analyzing the stress granules
formation (SG). SG are aggregates of proteins and RNA that form when cells are subjected to different
kind of stresses to protect cellular structures from harmful conditions. To monitor the formation of
these aggregates, we looked at the YB-1 protein as a specific marker of SG [41]. Furthermore, it has
to be noted that YB-1 typically translocates to the nucleus following genotoxic stress [42], therefore,
it can also be used to monitor harmful insult to the cells. HaCaT cells were grown in the presence
of colloidal silver at 0.5 and 2 µg/mL for 24 h, fixed, and analyzed by indirect IF with the anti-YB1
antibody. Figure 2 clearly shows that colloidal silver induced neither stress granules formation nor
YB-1 nuclear translocation. Cells were also stained with TRITC-conjugated phalloidin to visualize the
actin cytoskeleton. The experiment showed that colloidal silver treatment induced actin cytoskeleton
rearrangement at the cellular periphery. In particular, we observed increased f-actin polymerization
both at the cell–cell and cell–substratum adhesions (Figure 2, red panels).
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Figure 2. Effect of AgC on stress granules formation. HaCaT cells were seeded on a coverslip and treated
(or not) with AgC at 0.5 or 2 µg/mL for 24 h. Cells were then fixed and analyzed by TRITC-conjugated
phalloidin staining (red) or indirect IF with the anti-YB1 antibody (green). Nuclei were stained with
DAPI. Scale bar, 7 µM. Images were acquired using a Nikon TE Eclipse 2000.

2.2. Effect of Colloidal Silver on Wound Healing

Based on these data showing a reorganization of the actin cytoskeleton, we decided to analyze the
effect of colloidal silver on cell migration, a process where massive cytoskeleton dynamics take place.
Wound healing activity was evaluated in vitro by automated time-lapse microscopy [43]. Details on
the technique are reported in the Materials and Methods Section. Typical images of the wound as a
function of time are presented in Figure 3A, where samples in the absence and/or presence of AgC
0.5 µg/mL are compared.

Images at the same time points show better closure of the wound for the treated sample with
respect to the control. This result was systematic, as visible from Figure 3B,C, where the evolution of
the wound area, normalized with respect to its initial value (A/A0), is reported for the control and
treated sample, respectively. Raw data reported in the two diagrams for each independent field of view
showed excellent reproducibility. We calculated the values of the wound closure velocity (α) from each
data series, as reported in the Materials and Methods Section. Interestingly, the αAgC/αcontr (that is a
measure of the relative effect of the treatment in our conditions) was 1.80, indicating that the wound
closure velocity roughly doubled in the presence of AgC 0.5 µg/mL.

In Figure 4B, the duplication time (τ) of HaCaT cells grown in the presence and/or absence of
0.5 µg/mL AgC is reported. Intriguingly, cell duplication was not significantly altered in the presence
of colloidal silver, while the cell motility coefficient calculated from the Fisher–Kolmogoroff equation
appeared to be drastically and statistically significantly increased (Figure 4C). Overall, these results
indicate that under these experimental conditions, colloidal silver affected cell motility more than
cell proliferation.
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Figure 3. Effect of AgC on wound closure dynamics. (A) Representative phase contrast microscopy
images of cells incubated (or not) with AgC at different time points showing the wound closure process
over time. (B,C) The wound closure process was quantified by measuring the reduction of the wound
area (A) over time, as described in the Materials and Methods Section. Evolution of the wound area A,
normalized to the value A0 (A at time 0), is reported for the control (B) and AgC treated (C) cells by
selecting random fields along the wound for each experiment. The linear range of each data series
was fit in order to measure the wound closure velocity α. Values of α for the control and treated cells
are indicated on each graph as the mean from three independent experiments analyzed in triplicate.
Standard error of the mean was calculated to account for reproducibility, and the t-test was calculated
to verify the statistical significance of the differences with respect to the control samples.
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Figure 4. Effect of AgC on wound closure dynamics. Values of α (wound closure velocity) (A),
τ duplication time) (B), and D (cell motility coefficient) (C) of the control and AgC treated cells are
reported. Values of D were calculated according to the Fisher–Kolmogoroff equation from values of
α and τ (see Materials and Methods). Data are expressed as the mean of at least three independent
experiments. SEM is reported as error bars, statistical significance was assessed by the paired two-tailed
t-test (* P = 0.04; ** P = 0.007).

2.3. Effect of Colloidal Silver on Cell-Cell Contacts and Cell Morphology

Regulation of cell shape and motility is governed in large by the cytoskeleton, of which actin
filaments are the major components. Cytoskeletal elements influence the formation of cell–cell and
cell–substrate adhesions that play a fundamental role in both cell morphology and migration which
requires the continuous assembly and disassembly of cellular adhesions. To further characterize the
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effects of AgC on cell shape, the cytoskeleton and cell–cell contacts were examined by fluorescence
microscopy by both phalloidin staining and E-cadherin immunofluorescence. Cells were allowed
to adhere onto coverslips overnight, treated with 0.5 µg/mL AgC for 8 h, fixed, and subjected to
IF with anti-E-cadherin, followed by TRITC-conjugated phalloidin incubation to visualize the actin
cytoskeleton and DAPI to stain the nuclei. As previously observed, cells displayed a dense meshwork
of actin filaments around the cell periphery. Interestingly, the experiment showed that AgC treatment
caused significant recruitment of E-cadherin at cell–cell junctions, which were apparent within 8 h of
treatment (Figure 5). Similar results were obtained when cells were incubated with AgC for 24 h.
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Figure 5. E-cadherin localization in HaCaT cells upon AgC treatment. Cells were allowed to adhere
onto coverslips for 24 h and then treated with 0.5 µg/mL AgC for 8 h. Cells were then fixed and
subjected to IF with an anti-E-cadherin antibody followed by TRITC-conjugated phalloidin to visualize
the actin cytoskeleton. Representative images of E-cadherin subcellular localization and phalloidin are
shown. Merged images also show DAPI staining to visualize the nuclei. Images were taken with a
Zeiss confocal laser-scanning microscope Axio Observer (scale bar, 15 µM). A ×40 objective was used
and image analysis was performed using ImageJ.

3. Discussion

In this work, we evaluated the use of a colloidal silver solution in the cell viability and cell migration
of immortalized human keratinocytes. Although the use of silver in medicine dates back to ancient
times, its use became less frequent upon the widespread use of antibiotics. The appearance in recent
decades of the increasingly dangerous phenomenon of antibiotic resistance has brought to the forefront
the use of silver as a valid non-toxic alternative. Our experiments showed that no adverse effect could
be observed in the HaCaT cells by both the MTT assay and stress granules formation when we treated
keratinocytes at even rather high concentrations (2 µg/mL) of AgC. Interestingly, upon treatment, cells
tended to reorganize the cytoskeleton as indicated by the observation of phalloidin-stained F-actin.
Since tissue healing is linked to a profound reorganization of the cytoskeleton, we evaluated the activity
of silver in wound healing by following the wound healing process using time-lapse video-microscopy.
The algorithm we used allowed for the quantitative analysis of the dynamics in the reduction of the
cutting area. Our data indicated that in the presence of silver, the wound closure speed increased and
cells incubated with colloidal silver “healed the damaged area” in less time than the controls. This
result was quantified and interpreted according to the Fisher–Kolmogoroff model [43], which allows
the process of re-closing the cut mathematically to be described. A novel data analysis approach was
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used to identify the relative role of cell motility and proliferation on wound healing through simple
calculations. We found that AgC increased the mechanism of cell migration rather than increasing
the cell proliferation levels. Cell motility is primarily governed by the cytoskeleton, which influences
both the cell–substrate and cell–cell contacts. Our results were supported by immunofluorescence
experiments, where HaCaT cells presented an overall increased E-cadherin signal and its re-localization
to the cellular periphery and the cell–cell junctions. It is interesting to note that it has been reported
that the intercellular junctions marked by E-cadherin allow cells to communicate [44] and to move in a
highly coordinated way [45]. The increase in cell–cell junctions through strong E-cadherin-mediated
contacts at the upper edge, in the lateral regions, and within the moving cell group characterizes the
collective cell migration [44,46–48]. This aspect is particularly interesting, since collective cellular
migration would be the basis of the movement and proliferation of epidermal keratinocytes located on
the edge of the wound following skin lesions [49]. It is interesting to note that cell movements are
characterized by cytoskeletal reorganization through the formation of adherent junctions [49]. The
adherent junctions, favored by the recruitment of E-cadherin on the cell surface, allow for anchorage
to the actin cytoskeleton [50] through their binding with both α- and β-catenins. The increase of the
actin polymerization induced by colloidal silver and the E-cadherin relocation to the cell–cell junctions
both indicate that colloidal silver is broadly involved in the cytoskeletal reorganization occurring
during migration. In agreement, it has been observed that silver nanoparticles are able to increase
connexin 43-mediated gap junctional intercellular communication in HaCaT cells [51]. Interestingly,
this occurs through ROS production and activation of the MAPK pathway. Furthermore, in an in vitro
model of the human gut epithelium, exposure to AgNP caused changes in cellular permeability and a
dysregulation in the expression of components of tight junctions and desmosomes without affecting
E-cadherin; however, it has to be noted that such experiments have been performed with NP of 10 nm
in size, about 18x bigger than the ones used in the present study [52].

4. Conclusions

Altogether, the presented data indicate that colloidal silver could improve the healing process by
modulating the reorganization of the cytoskeleton and thus cell motility. Further analysis is needed to
clarify both the mechanism of action and the molecular pathways involved. However, the collected
data encourage further investigation of AgC in tissue healing. In this regard, therapeutic agents
including steroids, glucocorticoids, non-steroidal anti-inflammatory drugs, and chemotherapy are
associated with several side effects that, by interfering with cell movement in the wound, slow down
the repair process [53]. In this scenario, silver could have a positive effect on wound closure by acting
on different levels and with different mechanisms compared to the generally used drugs. Last but
not least, it has to be underlined that thanks to its antimicrobial properties, silver could be a valid
alternative for the treatment of infections also caused by multi-drug-resistant bacteria (MDRB) [54],
which do not respond to standard pharmacological therapies and for which it is challenging to develop
efficient treatments.

5. Materials and Methods

5.1. Cell Culture and Reagents

HaCaT, spontaneously immortalized keratinocytes from adult skin, were purchased from Cell Line
Service (CLS, Eppelheim, Germany) and cultured in Dulbecco’s Modified Eagle’s Medium (DMEM,
Sigma Chemical Co., St. Louis, MO, USA) supplemented with 10% fetal bovine serum (FBS, Hyclone
Laboratories, Inc., Logan, UT, USA), 1% L-glutamine, and 1% penicillin-streptomycin (ICN Biomedicals,
Inc., Aurora, OH, USA) at 37 ◦C in a humidified atmosphere of 5% CO2 [55,56]. Depending on the
type of experiment, HaCaT cells were seeded at different densities and on different culture dishes. The
cells were treated with a colloidal silver preparation containing 79.5% silver nanoparticles of 0.62 nm
in size, obtained from Santé Naturels SNC (Civitanova Marche, Macerata, Italy) at the concentration of
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20 ppm (20 µg/mL). Detailed information regarding the characteristics of the colloidal silver solution are
visible at the following official site: http://www.silver-colloids.com/Click comparison table; European
Products Reports). Further information regarding the size of the nanoparticles and the Zeta potential
(index of stability) are presented in the Supplementary Materials, S1, S2). For each experiment, the
stock solution was diluted in culture medium. Ionic silver was obtained by dissolving 3.15 mg AgNO3

in 100 mL H2O to obtain a final stock solution where the ionic silver was 20 µg/mL.

5.2. Cell Viability (MTT Assay) and Cell Proliferation Assays

The effect of ionic and colloidal silver on cell viability was evaluated by measuring the reduction
of 3-(4,5-dimethylthiazol-2) 2,5-diphenyltetrazolium bromide (MTT) to formazan by mitochondrial
dehydrogenase [57,58]. Briefly, 9 × 103 cells were seeded on 96-well plates and exposed to increasing
concentrations of either 0.5 or 2 µg/mL colloidal silver for 24 and 48 h. MTT/PBS solution (0.5 mg/mL)
was then added to the wells and incubated for 3 h at 37 ◦C in a humidified atmosphere. The reaction
was stopped by the removal of the supernatant, followed by dissolving the formazan product in acidic
isopropanol. Optical density was measured with an ELISA reader (Bio-Rad) using a 570 nm filter
using an iMark microplate reader (Bio-Rad, Hercules, CA, USA). Each experiment was performed
in quadruplicate, in three independent experiments. The cell viability was calculated as CV (%) =

(Absorbance of test sample/Absorbance of control) × 100.
For cell proliferation analysis, cells were incubated with AgC and the number of cells in

each experimental point was counted with a Scepter-Millipore counter (Handheld Automated Cell
Counter) as described in [59]. Growth curves were generated and the cell population doubling
time (τ) was estimated by fitting a typical logistic growth [60] (Equation (1)) where τ was the only
adjustable parameter.

n(t) = n0 ∗ 2(
t
τ ) (1)

5.3. In Vitro Wound Scratch Assay

To test the effect of colloidal silver on the wound closure phenomenon, HaCaT cells were seeded in
12-well plates at a density of 4.5× 105 cells/well. The day after plating, once they had reached 90–100%
confluence, cells were starved for 6 h in serum-free DMEM to completely inhibit cell proliferation. The
confluent monolayer was scraped with sterile P200 pipette tips and washed twice with PBS to remove
detached cells and debris. The scratched monolayers were treated with colloidal silver (0.5µg/mL)
diluted in culture medium and plates were incubated as described. Wound closure was monitored
in the different samples by automated time-lapse microscopy (TLM) using an inverted microscope
(Zeiss Axiovert 200, Carl Zeiss, Germany) inserted into an incubator with constant T (37 ◦C), humidity
(100% Hr), and CO2 (5%). Different fields of view in each cell dish were acquired by phase contrast
microscopy using a CCD video camera (Hamamatsu Orca AG, Japan) at regular intervals (15 minutes)
for about 18 h using a long working distance 5X objective in phase contrast (CP Achromat Ph1).
Images were analyzed as described in [43]. The wound closure dynamics were quantified by using a
homemade automated image analysis software, which allowed us to measure the size of the wound
area for each time point. In a typical experiment, for each field of view, the cell nude area (A) was
measured for each time step, normalized with respect to the value of the wound area at time 0 (A0),
and plotted as a function of time. After an initial Lag time (tL), A/A0 was found to decrease with
a constant velocity; the slope of the linear range of the A/A0 vs. t curve (α) can be considered as a
measure of the wound closure velocity. Details on the calculation of tL and α are reported elsewhere
(see Figure 9b in [61]. For each experimental condition (control and treated), at least four independent
fields were analyzed out of three independent wells for each experiment. Each experiment was done
in triplicate and statistical analysis performed by calculating the standard error of the mean (reported
as error bar) and calculating statistical significance by testing the null hypothesis (t-test).

http://www.silver-colloids.com
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5.4. Wound Healing Data Analysis

The wound healing process can be modeled according to the Fisher–Kolmogoroff equation
(Equation (2)), which is a diffusion-reaction equation based on a transport phenomenon approach [62,63].
This model mathematically describes the evolution of the cell density profile u, which depends on the
time and distance x, measured from the wound edge, i.e., along the wound closure direction, that is,
the horizontal direction in the images reported in this work. Two different phenomena contribute to
wound closure, i.e., cell motility and proliferation, which are both involved in the spatial spreading of
the cells in the wound region, and are both summed at the right side of Equation (2).

∂u
∂t

= D
∂2u
∂x2 + ku

(
1−

u
û

)
(2)

Cell motility is modeled as a Fickian diffusion, according to the assumption of a persistent random
motion of the cells [64–66] and depends on a random motility coefficient, that is, analogous of a
diffusion coefficient (D, in Equation (2)). Cell proliferation can be modeled (last term in Equation (2))
as a logistic growth, where the growth velocity is reduced as the cell density approaches confluence,
which is measured by the maximum cell density û. k is a growth kinetic constant, which as a first
approximation can be estimated as the reciprocal of the cell doubling time (k = ln2(τ) [62,67]. This
model predicts that after a short transient phase, the wound edges propagate at a constant speed in
the direction x, perpendicular to the wound edge, reducing the size of the wound area. The speed of
propagation of each wound edge v is related to the values of the random motility coefficient and of the
cell doubling time (Equation (3)) [62,67].

v =

√
4Dln(2)

τ
(3)

The concurring role of cell motility and proliferation can be estimated by the simple calculation

of the Thiele modulus φ = b
2

√
K
D [62], where b is the initial wound size, i.e., the distance of the two

edges of the wound at time 0. Given the measure of the wound closure velocity α from the analysis
of the time lapse experiments, it was easy to calculate the velocity of the propagation of the wound
edges that is related to α by a simple geometrical relationship v = α* b/2, where b is the initial size
of the wound, with high precision. The cell doubling time τ was independently calculated from cell
proliferation assays (Equation (3)). Cell random motility coefficient D was finally calculated from
reverse Equation (3).

(D = τ
v2

4ln(2)
) (4)

It is worth mentioning that the direct measurement of the cell random coefficient is a non-trivial
task that requires time consuming tracking of cell motion over time [43]. The advantage of the approach
used here is the possibility of estimating such a relevant parameter from the simple analysis of wound
healing experiments, and trivial algebraic calculations based on advanced models.

5.5. Immunofluorescence

IF assays were performed as previously described in [68,69]. Briefly, treated and control HaCaT
cells were seeded on glass coverslips at a density of 1.5 × 105 cells/well in 24-well dishes, fixed
with 3.7% PFA, and permeabilized with 0.5% Triton X-100. After blocking with 3% BSA, cells were
incubated with primary antibody (E-cadherin and YB-1) for 1 h at RT followed by incubation with
Alexa-Fluor conjugated secondary antibodies for 1 h in the dark. To visualize the actin cytoskeleton,
cells were stained with TRITC-conjugated phalloidin. The cells were counterstained with DAPI for
the visualization of the nucleus. Images were taken with a Zeiss confocal laser-scanning microscope
Axio Observer. A x40 objective was used and image analysis was performed using ImageJ. All images
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were taken with the same setting. Image processing and analysis were performed with Fiji (ImageJ
version 2.0) software. The stress granules formation experiment was performed as described in [70]
and images were acquired using a Nikon TE Eclipse 2000. Antibodies of anti-YB-1 (12148 Abcam,
Cambridge, UK), anti-E-Cadherin (610181 BD Transduction Laboratories™, MA, USA), Alexa Fluor 488
anti-rabbit and anti-mouse (Thermo-Fisher Scientific, Waltham, MA, USA), and DAPI (Sigma-Aldrich,
Saint Louis, MO, USA) were used.

5.6. Statistical Analysis

All data are expressed as the means of independent experiments (biological replicates) ± standard
errors (SE). Analysis of variance was performed by a two-way ANOVA followed by the Bonferroni
post-test using Graph-Pad Prism (Graph-Pad Software), or by the Student’s T-test as previously
described in [59].

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8247/12/2/72/s1.
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