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Abstract: The xenograft of human cancer cells in model animals is a powerful tool for understanding
tumor progression and metastatic potential. Mice represent a validated host, but their use is limited
by the elevated experimental costs and low throughput. To overcome these restrictions, zebrafish
larvae might represent a valuable alternative. Their small size and transparency allow the tracking
of transplanted cells. Therefore, tumor growth and early steps of metastasis, which are difficult to
evaluate in mice, can be addressed. In spite of its advantages, the use of this model has been hindered
by lack of experimental homogeneity and validation. Considering these facts, the aim of our work was
to standardize, automate, and validate a zebrafish larvae xenograft assay with increased translatability
and higher drug screening throughput. The ZeOncoTest reliability is based on the optimization of
different experimental parameters, such as cell labeling, injection site, automated individual sample
image acquisition, and analysis. This workflow implementation finally allows a higher precision
and experimental throughput increase, when compared to previous reports. The approach was
validated with the breast cancer cell line MDA-MB-231, the colorectal cancer cells HCT116, and the
prostate cancer cells PC3; and known drugs, respectively RKI-1447, Docetaxel, and Mitoxantrone.
The results recapitulate growth and invasion for all tested tumor cells, along with expected efficacy
of the compounds. Finally, the methodology has proven useful for understanding specific drugs
mode of action. The insights gained bring a step further for zebrafish larvae xenografts to enter the
regulated preclinical drug discovery path.
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1. Introduction

Cancer is the second leading cause of death worldwide, accounting for 9.6 million estimated
deceases in 2018 [1]. It is also the primary indication for pharmaceutical investment and medical care
expenditure. During the last few decades, a better understanding of tumor biology has led to the
development of therapies that increased the survival rate for multiple cancer types [2]. However, most
common treatments consist of systemic administration of chemotherapeutics that target proliferating
cells in neoplasms, but also in normal tissues with high regeneration capacity, causing severe side
effects. Moreover, chemotherapies do not affect quiescent cells (i.e., cancer stem cells; CSCs), which
may play an important role in drug resistance, relapse, and metastatic dissemination [3]. Finally, some
types of cancer remain deadly because they are not responsive to available treatments. All of these
drawbacks reflect the need for discovering more precise, safe, and efficacious therapies [1].

The drug discovery process in oncology is traditionally initiated by the use of fast in vitro systems
for high throughput screenings. However, cell cultures are oversimplified tools due to the absence of
tumor heterogeneity, microenvironment components, and anatomical structures for proper growth
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and metastatic potential evaluation [4]. In order to validate, and filter out in vitro results, drugs are
tested in more biologically relevant in vivo models before entering clinical phases. Mouse xenografts
of human cancer cells have become the prevailing translational tool in preclinical studies [5]. The use
of rodents is recommended based on the high resemblance of transplanted tumors to the original
ones. In addition, chick chorioallantonic membrane xenografts might be useful, although poorly
validated, for studying metastatic events [6]. Despite their translational value, the high cost and
low throughput of these models hamper their use for screening large numbers of possible therapies.
Moreover, individual cancer genotype is emerging as a crucial factor leading therapeutic decisions.
Thus, patient derived xenografts (PDXs) are potentially powerful tools, but the high amount of tissue
needed for transplants in rodents is a major issue [7]. These flaws in the current preclinical models
might partially explain the high costs and elevated drug attrition rate (95%) during the progression of
anti-cancer treatments through the subsequent clinical phases [8,9]. Therefore, the use of innovative
screening systems, including alternative animal models, could reduce costs and time and allow for
assessing more compounds. This would indeed increase the chances of success in clinical trials and,
hence, reduce drug attrition rates.

Zebrafish is an established animal model for academic research, but a more recent addition in the
pharmaceutical drug development toolbox. However, its use is expanding as a fast and economical
alternative to rodents for disease understanding, target validation, and drug discovery in multiple
indications [10–14]. In regard to oncology, zebrafish displays a variety of features of a great translational
value. First, it develops tumors if exposed to carcinogenic substances [15–17]. Second, oncogenes,
tumor suppressors, and the main molecular pathways involved in cancer progression are highly
conserved between zebrafish and humans [18]. In fact, embryos can be genetically manipulated for
understanding the role of specific genes in diseases and, in particular, in tumor development [19–21].
Third, the immature larvae immune system allows transplantation and survival of human cancer
cells with no need of immunosuppression [22,23]. In addition, it is important to note that all
paracrine signaling pathways important in cancer development—WNT, EGF, FGF, VEGF, etc.—are
well conserved and known to be involved in cancer progression in zebrafish [13]. The same occurs
with the endocrine system, where androgen, estrogen, and thyroid systems are mature from 48 hpf,
as implied by their response to canonical ligands and chemical disruptors [24]. Finally, larvae optical
transparency and small size grant in vivo tracking of xenotransplanted fluorescent cells through
standard and confocal imaging for measuring tumor growth and detecting early metastatic events,
such as intravasation and extravasation, which are difficult to uncover in murine xenografts [25].
Based on these translational advantages, human tumor cells’ xenograft in zebrafish larvae have been
implemented as a potentially useful tool for drug discovery [26–28]. The method conceivably allows
for comparing cancer development with or without candidate therapies in just a few days, at a lower
cost and higher throughput than equivalent murine experimental assays. Moreover, the low amount
of material needed for the transplants makes the use of zebrafish larvae possibly amenable for PDXs
and precision medicine [29,30]. Despite these benefits, previous reports have displayed contrasting
results due to technical differences, mostly in terms of incubation times, image acquisition and analysis
methods, cell labeling and site of injection. The lack of experimental standardization and validation
might have led to a lower-than-expected exploitation of this screening tool in a pharma industry setting.

In order to increase drug screening throughput, while providing robust biological translatability,
it has been established an optimized and standardized xenograft system in zebrafish larvae,
the ZeOncoTest. To this end, different available procedures were reviewed, tested, and compared.
As such, robust settings for cell labeling, injection into larvae, and automated imaging and image
analysis were implemented. Finally, the accuracy of the method was validated by assessing the
behavior of a battery of tumor cell lines and the impact of different compounds on their growth.
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2. Results

Close to 250 articles focusing on the use of zebrafish larvae cancer xenografts were reviewed to
define the best experimental approach (Table S1). The majority of the studies were consistent on the cell
injection timing, with 86% showing larvae injection at 48 h post fertilization (hpf). However, we detected
a great variability in most of the other experimental settings and conditions. As such, the incubation
temperature for xenotransplanted larvae ranged from 28.5 ◦C, standard for fish development, to 36 ◦C,
closer to the ideal temperature for human cells growth of 37 ◦C. Individualization of animals throughout
the experiment was only performed in 10% of the reports. The most common cell labeling methods were
represented by fluorescent dyes, in 70% of the studies, compared to 30% using cells stably expressing
fluorescent proteins. In addition, 82% of the dyes employed was membrane-specific. Among those,
a chloromethylbenzamido derivative of octadecylindocarbocyanine (CMDiI) was utilized in 64% of
the cases. As for the injection site, the yolk was the standard choice in half of the reports, followed
by the perivitelline space (pvs) used in the 25% of the studies. Injections in the vasculature, brain
ventricle, and heart were performed in the remaining 25% of the cases. Finally, the use of zebrafish
larvae xenotransplants to address drugs mechanism of action (MoA) was only shown in half of the
studies (Table S1). Based on these data and our own expertise, we tested and compared different
experimental conditions to define the most adequate settings for the ZeOncoTest.

2.1. ZeOncoTest: General Experimental Setup and Workflow

Basic conditions, such as stage of injection and incubation temperature, were set to guarantee
the survival of animals and xenotransplanted human cancer cells. We chose to inject larvae at 48 hpf
and to grow them at 35 ◦C. Those were the best settings reported in previous studies (Table S1).
In order to evaluate the anti-tumor effect of compounds, engrafted larvae were incubated across two
time points between 0 and 144 h post injection (hpi), defined according to the growth and invasion
capabilities of the different tested cell lines. The drug concentrations used were the No Observed
Effect Concentrations (NOECs), determined through an acute toxicity test performed at the same
conditions—stage, temperature—established for the subsequent efficacy assay. Finally, we determined
to infer the anti-cancer effect of candidate drugs by comparing tumor growth and dispersion between
untreated and treated xenografted animals (Figure 1).
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Figure 1. ZeOncoTest pipeline. Fluorescently labeled cells are injected in 48 hpf larvae, subsequently
imaged at tp1. After the first imaging, xenotransplanted larvae are incubated at 35 ◦C with the NOEC
of candidate drugs, previously calculated. Subsequent imaging is performed at tp2. The evaluation of
drug impact on tumor growth and metastatic potential is given by the calculation and comparison of
tumor mass and dispersion of cells at the 2 time points, in treated and untreated animals.
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2.2. Improved and New Methodologies

2.2.1. 3D Imaging, Automation, and Throughput

A main source of potential bias in previous zebrafish xenograft reports resulted from estimating
tumor areas from images acquired through stereomicroscopy or widefield microscopy. In our
experience, when larvae were not equally oriented between different time-points, results based on area
measurements were inconsistent (data not shown). To overcome this limitation, we decided to use
confocal microscopy and acquire z stacks to extrapolate tridimensional images (volumes) of tumor
masses at different time points. In our hands, the comparison of volumes across time provided a more
reliable estimation of the growth of irregularly shaped tumor masses than the comparison of areas
between non-equally oriented larvae, as exemplified in Video S1.

In addition, 90% of the previous reports measured tumor progression through comparing
the average of whole populations between time points (Table S1). An important improvement is
represented by the fact that we chose to keep the animals individualized in 96 well plates during the
procedure. This approach allows for comparing images from the same individual at different times
and to measure single tumor growth and invasion. In contrast to group quantifications, singular
estimations have an enormous impact on the statistical robustness of the method, since every larva can
be considered a biological replicate. Moreover, we elected to analyze volumes ratios between time
points, instead of absolute values, allowing the normalization with respect to the original tumor size.
The outcome of the combination of these approaches results in a lower variability and, hence, a more
accurate quantification.

To further increase the screening throughput, we developed a novel imaging system in 96-well
plates through an automated microscopy platform. Finally, we developed an in-house automated
image analysis pipeline to streamline the quantification of tumor volume and cell dispersion parameters
in the same animals across different time points. The implementation of this workflow allowed the
screening of 80 individualized fish per experiment, a throughput that, to our knowledge, has never
been reached before.

2.2.2. Choice of a Suitable Cell Labeling Method

In order to track cancer cells in grafted larvae, it was necessary to consider different factors
regarding their labeling. First, we needed to select a method not causing toxicity throughout the
duration of the experiment. Moreover, labeling was required to be homogeneous. Finally, we had to
ensure a rapid loss of fluorescence following tumor cell death. The achievement of these purposes
would guarantee a reliable evaluation of tumor volumes and dispersion across time and under different
drug treatments.

As mentioned above, the use of fluorescent dyes is a common method to label cells prior to injection,
as shown in 70% of the previous zebrafish larvae xenografts studies (Table S1). Based on this, we tested
the most widely used lipophilic membrane dye CMDiI and cytoplasmic dye Carboxyfluorescein
succinimidyl ester (CFSE) in the breast cancer line MDA-MB-231. Both dyes were used at three
concentrations and toxicity was detected at 2 µM for CMDiI and at 5 µM for CFSE (Figure 2A,B).
At non-toxic concentrations for CMDiI (1 µM) and CFSE (2 µM), we detected non-homogeneous
labeling (Figure 2C,D), although CMDiI displayed better retention than CFSE.

Once we defined the maximum tolerated concentration of the dyes, we proceeded to test
fluorescence loss following cell death. As a positive control, we used MDA-MB-231 stably infected
with a vector coding for the green fluorescent protein (GFP). It is known that physiological protein
degradation, and resulting loss of GFP fluorescence, occurs following cell death. These fluorescent cells
were labeled with 1 µM CMDiI and exposed to a high dose of Dimethyl sulfoxide (DMSO) to achieve
cell death. In order to detect dead cells, 4′,6-diamidino-2-phenylindole (DAPI) staining was performed
after 24 h. Surprisingly, 95.7% of DAPI positive dead cells still displayed CMDiI labeling retention,
whereas only 5.4% of them kept GFP expression (Figure 2E). This striking outcome was confirmed after
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the measurement of tumor masses injected in zebrafish larvae. For this purpose, the yolk was chosen
as an injection site for simplicity. As previously shown in other xenografts settings, we expected cell
death to be evident shortly after transplantation, with only the most resistant cells adapting to the new
microenvironment and then expanding [31,32]. The average tumor mass variation between the two
time points was 9.9, taking into account CMDiI labelled cells, and 0.6 by analyzing GFP expressing
ones (Figure 2F,G). CMDiI positive tumor masses were significantly larger than GFP positive ones in
the same xenografts at the second time point, suggesting dead cells retained the dye staining, while
they lost GFP protein expression, in accordance with the previous in vitro observations. Both sets
of data in vitro and in vivo indicate that the use of membrane (CMDiI) and cytoplasmic (CFSE, data
not shown) dyes does not allow a proper discrimination and exclusion of dead cells from the tumor
mass imaging and analysis. Therefore, their use results in a biased over-estimation of tumor masses
and growth.

Based on these new observations, the dyes commonly used in 70% of previous zebrafish
larvae xenografts reports were discarded from our procedure. Then, stable infection with retroviral
vectors coding for fluorescent proteins was chosen as the most suitable method to label tumor cells
before transplantation. Indeed, fluorescent proteins’ expression guarantees non-toxic, steady, and
homogeneous labeling, fluorescence transmission to daughter cells, and its dynamic loss at death by
physiological protein degradation. As such, this option most probably warrants a proper tracking
of grafted cells and an accurate estimation of tumor volumes and dispersion across different time
points [33–35].

2.2.3. Establishment of an Appropriate Injection Site

As mentioned before, half of the previous studies reported tumor cell injections in the yolk and
25% in the pvs (Table S1). The main advantage of injecting intra-yolk is the accessibility. On the
other hand, the yolk is a syncytium that might not provide an ideal microenvironment for the
attachment and growth of solid tumor cells. According to our experience, transplantation in the pvs
requires greater technical skills than injection into the yolk. This might be a reason behind the lower
number of xenografts reported in this site, despite the fact that the pvs displays better features for
anchorage-dependent cell growth and greater accessibility to the vascular system. Both aspects are
likely to be crucial in primary solid tumor growth and metastases occurrence.

Following this rationale, we proceeded to test different cell lines to validate if solid tumors
progression was favored in the pvs, when compared to the yolk. As expected, the highly proliferative
tumor cell line MDA-MB-231 displayed a lower growth rate in the yolk, in comparison to the pvs,
measured as an GFP-positive tumor mass fold change between tp1 and tp2 (1.5 vs 3.7 average,
respectively; Figure 3A,B). Another aspect to consider was that growth impairment in the yolk was
due to a progressively reduced space resulting from yolk consumption during larval development,
which leads to an almost complete absorption by 96 hpi (144 hpf) [36]. This characteristic also implies
that the experimental window for yolk xenografts is limited and shorter than the one for injection
studies in the pvs. As such, colorectal cancer cells HCT116, whose proliferation rate was slowed due to
the lower-than-physiological incubation temperature applied (35 ◦C), did not grow at the early tp2
(etp2) of 96 hpi, neither in yolk nor in pvs (0.9 and 0.5 tumor mass fold change average respectively).
However, when injected in pvs, HCT116 cells could be followed until a late tp2 (ltp2) of 144 hpi, when
tumor masses displayed a significant 1.7 fold increase in average (Figure 3C,D). Moreover, we did
not observe metastatic events in larvae injected in the yolk with the highly invasive MDA-MB-231
and HCT116 tumor cell lines. On the contrary, metastases were detected in 76,2% and 54,5% of larvae
transplanted with MDA-MB-231 and HCT116 cells in the pvs, respectively (Figure 3E–H).
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time point; (C, D) evaluation of cell staining homogeneity of fluorescent dyes. Representative images 
of cells stained with CMDiI (C) and CFSE (D) at day 4; (E) assessment of fluorescence retention in 
dead cells. MDA-MB-231 cells stably expressing GFP were stained with CMDiI and exposed to a high 
dose of DMSO. Dead cells were detected through DAPI staining. They are indicated by white arrows 
in the representative pictures on the left and quantified in the graph on the right. Six fields of view 
were analyzed for quantification. Results are represented as mean +/− standard deviation; (F) 
representative images of GFP+ and CMDiI+ tumors in the same injected fish at the two time points; 
(G) measurements of tumor volumes corresponding to the same GFP expressing cells and CMDiI 
labelled cells transplanted in each larva, at tp1 and tp2 (graph on the left). GFP+ and CMDiI+ tumor 
masses ratios between tp2 and tp1 (graph on the right). Each dot in the graphs represents the 
measurement of a fish. * indicates p < 0.05, ** means p < 0.01, 3 *** signify p < 0.001, and **** stays for p 
< 0.0001. No statistical significance is indicated by ns. 

Figure 2. Fluorescent cell labelling methods coparison. (A,B) analysis of the toxicity of fluorescent
dyes. CMDiI (A) and CFSE (B) dyes are toxic at different concentrations in MDA-MB-231 (growth
curves). Mean and standard deviation of three counts are represented for every condition at each
time point; (C, D) evaluation of cell staining homogeneity of fluorescent dyes. Representative images
of cells stained with CMDiI (C) and CFSE (D) at day 4; (E) assessment of fluorescence retention in
dead cells. MDA-MB-231 cells stably expressing GFP were stained with CMDiI and exposed to a
high dose of DMSO. Dead cells were detected through DAPI staining. They are indicated by white
arrows in the representative pictures on the left and quantified in the graph on the right. Six fields
of view were analyzed for quantification. Results are represented as mean +/− standard deviation;
(F) representative images of GFP+ and CMDiI+ tumors in the same injected fish at the two time
points; (G) measurements of tumor volumes corresponding to the same GFP expressing cells and
CMDiI labelled cells transplanted in each larva, at tp1 and tp2 (graph on the left). GFP+ and CMDiI+
tumor masses ratios between tp2 and tp1 (graph on the right). Each dot in the graphs represents the
measurement of a fish. * indicates p < 0.05, ** means p < 0.01, 3 *** signify p < 0.001, and **** stays for
p < 0.0001. No statistical significance is indicated by ns.
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Figure 3. Injection sites comparison. (A) representative images of larvae injected with MDA-MB-231
cells in the yolk and in the pvs, at two different timepoints; (B) scatter dot plot of the tumor masses
ratios between tp2 and tp1, for each larva. Tp1 corresponds to 2 hpi and tp2 to 96 hpi; (C) representative
images of larvae injected with HCT116 cells in the yolk and in the pvs, at three different timepoints;
(D) scatter dot plot of the volume ratios etp2/tp1 and ltp2/tp1 for each larva. Tp1 corresponds to 24 hpi,
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etp2 to 96 hpi and ltp2 to 144 hpi. (E,G) Dot plots showing MDA-MB-231 (E) and HCT116 cells (G)
dissemination in injected larvae in the yolk and pvs at tp2. Each larva is depicted by a different color.
Each dot corresponds to the location of a given segmented tumor mass related to the position of
zebrafish eye. (F,H) scatter plots of tumor masses x variance at tp2 in larvae injected in the yolk and
in the pvs with MDA-MB-231 (F) and HCT116 (H). Each dot or square in the graphs represents the
measurement of a fish. * indicates p < 0.05, ** means p < 0.01, 3 *** signify p < 0.001, and **** stays for
p < 0.0001. No statistical significance is indicated by ns.

To confirm the suitability of the pvs for xenotransplantation studies, we injected BJ non-transformed
human fibroblasts, as negative experimental control. As expected, these cells did not grow or disseminate
(Figure S1). This observation gives strength to the assumption that growth and invasion through the
circulation were consequences of the tumorigenic behavior of transformed cells, and not artifacts due
to the injection site.

Based on the direct comparison between injection sites, we have established the pvs as the optimal
site of injection of cells to study drugs’ impact on primary tumor growth and dissemination.

2.3. Pharmacological Validation of the ZeOncoTest

We described above the methods that, through experimental support, provided the most robust
strategy for addressing tumor growth and metastatic potential in the zebrafish larvae xenograft
model. Once these improved methodologies were integrated into a single experimental workflow,
the ZeOncoTest, we proceeded to its validation in drug discovery. To this end, we treated with different
compounds zebrafish larvae transplanted with cell lines known to respond specifically to them. ROCK
kinase inhibitor RKI-1447 was used to treat MDA-MB-231 larvae xenografts, since this drug has been
shown to reduce growth and invasion of these cells in vitro and in mice models [37,38]. HCT116
transplanted animals were treated with docetaxel, as it was demonstrated that this molecule induces
cell death in this cell line in culture and in mouse xenotransplants [39–41]. Finally, mitoxantrone was
employed for the treatment of PC3 prostate cancer cells engrafted larvae, given that its use has been
reported to cause cytotoxicity in these cells in previous in vitro and mice studies [42,43].

As hypothesized, the reported effects of the drugs on their selected target cells were reproduced
in the ZeOncoTest. When compared to the DMSO-treated negative control population, RKI-1447
significantly reduced MDA-MB-231 tumor growth from 3.7 to 2 fold increase (Figure 4A and Figure
S2). Docetaxel caused a decrease in HCT116 tumor mass (fold change average of 0.3), as opposed to an
increase (fold change average of 1.9) observed when larvae were exposed to DMSO control (Figure 4B
and Figure S2). Finally, PC3 volume expansion decreased from 3.3 to 1.6 fold, when comparing
injected larvae treated with mitoxantrone to the DMSO-treated population (Figure 4C and Figure S2).
Furthermore, we confirmed published data on RKI-147 activity towards abolishing the metastatic
invasion capability of MDA-MB-231 cells. The comparison between the variances of the secondary
tumor masses at tp2 between RKI-1447- and DMSO-treated larvae was 3.4 × 104 versus 2.5 × 105

(Figure 4D and Figure S2). These data offer a definitive proof of principle, more extensive than any
other study before, for the suitability of the ZeOncoTest in drug discovery applications.
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tp2 of secondary tumor foci in MDA-MB-231 injected larvae, treated with control DMSO and RKI-1447.
Each dot or square in the graphs represents the measurement of a fish. * indicates p < 0.05, ** means
p < 0.01, 3 *** signify p < 0.001, and **** stays for p < 0.0001. No statistical significance is indicated by ns.

2.4. Addressing Drugs Mechanism of Action with the ZeOncoTest

We have shown that the ZeOncoTest can be a novel tool for addressing tumor growth and
metastatic potential in a relevant drug discovery setting. To further explore its applicability, we decided
to study if it could be used for answering more precise questions, such as the evaluation of anti-cancer
drugs MoA.

In order to test this, we chose docetaxel MoA. The activity of this compound consists of disrupting
the normal function of microtubules, thereby it stops mitotic division and induces death specifically in
proliferating cells [44,45]. We performed equivalent experiments in vitro in cell culture and in vivo
in xenografted zebrafish larvae. At first, HCT116 cells were incubated in culture with mitomycin C,
which impairs cell proliferation and, subsequently, with docetaxel. As expected, docetaxel had no
effect on the viability of the cells when proliferation was blocked by mitomycin C. On the contrary,
it did have a significantly strong cytotoxic effect on proliferating cells not previously incubated with
mitomycin C, but with phosphate-buffered saline (PBS) control, and a 92% decrease in cell number
was detected (Figure 5A). Next, we tested the same experimental paradigm in our xenograft model.
Interestingly, for HCT116 transplanted cells, a significant reduction in tumor growth (87%), in response
to docetaxel treatment, was only observed at the late time point 2 (ltp2), when the cells do proliferate,
as reported before. The cytotoxicity effect of the compound was not detected at an earlier time point 2
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(etp2), when cells do not show detectable growth (Figure 5B). This result proves that our experimental
model can also be used for addressing specific new anti-cancer candidate drugs MoAs.
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control. Three cell counts were performed per condition. Results are represented as mean +/− standard
deviation; (B) scatter dot plot of the tumor volume ratios between etp2 and tp1 and ltp2 and tp1 of
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3. Discussion

In the context of a growing cancer incidence, the search for biologically relevant, faster, and more
affordable methods to discover new antitumoral drugs represents a medical priority. In order to
increase the chance of finding novel effective drugs, zebrafish is imposing as an in vivo rational bridge
between in vitro cell culture systems—cost-efficient and high throughput, but poorly predictive—and
in vivo mammal models—more predictive, but expensive and time-consuming. Indeed, the final aim of
the ZeOncoTest is to help choosing the best candidates, previously selected from in vitro experiments,
to be subsequently tested in mice. This proposed pipeline would hopefully lead to a better clinical
outcome and a lower attrition rate.

To guarantee zebrafish larvae healthiness, together with the growth of transplanted tumor cells,
we selected the best general xenograft conditions. These were based on previous reports and our own
intensive experimental optimization. As for the majority of previous studies, we chose to perform cell
injections at 48 hpf, a stage at which the larvae are anatomically developed, but the immune system
is not mature [46]. The first feature allows the study of both primary tumor growth and metastatic
dissemination; the second aspect guarantees no rejection of transplanted cells from the host. Another
reason for electing 48 hpf was the ample experimental time window: transplanted cells have enough
time to grow before the larvae enter the juvenile stage and can no longer be kept in a laboratory
environment. In addition, 35 ◦C was selected as the best compromise between the standard laboratory
temperature used for zebrafish larvae to develop (28.5 ◦C) and the one required for human cells to grow
appropriately (37 ◦C). This condition was also chosen in several previous studies [47–49]. Besides these
basic features, additional technical aspects were reviewed and optimized to generate a standardized
and robust assay. Stable expression of fluorescent proteins was chosen over staining with fluorescent
dyes, as a more plausible solution for reflecting cell dynamics in terms of growth and death, based on
our own results. As stated before, in direct cell labeling methods, the probe is present and detectable
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even after cell death, while the expression of a reporter gene is assumed to be lost, as described
before [33,34,50]. However, although transgenesis is a suitable method for immortalized tumor cells,
it might be technically difficult to apply to patient samples for the development of PDXs. To overcome
this constraint and broaden the applicability of zebrafish larvae xenografts, there is a pressing need for
the search of efficient patient samples labeling methods, which faithfully recapitulate tumor cell growth
and survival dynamics. As for the site of injection, the pvs was directly compared and finally chosen
over the yolk. The yolk is a viscous syncytium that provides a cell suspension-like environment not
ideal for anchorage-dependent growth, whereas the pvs furnishes tissue support for solid cancer cells
attachment and proliferation. In addition, the yolk gets consumed by 96 hpi (144 hpf), a characteristic
that limits tumor growth until that time point. Finally, in the pvs, cells have an easier access to the
vasculature than when injected into the yolk. This last feature allows the study of metastatic capability.
In conclusion, our results demonstrate that transplantation in the yolk and the use of cell dyes provide
a poor experimental setup to evaluate tumor progression. As for the choice of time points for the
analysis, it was decided to generally set tp1 at 24 hpi, to allow injected cells to adapt to their new
in vivo environment. However, highly invasive cells, such as MDA-MB-231, already showed metastatic
dissemination at that stage (data not shown). Thus, tp1 was set at 2 hpi for cells displaying such
behavior. In addition, 96 hpi was chosen as tp2 for highly proliferative cells, such as MDA-MB-231 and
PC3. For cells showing a reduced growth rate at 35 ◦C, such as HCT116, tp2 was set instead at 144 hpi.
This is a decisive aspect, given that these cells only underwent significant expansion if allowed to this
latest time point. Importantly, cell expansion could be reached only in the case that injections were
performed in the pvs, as previously explained. Then, the implementation of novel automated confocal
imaging and analysis tools of individual larvae provides a potential screening throughput of dozens of
conditions per month. Moreover, the chosen imaging method allows a much more exact estimation
and comparison of tumor masses at different time points, through calculation of volumes instead of
areas. It is important to note that measurement and correlation of areas are only recommended if the
same orientation is achieved for each larva at the different time points. From our experience, distinct
orientation among time points might lead to inaccuracy in areas calculation due to the irregular shape
of tumor masses. We are now implementing a method based on the high-throughput microfluidic
imaging system VAST [51] to allow equal positioning at each time point. This approach would allow
a more accurate estimation of tumor size through area measurements. The main advantage of this
further improvement would be the increase in screening throughput and the further simplification of
image acquisition and analysis. Finally, in order to validate the ZeOncoTest, we tested the effect of
known drugs on different cancer cell lines. The results provide a solid proof of principle of the strength
of our methodology for addressing tumor growth and metastatic potential of different cancer cells.
The choice of these three common and clinically relevant tumor types (breast, colorectal, and prostate
cancers) proves the versatility and validity of our system for drug screening in solid tumors. We finally
outlined the utility of our assay by evaluating anti-cancer drug efficacy and understanding their mode
of action.

As for the study of metastatic progression, zebrafish, as well as rodents, provide a complex
biological context that allows the assessment of tumor interaction with the microenvironment and
the vasculature for the colonization of distant tissues. Nonetheless, metastasis evaluation in mice
is mostly performed by bioluminescence imaging and tissue dissection followed by histopathology.
These approaches take months and mostly address the latest colonization events [52–54]. Zebrafish
larvae transparency allows tracking of transplanted fluorescent cancer cells through live imaging.
This feature offers the possibility of investigating early metastatic steps, such as intravasation and
extravasation. Hence, the use of zebrafish larvae xenografts can be complementary to the use of rodents
for understanding different aspects of metastatic progression.

Given the effort placed in the setup of the ZeOncoTest, yet there is a number of aspects that will
require further research to be fully addressed. An important question is how suitable is this method
for evaluating biologics instead of small molecules. A big advantage deriving from the use of zebrafish
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larvae in drug discovery is that small molecules can be administered in the incubating water, from
where the larva absorbs them. In our experience, passive diffusion does not work for biologics. Thus,
the administration route has to be implemented for such macromolecules, either by injection into the
vasculature or by co-injection with tumor cells. Another aspect to consider is that the pvs provides a
good microenvironment for cancer cells’ attachment. As previously mentioned, this context favors
the growth of solid tumors. On the other side, given their preferential growth in suspension, pvs
might not benefit the growth of leukemic cells [55]. Hence, an option could be the test of a different
injection site, i.e., the yolk or the vasculature for liquid tumors to develop. Finally, an important trend
in cancer drug discovery is the search for immunotherapies. This is an aspect difficult to address with
our model. Although the zebrafish immune system is well conserved in terms of genetic markers,
cell types and functions, our assay is performed at the larval stage, when the adaptive immune system
has not been fully developed [56]. In order to investigate possible immunotherapies, it would be
necessary to adapt the ZeOncotest methodology to later developmental stages, after 6–8 weeks, when
the immune system is mature. This said, standard chemotherapy is still the main option for patients
that are not sensitive to immunotherapy [57]. This is especially important considering that responses to
immunotherapy in the US are as low as 12.46% [58]. Moreover, it has been shown that immunotherapy
is more effective in association with chemotherapy [59–61]. Hence, the discovery of safer and more
efficacious chemotherapeutic drugs, to be applied on their own or in combination with immune
therapies, is still mandatory.

To conclude, it is important to mention that, besides addressing tumor growth and metastasis,
the ZeOncoTest could be applied for understanding the impact of drugs on other cancer hallmarks.
Thus, angiogenesis could be evaluated by injecting tumor cells into transgenic zebrafish lines with
fluorescent vasculature, as shown in previous works [62–66]. The assessment of vessels sprouting and
morphology changes after injections and drug treatment would give an estimation of new vessels
formation in the vicinity of the tumor. Fluorescent transgenic lines could also be used for studying
the role of inflammation and the dynamics of innate immune cells in response to the injected cancer
cells [67–69]. Moreover, cells can be genetically modified prior to injection and/or could be injected
into newly generated zebrafish mutant/transgenic lines, allowing for studying the function of genes
either in the tumor or in its microenvironment. Finally, tumor cell subpopulations, such as cancer stem
cells, could be specifically labeled to allow their tracking across time. This way, the precise effect of
novel compounds on those cells can be studied. All of these features open a broad range of possible
applications and further outline the advantages of applying the ZeOncoTest in cancer drug discovery
and target validation.

4. Materials and Methods

4.1. Cell Lines and Zebrafish Handling

All cell lines were obtained from collaborators: MDA-MB-231 breast cancer cell line from
Simon Schwartz Navarro (VHIR), HCT116 colorectal cancer cell line from Melinda Halasz (UCD),
PhoenixA retroviral packaging cells, and PC3 prostate cancer cells from Bill Keyes (IGBMC) and BJ
non-transformed foreskin fibroblasts from Maria Aurelia Ricci (CRG). They were cultured in Dulbecco’s
Modified Medium (DMEM, BE12-614F, Lonza, Cultek, Basel, Switzerland) implemented with 10% Fetal
Bovine Serum (FBS, 10270106, GIBCO, Termofisher, Waltham, MA, USA) 1% L-Glutamine (BE17-605E,
Lonza, Cultek, Basel, Switzerland) and 1% Penicillin/Streptomycin (DE17-602E, Lonza, Cultek, Basel,
Switzerland), and kept at 37 ◦C with 5% CO2 in a humidified incubator.

Adult Casper fish, obtained from the European Zebrafish Resource Center, were grown at 28.5 ±
1 ◦C in a 14:10 h light:dark cycle in a recirculating tank system. Embryos were obtained by mating
adult fish through standard methods [70] and kept in an incubator at 28.5 ◦C until 2 days in and at
35 ◦C just after injections until the end of the experiment.

This study was performed under the ethical approval code 10567, provided by the Generalitat
of Catalunya.



Pharmaceuticals 2020, 13, 1 13 of 18

4.2. Infection and Dye Staining of Human Cell Lines

Phoenix A were transfected with a MSCV-GFP-Puro vector through the calcium phosphate
method. After 48 and 72 h, the supernatant containing the retroviral particles was collected and filtered
through a 22 µm filter (SLGP033RS, Merck, Readington, N.J., U.S.A.). HCT116, PC3, MDA-MB-231,
and BJ cells were subjected to 2 rounds and 1 round of incubation with the supernatant containing
the retroviral particles plus 8 µg/mL of polybrene (H9268-5G, Sigma-Aldrich, Saint Louis, MO, USA),
respectively at the 2 time points. In addition, 48 h after the last round of infection, cells were selected
using 2 µg/mL puromycin (P8833-10MG, Sigma-Aldrich, Saint Louios, MO, USA) and left to recover
for 2 days. Finally, cells were detached, washed, and resuspended in Phosphate Buffered Saline (PBS)
with 5% FBS. The brightest GFP+ cells were sorted by flow cytometry and kept in culture.

For dye staining, cells were detached with trypsin-versene EDTA 0.25% (H3BE17-161E, Lonza,
Cultek), washed in PBS and incubated with CMDiI and CFSE at the concentrations of 1, 2, and 5 µM in
PBS, respectively, for 5 and 20 min at 37 ◦C, followed by 15 min at 4 ◦C for CMDiI. Cells were finally
washed twice with PBS 10% FBS.

4.3. Induction of Cell Death and Hexosaminidase Assay

For hexosaminidase assay [71], 6000 cells were plated in 96 well plates: 2 replicates of 3 wells
each were done for every condition studied. Moreover, 24 h later, media was removed from 1 of the
replicates per condition and cells were washed with PBS twice. In addition, 60 µl of substrate solution
was added for an hour at 37 ◦C. Afterwards, 90 µl developer solution was added before recording
absorbance at 410 nm. These same passages were then repeated at 96 h. The number of cells was
extrapolated through a calibration curve, obtained through plating the cells in numbers of 6000, 12,000,
24,000, 48,000, and 96,000 and performing the hexosaminidase assay 24 h later, just after attachment.
Cell death was induced by o/n exposure to 10% DMSO.

4.4. Zebrafish Injection

In addition, 48 hpf larvae were manually dechorionated and anesthetized by immersion in 0.48 mM
tricaine methanesulfonate (A4050, Sigma-Aldrich, Saint Louis, MO, USA) in E3 medium. Around
200–400 cells were injected in the perivitelline space using standard micro-injecting instrumentation.
An hour later, larvae were screened at the stereomicroscope to discard non-injected larvae and those
injected in a non-specific site or with tumor cells already in circulation.

4.5. Drug Treatment

Prior to the incubation of injected larvae with the different selected drugs, the Non-Observed Effect
Concentration (NOEC) was established (Table 1 and Figure S3). Sixteen larvae per treatment were
exposed individually to at least 5 concentrations of the compound of interest, at the same conditions
as in the ZeOncoTest: from 48 to 192 hpf at 35 ◦C in 96 well plates. Each larva was analyzed for
mortality, body deformity, scoliosis, yolk size, heart edema, heartbeat, and movement at 24 and 144 h
post incubation (hpi). The NOEC was calculated as the highest concentration at which both mortality
and teratogenic scores were below 20% at 144 hpi, and then used for the treatment of the injected
larvae. DMSO was used as the negative control. In parallel, cells in culture were treated with the
NOEC of the compound to ensure its chemotherapeutic effect in vitro (data not shown).

Table 1. NOEC of selected drugs.

Drug NOEC

Docetaxel 10 µM
Mitoxantrone 3 µM

RKI-1447 10 µM
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4.6. Automated Confocal Imaging and Analysis

In order to enable lateral positioning of injected larvae and restrict the area to be imaged, 3D printed
orientation molds [72,73] and low melting agarose (8092.11, Conda, Pronadisa, Madrid, Spain) were
used to shape the wells of 96 well plates (265301, Thermo Scientific, Nunc, Waltham, MA, USA).
Injected larvae were anesthetized by immersion in 0.48 mM tricaine methanesulfonate in E3 medium
and transferred in the wells. Xenografts were imaged at 2 different timepoints using a Leica True
Confocal Scanning-Spectral Photometric 5 (TCS SP5) inverted confocal microscope system with an
automated plate and the Matrix Screener software. Due to different growth and invasion capabilities
of distinct cancers, we defined specific experimental time frames for every tumor cell type of interest,
by injection, and live imaging observation until a maximum of 144 h post injection (hpi). Growth and
invasion were measured by comparing cell masses volume and dispersion between tp1 and tp2 for
each individual larva.

Images were processed and volumes and dispersion of cells evaluated using in-house macros and
the FIJI Is Just ImageJ (FIJI) software. Finally, tumor growth was calculated as the ratio between the
volumes at tp2 and tp1 for each individualized larva. Cell dispersion was assessed with the Statistical
Package for Social Science (SPSS) software (IBM). A minimum of 16 animals were used per condition,
and 1 or 2 experiments were performed.

4.7. Statistical Analysis

Results were analyzed using GraphPad Prism v 7.04 (GraphPad Software Inc., La Jolla, CA, USA).
Prior to the analysis, the ROUT method (Q = 1%) was applied to identify outliers and remove them. Then,
the D’Agostino-Pearson omnibus normality test was used to assess if data were normally distributed.
For 2 groups’ comparison, Student’s t-test was used when values were normally distributed, whereas
Wilcoxon or and Mann–Whitney tests were used respectively for paired and unpaired non-parametric
data. Statistical analysis for multiple comparisons was performed using One-Way ANOVA, followed
by Tukey or Sidak tests, for data with a parametric distribution. A Kruskal–Wallis test was instead
performed for multiple comparisons of non-parametric values. Differences were considered statistically
significant when p < 0.05. In figures, 1 asterisk (*) indicates p < 0.05, 2 (**) means p < 0.01, 3 (***) signify
p < 0.001, and 4 (****) stays for p < 0.0001. No statistical significance is indicated by “ns”. Results are
presented as mean ± standard deviation (SD).

5. Conclusions

The ZeOncoTest standardizes, automates and validates the zebrafish larvae xenograft system
as a bridge between cell culture methods and mice models in cancer drug discovery. We propose it
as an intermediate reliable assay for choosing the best compounds, previously selected from in vitro
experiments, to be subsequently tested in rodents. Such pipeline would hopefully lead to a better
clinical outcome and a lower attrition rate. Moreover, we show that the use of zebrafish larvae
xenografts can be complementary to mouse studies for understanding early phases of metastatic
progression. Our results move the zebrafish larvae xenograft model closer to the regulated preclinical
drug discovery path.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8247/13/1/1/s1,
Figure S1: Evaluation of growth and dispersion in BJ non-transformed control cell xenografts. Figure S2:
Representative images of fishes injected with the three cell lines and treated with the respective drugs. Figure
S3: Mortality and teratogenicity scores for NOEC calculations. Video S1: 360◦ rotation of a 3D image of a
xenografted tumor. Table S1: Collection of parameters used in published literature for drug discovery in zebrafish
xenografts’ models.
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