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Abstract: The role of nuclear medicine in the management of oncological patients has expanded
during last two decades. The number of radiopharmaceuticals contributing to the realization of
theranostics/radiotheranostics in the context of personalized medicine is increasing. This review
is focused on the examples of targeted (radio)pharmaceuticals for the imaging and therapy of
neuroendocrine neoplasms (NENs), prostate cancer, and breast cancer. These examples strongly
demonstrate the tendency of nuclear medicine development towards personalized medicine.
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1. Introduction

The number of nuclear medicine examinations and therapeutic procedures is increasing with
acceleration worldwide reflecting the growing importance of the field in the modern healthcare
system. The growth and expansion of nuclear medicine relies on the development and availability
of radiopharmaceuticals. High demand for radiopharmaceuticals with biological activity specific
for a certain disease yielded personalized patient treatment approaches, in particular theranostics
using molecular imaging for the disease staging and prediction of the efficacy of specific therapeutic
interventions on individual basis as well as for the monitoring response to the treatment. Molecular
imaging in nuclear medicine is presented by positron emission tomography (PET) and single photon
emission computed tomography (SPECT), and in combination with endoradiotherapy it can be defined
as radiotheranostics [1].

Ideally the pre-therapeutic imaging (PET, SPECT) and subsequent endoradiotherapy should be
conducted using the radioactive isotopes of the same chemical element, e.g., 123I/124I/131I [1]. However,
the development of the respective radiopharmaceuticals is not always possible to achieve in practice.
Metal radionuclides offer an advantage in terms of similarities in labelling chemistry, e.g., 68Ga(III),
111In(III), and 177Lu(III), while providing variation in the radiation mode relevant for both diagnostic
imaging (PET, SPECT) and endoradiotherapy. Moreover, 68Ga(III), 111In(III), and 177Lu(III) can use
the same chelator (DOTA) thus introducing the least possible difference in molecular structure and
consequently specific target, e.g., receptor, binding properties.

Receptor targeted chemo- and radiotherapeutics gain treatment precision and efficiency due
to the prior quantification using molecular imaging for the stratification of the patients, adjustment
of the therapeutic dose, and monitoring response (Figure 1). The treatment regimen depends on
the stage of the disease at initial diagnosis and thus whole-body quantitative imaging reflecting
heterogeneity of receptor expression and variability amongst patients is of utmost importance [2–5].
Further crucial advantage is possibility to monitor response to the therapy to introduce the treatment
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changes if necessary, as early as possible. Theranostics/radiotheranostics has strong potential not only
for the optimized treatment but also for the exclusion of futile treatments that otherwise would cause
unnecessary costs and patient distress. Apart from non-invasive imaging, radiation offers possibility
of intraoperative detection for more accurate lesion resection.

Targeting specific biomarkers turns PET and SPECT imaging technologies into whole-body,
non-invasive “biopsy”. It allows to overcome such disadvantages of a conventional biopsy such as
sampling error, inability of taking multiple and repeated biopsies, inability to collect biopsies from
certain areas, e.g., bone or brain, receptor expression heterogeneity with discordance of primary
tumor and metastases as well as infection, hemorrhage, and patient discomfort. The variability in
receptor density and subtype is a very crucial factor influencing the accuracy of diagnosis based on
the pathological evaluation of a biopsy, and thus the imaging that reveals such variation in a single
examination globally and quantitatively is of utmost important for individualized treatment [5,6].

The pioneer and most prominent example of the receptor targeted (radio)theranostics that has
already been introduced into clinical practice is management of patients with neuroendocrine neoplasms
(NENs) using somatostatin (SST) analogue based radiopharmaceuticals. Following the footsteps of
SST receptor (SSTR) targeted (radio)theranostics, prostate specific membrane antigen (PSMA) targeting
radiopharmaceuticals spread around the world with unprecedented acceleration. Two reporting and
data system classifications for PSMA- and SSTR-targeted PET imaging have been introduced in order to
navigate molecular imaging-guided treatment strategies [7]. Another current example of theranostics
that evoked strong clinical interest was the management of breast cancer targeting human epidermal
growth factor receptor type 2 (HER2) wherein the quantitative PET navigates the anti-HER2 targeting
chemotherapy with antibody-based pharmaceuticals. This review demonstrates tendency of nuclear
medicine development towards personalized medicine based on the abovementioned examples in the
context of (radio)theranostics with its possibilities and challenges.
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Figure 1. Upper panel: The targeted imaging in oncology provides tumor-type specific non-invasive 
diagnosis, precise localization of tumors and metastases that most importantly have the potential for 
pre-therapeutic quantification of receptor status, uptake kinetics and dosimetry that enables accurate 
therapy selection and planning, as well as monitoring response to the therapy resulting in 
personalized medicine. Lower panel: Some imaging and therapeutic radionuclides have similar 
coordination chemistry thus allowing for the radiotheranostic development wherein the pre-
therapeutic imaging and radiotherapy are conducted with the same vector molecule exchanging the 
imaging and therapeutic radionuclides. Drawing presents the interaction of an agent, either imaging 
if labeled with, e.g., 68Ga (left) or radiotherapeutic if labeled with 177Lu (right), with the cell receptor. 
Reproduced from [8]. 

2. Targeting SSTR on Neuroendocrine Neoplasms 

The clinical use of radiolabeled somatostatin analogues for imaging and radiotherapy has been 
accepted globally. Interestingly, the incidence of NENs increased from 1.09 to 6.98 per 100,000 
individuals what might partly be explained by earlier detection and diagnosis due to availability of 

Figure 1. Upper panel: The targeted imaging in oncology provides tumor-type specific non-invasive
diagnosis, precise localization of tumors and metastases that most importantly have the potential for
pre-therapeutic quantification of receptor status, uptake kinetics and dosimetry that enables accurate
therapy selection and planning, as well as monitoring response to the therapy resulting in personalized
medicine. Lower panel: Some imaging and therapeutic radionuclides have similar coordination
chemistry thus allowing for the radiotheranostic development wherein the pre-therapeutic imaging and
radiotherapy are conducted with the same vector molecule exchanging the imaging and therapeutic
radionuclides. Drawing presents the interaction of an agent, either imaging if labeled with, e.g., 68Ga
(left) or radiotherapeutic if labeled with 177Lu (right), with the cell receptor. Reproduced from [8].
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2. Targeting SSTR on Neuroendocrine Neoplasms

The clinical use of radiolabeled somatostatin analogues for imaging and radiotherapy has been
accepted globally. Interestingly, the incidence of NENs increased from 1.09 to 6.98 per 100,000
individuals what might partly be explained by earlier detection and diagnosis due to availability of
imaging technologies in clinical practice [9]. NENs are heterogeneous tumors and it is of utmost
importance to identify patients who might benefit from the SST receptor (SSTR) targeted therapy [10].
PET/CT with 68Ga-labeled somatostatin ligand analogues ([68Ga]Ga-SST/PET) is recommended for the
diagnosis, staging, and patient selection for endoradiotherapy [11]. Mono- and multi-center clinical
trials demonstrated benefits of SSTR targeted pre-therapeutic imaging and radiotherapy in terms
of patient management efficiency, efficacy, safety, and survival [12–14]. [68Ga]Ga-SST was found
valuable not only for pre-operative assessment of resectable lesions and multiple unresectable lesions
but also for intraoperative radio-guided resection [15,16]. [68Ga]Ga-SST/PET is also efficient tool for
the scheduling of the treatment combining long-acting somatostatin analogue (SSA) therapy and
endoradiotherapy [17] since the amount of the administered peptide influences the biodistribution
pattern and might enhance lesion uptake while reducing uptake in the healthy tissue and organs with
physiological expression of the target [2,18,19]. Guidelines for the standard care of NENs include
radionuclide SSTR targeted imaging and therapy [20,21].

The most commonly used analogues are based on DOTA-Tyr3-octreotide (DOTA-TOC) and
DOTA-(Tyr3, Thr8)-octreotate (DOTA-TATE) (Figure 2) labeled with 68Ga and 177Lu, respectively for PET
imaging and endoradiotherapy. Advances in regulation, marketing of pharmaceutical grade 68Ge/68Ga
generators, commercial availability of precursor peptides, radiopharmaceuticals and kits for the
preparation of the radiopharmaceuticals under radiopharmacy conditions facilitate the dissemination
of the technology. [68Ga]Ga-DOTA-TATE/[68Ga]Ga-DOTA-TOC and [177Lu]Lu-DOTA-TATE have been
approved by Food and Drug Administration (FDA) and European Medicines Agency (EMA) for PET
examination and treatment of SSTR positive gastroenteropancreatic NETs in adults.
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these imaging agents might provide higher diagnostic accuracy, e.g., [18F]FDG is used for measuring 
the tumor metabolic rate whereas [68Ga]Ga-SST provides information on SSTR expression guiding 
the biopsy [12,46–53]. Combination of a high SUV on [68Ga]Ga-SST/PET-CT and minor/no [18F]FDG 
uptake was associated with better prognosis [54]. 
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The [68Ga]Ga-SST/PET-CT has become the most promising non-invasive technique to study
NENs and demonstrated superiority over such imaging agents as [123I]MIBG, [11C]-HTP, [18F]FDG,
[18F]FDOPA, [111In]-pentetreotide, and [99mTc]-SST analogues [22–45]. However, the combination of
these imaging agents might provide higher diagnostic accuracy, e.g., [18F]FDG is used for measuring
the tumor metabolic rate whereas [68Ga]Ga-SST provides information on SSTR expression guiding
the biopsy [12,46–53]. Combination of a high SUV on [68Ga]Ga-SST/PET-CT and minor/no [18F]FDG
uptake was associated with better prognosis [54].

Advantages in terms of sensitivity and detection rate of [68Ga]Ga-SST/PET-CT were demonstrated
over MRI and CT [55–60]. Comparison of [68Ga]Ga-SST/PET-CT and [68Ga]Ga-SST/PET-MR showed
similar PET image quality however uptake quantification was found more accurate on PET/CT and
detection rate for bone metastases was higher [61–63]. However, these technologies can also be
complementary [64–66].

The vast experience with [68Ga]Ga-SST analogues demonstrated necessity for accurate
discrimination between cancerous and benign lesions, physiological and inflammatory
uptake [23,67–74]. Studies on biodistribution and radiation dosimetry of [68Ga]Ga-SST analogues in
patients and healthy volunteers revealed low total effective dose allowing multiple examinations per
year and no immediate or delayed toxicity [40,75].

Impact of SST Radiopharmaceuticals on Patient Treatment Management

Selection of patients who might benefit from endoradiotherapy [35,76–81] or are legible for surgery
relies on accurate staging. The quantification of marginal differences between baseline and follow-up
[68Ga]Ga-SST PET images require high accuracy. The (semi)-quantitative assessment of the response,
using [68Ga]Ga-SST PET/CT, to the endoradiotherapy with 177Lu- or 90Y-based somatostatin analogues
and re-staging of the disease have entered clinical practice. Patient selection, prognosis, prediction
of absorbed dose for radiotherapy, and treatment response based on [68Ga]Ga-SST PET/CT have
been performed using various parameters such as maximum standardized uptake value (SUVmax),
tumor-to-background SUVmax ratio (TBR), tumor-to-liver SUVmax ratio (TLR), tumor-to spleen SUVmax

ratio (TSR), functional volume (FV), K-Patlak and Ki [60,76,82–97]. SUVmax cut-off of 16.4 was proposed
for patient stratification for endoradiotherapy [84]. The cut-off of 15.0 was significantly associated
with survival [54]. Inverse correlation between SUVmax and Ki-67 index indicates that [68Ga]Ga-SST
PET reflects cell proliferation and helps guide disease management [98,99]. Nevertheless the criteria
for the assessment are still to be refined [85] and standardized.

Non-linear correlation between SUV and Ki indicated that SUV most likely did not reflect
SSTR density accurately at higher SUVs [100]. While high correlation found between Ki and TBR
indicated that the latter might be more accurate metrics than SUV for semi-quantitative assessment of
[68Ga]Ga-SST lesion uptake and treatment response monitoring [101]. Total functional tumor volume
(TFTV) measured on [68Ga]Ga-SST PET and computed by summing the volumes of all pathological foci
was suggested as prognostic biomarker with cut-off of 13.8 cm3 [102]. Somatostatin receptor expressing
tumor volume (SRETV), defined as tumor volume with higher [68Ga]Ga-SST uptake than 50% of
SUVmax within the volume of interest for each lesion, demonstrated prognostic value of survival [103].
Visual assessment of SSTR heterogeneity on [68Ga]Ga-SST PET/CT images was found valuable for
prediction and prognosis with heterogeneity leading to lower survival, even though it is difficult to
quantify (Figure 3) [104]. [68Ga]Ga-SST PET uptake heterogeneity determined based on intratumoral
textural features predicted endoradiotherapy outcome more accurately than SUVmax [105]. A threshold
of 2.5–4.46 or higher for probe TBR was found a sensitive parameter for guided surgical resection
(Figure 4) [15,16].
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Figure 3. PET/CT image showing somatostatin receptor heterogeneity. Left panel: CT images; middle
panel: PET images; right panel: PET/CT fused images. Yellow arrows show the CT lesions in liver;
red and green arrows show corresponding lesions on PET and PET/CT fused images, respectively.
This patient was characterized as heterogeneous as more than 50% of the target lesions showed
heterogeneous somatostatin receptor (SSTR) expression. Reproduced from [104].
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Figure 4. A 41-year-old man with metastatic lymph nodes on [68Ga]Ga-DOTA-TATE PET/CT. He had
undergone previous surgery for pancreatic NET (patient 5). Mesenteric lymph node from primary
pancreatic NET was found with probe with TBR of 3.4 for this 0.8 cm lesion (WHO grade 1). (A)
[68Ga]Ga-DOTA-TATE PET maximum intensity projection image showing mesenteric/duodenal lesion
in segment 3 (red arrow) and multiple retroperitoneal lymph nodes. (B) [68Ga]Ga-DOTA-TATE PET/CT
image showing mesenteric mass with SUVmax of 72.8 (red arrow). (C) Arterial phase CT showing
corresponding mesenteric mass (red arrow). (D) Representative hematoxylin and eosin staining
of tumor showing NET in lymph node, WHO grade 1. (E) Representative immunohistochemistry
for MIB-1 staining showing <2% of cells positive. (F) Immunohistochemistry for SSTR2 showing
representative image for score 3 (membranous pattern of SSTR2 staining in >50% of tumor cells)
(original magnification, ×20). (G) Immunohistochemistry for SSTR5 showing representative image of
tumor with >10% of tumor cells positive (original magnification, ×20). Reproduced from [15].
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The tumor SUVmax reaches plateau 5 min post injection and remains unchanged within the range
of 5–90 min [106] providing freedom of the examination logistics. However, it should be taken into
consideration that the washout from the normal tissue and blood requires longer time influencing
detection rate in the areas of high background uptake.

The fraction of patient treatments that were changed or adjusted based on [68Ga]Ga-SST/PET-CT
examination was considerable and varied dependent on the patient cohort size and
stratification [18,107,108]. The meta-analysis of clinical studies demonstrated that [68Ga]Ga-SST/PET-CT
was vital for patient management leading to the regimen change in more than one third of patients
(16%–71%) [109]. The treatment regimen was changed for 60% [110] and 50% [111] of the patients
after [68Ga]Ga-SST/PET-CT. In the patient sub-group re-evaluated for recurrence, the treatment
management was changed after [68Ga]Ga-SST/PET-CT in up to 25% of the patients [44]. Operative
plans and diagnosis/management were adjusted, respectively in one-third and half of the patients after
[68Ga]Ga-SST/PET-CT [112]. [68Ga]Ga-SST/PET-CT led to the treatment change in staggering 90.9%
of patients with suspected recurrence [113]. [68Ga]Ga-SST/PET-CT changed the tumor staging from
non-malignant to metastatic disease (Figure 5) [43].
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Figure 5. 58-year old male patient with malignant extra-adrenal PGL. The intense focal [123I]MIBG
uptake of the abdomen seen on anterior planar image ((a) red arrow) was confirmed by
[68Ga]Ga-DOTA-TOC- and [18F]FDOPA PET/CT as being a soft tissue extra-adrenal PGL ((b,c) red
arrows). After retrospective software-based image fusion of SPECT images with diagnostic CT images
(d), symmetrical physiological [123I]MIBG uptake was observed in the parotid and submandibular
glands (a,e). All verified head and neck lesions with focal [68Ga]Ga-DOTA-TOC ((c,f) green arrows)
and [18F]FDOPA uptake ((b,g) green arrows) were [123I]MIBG negative (a,e). The small focus of
[68Ga]Ga-DOTA-TOC uptake superior to the left upper lobe of the thyroid gland (c orange arrow) is a
PGL lesion of the larynx (confirmed by diagnostic CT) which was negative in [18F]FDOPA PET (b).
Compared to [123I]MIBG imaging (including SPECT/CT), [68Ga]Ga-DOTA-TOC PET/CT changed the
tumor staging from non-malignant to metastatic disease. Reproduced from [43].

As mentioned above the receptor density and type vary among lesions and within the same lesion
contributing to the considerable variation in the individual characteristics of patients with similar
clinical presentations. Consequently, optimization of endoradiotherapy in terms of administered
radioactivity dose, number of cycles, and time delay between the cycles is required [114]. It could be
achieved by individual pre-therapeutic quantitative dosimetry that would allow dose planning: (1) To
avoid radiotoxicity to the essential radiosensitive and excretory organs, e.g., bone marrow and kidneys,
to organs with physiological uptake of the radiopharmaceutical and healthy tissue surrounding lesions;
(2) to avoid undertreatment in case of high tumor burden. 177Lu emits gamma particles that can be
detected by SPECT for the dosimetry measurement and calculation, however not prior but during
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the therapy course. The [177Lu]Lu-DOTA-TATE dosimetry feasibility and impact on radiotherapy
efficacy and outcome was demonstrated wherein the survival improved with increased treatment cycle
number determined based on dosimetry (Figure 6) [115]. Fractionated [177Lu]Lu-DOTA-TATE therapy
based on dosimetry also improved the treatment outcome [116].
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Figure 6. Sagittal views of single photon emission computed tomography (SPECT)-CT over the
abdomen at the level of the right kidney, 24 hrs after infusion of 7.4 GBq of [177Lu]Lu-DOTA-octreotate.
(a) Cycle 1, May 2010 (b) cycle 7, August 2011. Left upper corner in each image: Attenuation correction
CT, right upper corner attenuation corrected SPECT, left lower corner fused SPECT-CT, right lower
corner maximum intensity projection (MIP). Note the position of the right kidney (arrow) and tracer
distribution within the tumors. Reproduced from [116].

As mentioned above [177Lu]Lu-DOTA-TATE SPECT dosimetry can earliest be performed after
the first treatment cycle and it requires 3–4 examinations within one week making logistics complex
and elevating costs. Quantification accuracy, higher spatial resolution, and dynamic scanning of PET
are strong advantages over SPECT. [68Ga]Ga-SST/PET by a single examination and with minimal
radiation dose to healthy organs would provide the required information prior to the radiotherapy with
higher spatial resolution and quantification accuracy, thus allowing for better selection of patients and
radiation dose planning. However, the straightforward use is precluded by the difference in physical
half-lives of the radionuclides (68 min (68Ga) vs 6.71 d (177Lu)) and thus different pharmacokinetic
time window. Kinetic modeling could provide a solution wherein the early distribution time points
could be acquired by [68Ga]Ga-SST/PET with high accuracy [2] and possibly extrapolated to match
therapeutic radionuclide time window providing higher resolution and quantification accuracy to
predict absorbed doses to tumors and healthy organs. However, a prospective clinical study is needed
to confirm this hypothesis.

3. Targeting PSMA on Prostate Cancer

Prostate specific membrane antigen (PSMA) is a membrane bound protein overexpressed in
prostate cancer, bladder carcinoma, schwannoma, and tumor neovasculature of many solid tumors [117].
The level of its expression is related to androgen independence, tumor aggressiveness, metastases,
disease progression and recurrence, and the quantification of the upregulation would provide tool for
accurate staging, prediction of aggressiveness and monitoring treatment response.

Urea-based inhibitors of prostate specific membrane antigen representing low-molecular-weight
peptidomimetics can image PSMA-expressing prostate tumors. Most analogues currently used
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in nuclear medicine are based on Glu–urea–Glu or Glu–urea–Lys motifs and it has been an
explosive clinical use of the analogues labeled with various radionuclides (this review is focused
on the analogues presented in Figure 7) [118]. The major radiometal-based analogues in clinical
studies comprise HBED (N,N′-bis [2-hydroxy-5-(carboxyethyl)benzyl] ethylenediamine) and DOTA
(1,4,7,10-tetraazcyclododecane-N,N′,N′′,N′′′-tetraacetic acid) chelators.
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Impact of PSMA-Targeted Radiopharmaceuticals on Patient Treatment Management

In the first clinical trials, Glu-NH-CO-NH-Lys-(Ahx)-[68Ga(HBED-CC)] [119] demonstrated
promising imaging results [120]. Since then numerous original research and review articles have
pointed out that the PSMA imaging using PET/CT is a sensitive, specific, safe, efficient and reproducible
diagnostic method allowing visualization of local disease, lymph node, bone, and visceral organ
lesions with high detection rate, and it has positive predictive value [121–128]. Retrospective
data analysis and prospective studies demonstrated the advantage of PSMA PET/CT compared
to CT, MRI, and 99mTc-MDP in terms of sensitivity and specificity that are crucial parameters for
staging accuracy and treatment planning. It is relevant for initial staging [129], early detection of
biochemical recurrence [130,131], and therapy planning and monitoring [132,133] particularly in
patients with metastatic castration-resistant prostate cancer (mCRPC). Significant correlation between
SUVmax on [68Ga]Ga-PSMA PET/CT and PSMA expression in primary prostate cancer, determined
histopathologically, was found and cut-off for SUVmax of 3.15 to discriminate tumor from normal
prostate was recommended [134]. Early imaging 5 min post injection was suggested for distinguishing
lesions from urinary bladder [135].

PSMA PET has demonstrated strong impact on therapy planning and clinical decision making
with treatment regimen adjustment in 27%–77% of patients [136–144]. The most frequently used pair
in the context of radiotheranostics is [68Ga]Ga-PSMA-11 and [177Lu]Lu-PSMA-617 (Figure 7). Despite
the structural difference and various radionuclides, it was demonstrated that [68Ga]Ga-PSMA-11 PET
plays an important role in predicting treatment response to [177Lu]Lu-PSMA-617 and monitoring
response for patient treatment management optimization [131,145–148]. Phase II prospective clinical
trial demonstrated correlation of the treatment response with the uptake of [68Ga]Ga-PSMA-11
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(Figure 8) [146]. Encouraging results in terms of safety, efficiency, response rate, toxicity, and reduction
of pain have been demonstrated by clinical trials assessing the role of [177Lu]Lu-PSMA-617 in patients
with mCRPC (Figure 9) [131,132,149,150].
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Figure 8. A case of homogenous treatment response (A) [68Ga]Ga-HBEDD PSMA-11/PET-CT: Highly
PSMA-avid liver and mediastinal lymph nodal metastases (SUVmax 70) on screening (PSA 340 ng/mL).
(B) [68Ga]Ga-HBEDD PSMA-11/PET-CT: 3 months after 4 cycles of [177Lu]Lu-PSMA therapy (PSA 1.5
ng/mL) exhibited marked biomarker and RECIST response with minimal residual PSMA activity in
liver metastases and solitary PSMA-avid mediastinal lymph node. Reproduced from [146].

Pharmaceuticals 2020, 13, x FOR PEER REVIEW 9 of 25 

 

 
Figure 8. A case of homogenous treatment response (A) [68Ga]Ga-HBEDD PSMA-11/PET-CT: Highly 
PSMA-avid liver and mediastinal lymph nodal metastases (SUVmax 70) on screening (PSA 340 
ng/mL). (B) [68Ga]Ga-HBEDD PSMA-11/PET-CT: 3 months after 4 cycles of [177Lu]Lu-PSMA therapy 
(PSA 1.5 ng/mL) exhibited marked biomarker and RECIST response with minimal residual PSMA 
activity in liver metastases and solitary PSMA-avid mediastinal lymph node. Reproduced from [146]. 

 
Figure 9. (A) Pre-therapeutic imaging using [68Ga]Ga-PSMA-11 PET/CT delivering highest resolution; 
(B) Co-emission of γ-rays by Lu-177 enables imaging during therapy with [177Lu]Lu-PSMA-617; (C) 
99mTc-PSMA scintigraphy has minimally less noise than posttherapy scanning and can be used for 
imaging follow-up in out-patient setting. GM 5 geometric mean; MIP 5 maximum-intensity 
projections; p.i. 5 after injection. Reproduced from [132]. 

Another Glu–urea–Lys motif based analogue, PSMA I&T, was labeled with 68Ga and 177Lu 
(Figure 7) respectively for the imaging and radiotherapy and demonstrated safe and effective 
radiopharmaceutical properties [151,152]. Both [177Lu]Lu-PSMA-617 and [177Lu]Lu-PSMA-I&T are 
found beneficial for patients in terms of survival and side effects [153,154]. The stratification of the 
patients, that would benefit from the endoradiotherapy, pre-therapeutic dosimetry, and treatment 

Figure 9. (A) Pre-therapeutic imaging using [68Ga]Ga-PSMA-11 PET/CT delivering highest resolution;
(B) Co-emission of γ-rays by Lu-177 enables imaging during therapy with [177Lu]Lu-PSMA-617; (C)
99mTc-PSMA scintigraphy has minimally less noise than posttherapy scanning and can be used for
imaging follow-up in out-patient setting. GM 5 geometric mean; MIP 5 maximum-intensity projections;
p.i. 5 after injection. Reproduced from [132].
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Another Glu–urea–Lys motif based analogue, PSMA I&T, was labeled with 68Ga and 177Lu
(Figure 7) respectively for the imaging and radiotherapy and demonstrated safe and effective
radiopharmaceutical properties [151,152]. Both [177Lu]Lu-PSMA-617 and [177Lu]Lu-PSMA-I&T are
found beneficial for patients in terms of survival and side effects [153,154]. The stratification of the
patients, that would benefit from the endoradiotherapy, pre-therapeutic dosimetry, and treatment
response monitoring were based on [68Ga]Ga-PSMA-PET/CT examination showing high correlation
between PET/SUVmax and absorbed tumor dose of 177Lu analogue [155–157]. The radiation sensitive
organs such as kidneys, bone marrow, and salivary glands require individual dosimetry assessment due
to the inter-patient variance and for the subsequent administered therapeutic dose adjustment [150,156].
The European Association of Nuclear Medicine published guidelines for radionuclide therapy with
[177Lu]Lu-labeled PSMA-ligand wherein PSMA-ligand/PET and [18F]FDG/PET are recommended for
the selection of patients that would benefit from the therapy [158]. PSMA-radioguided surgery in
prostate cancer may further improve the treatment outcome [123,159,160].

4. Targeting HER2 on Breast Cancer

Pre-therapeutic imaging can be combined not only with endoradiotherapy, but also with
chemotherapy yielding theranostic approach. HER2 is overexpressed in various malignant tumors,
and particularly in 25% of breast cancer cases indicating poor survival [161–166]. Therapies based
on antibodies and inhibitors targeting HER2 have revolutionized breast cancer treatment wherein
the pre-therapeutic invasive biopsy for histopathological confirmation of sufficient HER2 expression
(e.g., HercepTest®) for the patient selection and prediction of response is conducted [161,163,167–170].
However, heterogeneity of receptor expression within a lesion, and between the primary tumor and
metastasis leads to such drawback with biopsy as sampling error. Moreover, it is highly invasive or
not possible to perform sampling on bone and brain lesions as well as to collect samples from multiple
lesions. Repeated sampling to monitor treatment response and receptor expression change over time is
rarely possible in clinical practice [6,170–172]. Biopsy procedure causes patient distress and potential
side effects such as infection and hemorrhage. The solution to provide whole-body HER2 receptor
mapping and to overcome the biopsy drawbacks was found in radionuclide imaging, like in the cases of
SSTR and PSMA. Various radiolabeled ligands based on antibodies, antibody fragments, EGFR natural
ligand, Affibody® molecules, and tyrosine kinase inhibitors targeting HER2 have been developed and
studied pre-clinically and clinically [18,173–176]. Anti-HER2 Affibody® molecule (Figure 10) presents
advantages in terms of high affinity for HER2 receptors as well as favorable pharmacokinetics and
clearance from non-target tissue [177–181]. The second generation Affibody® molecule, ABY-025,
binds selectively to HER2 receptors with picomolar affinity. Importantly, the binding site differs from
that of trastuzumab and pertuzumab thus allowing imaging during the respective treatment [182].
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Figure 10. Development of anti-human epidermal growth factor receptor type 2 (HER2) Affibody®

molecules. The variation of 13 amino acids (AA) on the binding surface of a 3-helix peptide
structure (Z) resulted in a combinatorial library containing billions of variants from which the
1st generation HER2-binding Affibody molecule, ZHER2:342, was selected. Further modification of the
non-binding surface resulted in the second generation Affibody molecule, ZHER2:2891, with higher
thermal stability and hydrophilicity, diminished background interactions with immunoglobulins and
production flexibility by peptide synthesis or recombinant expression as well as fully retained in vitro
and in vivo functionality. ZHER2:2891 was modified by addition of a unique terminal cysteine for
site-specific conjugation to the bifunctional chelator, 1,4,7,10-tetraaza cyclododecane-1,4,7-tris-acetic
acid-10-maleimidoethylacetamide (MMA-DOTA). ZHER2:2891–Cys binds selectively to HER2 with high
affinity (KD: 60 pM). Reproduced from [183].

Impact of [68Ga]Ga-ABY-025 PET-CT on Patient Treatment Management

SPECT and PET imaging using anti-HER2 Affibody® molecule [177–182] demonstrated
the potential of safe, whole-body, and non-invasive “biopsy”, allowing receptor expression
heterogeneity profiling (Figure 11), in clinical trials with ongoing multicenter Phase
II/III one (NCT03655353) [5,183–187]. [68Ga]Ga-ABY-025 PET-CT presents advantages over
[111In]In-ABY-025/SPECT/CT in terms of simpler logistics, higher resolution, higher detection rate,
dynamic scanning, and accurate quantification [5,183] potentially allowing staging, prognosis, patient
selection, quantification of the receptor expression and therapeutic drug dose estimation, early
monitoring of the treatment response and resistance, residual disease, follow-up, and relapse.
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conversion from positive to negative confirmed also by biopsy [5]. 

Extraordinary receptor shedding was observed after the start of HER2-targeted therapy wherein 
most probably the on-going treatment had executed a rapid cytotoxic impact on the metastases with 
HER2 debris leaking into the blood stream [186]. Liver biopsy after PET examination showed fibrosis 
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Figure 11. Based on the results from [68Ga]Ga-ABY-025 PET/CT, mixed expression of HER2 in metastatic
breast cancer was seen in several patients and confirmed by biopsies in two. Patient 9 had HER2-negative
primary tumor and was enrolled as negative control. [18F]FDG-PET/CT showed metastases in left liver
lobe, peritoneal lymph nodes, and cervix of uterus. [68Ga]Ga-ABY-025 uptake was high in the liver
metastasis, low in peritoneal metastases and absent in the cervical region (not shown). According to
IHC, the liver finding was true positive and both other sites were true negative. Adopted from [5].

HER2-targeted treatment was changed as a consequence of [68Ga]Ga-ABY-025 PET examination
in 19% (n = 16) of patients [5]. Figure 12 presents a case wherein the prior IHC analysis of the
primary tumor biopsy specimen showed a borderline expression of HER2 and consequently the
treatment with Trastuzumab was not considered. However, subsequent [68Ga]Ga-ABY-025/PET-CT
detected bone metastasis and primary tumor with high SUVmax. The HER2-overexpression in the
metastasis was confirmed by IHC. Consequently, the treatment regimen was significantly changed.
Moreover, the false positive finding in the axilla by [18F]FDG/PET-CT (Figure 12D,F) was attributed
to post-surgical inflammation. Given these examples it is difficult to overestimate importance of the
targeting selectivity of [68Ga]Ga-ABY-025/PET-CT. Re-assessment of HER2 status is strongly encouraged
due to high probability of the receptor conversion from positive to negative and vice versa [188].
Trastuzumab treatment was stopped after [68Ga]Ga-ABY-025/PET-CT examination that showed HER2
status conversion from positive to negative confirmed also by biopsy [5].

Extraordinary receptor shedding was observed after the start of HER2-targeted therapy wherein
most probably the on-going treatment had executed a rapid cytotoxic impact on the metastases with
HER2 debris leaking into the blood stream [186]. Liver biopsy after PET examination showed fibrosis
and no sign of remaining cancer cells. Serum-HER2 level at the time of scanning was almost one
hundred times higher than the normal upper limit. The high serum-HER2 level resulted in drastically
altered organ distribution of [68Ga]Ga-ABY-025.

As in the case of SST analogues [2,17–19], the strong influence of the administered peptide
amount on the organ distribution, tumor uptake and dosimetry was observed in the case of
[68Ga]Ga-ABY-025 wherein the higher peptide dose radiopharmaceutical (427 µg vs 78 µg) presented
higher detection rate and image contrast, more favorable organ distribution and lower effective and
absorbed doses [5,183,187]. These examples strongly advocate for the importance of individualized
therapeutical dose determination.
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diagnostic methodology for routine clinical use, it is necessary to provide data evaluation methods 
that are independent on the variation of PET scanner characteristics. Intra-image normalization such 
as tumor-to-reference tissue ratio (T/R) was investigated and spleen was found the most accurate 
approach providing a simple and robust semi-quantification of HER2 expression [186]. The spleen 
T/R ratio met the selection criteria such as correlation with biopsy analysis results, low variation of 
radioactivity uptake, and low probability of hosting metastases from breast cancer on spleen. The 

Figure 12. Maximum intensity projection positron emission tomography (PET) images of whole-body
scan with [68Ga]Ga-ABY-025 ((A) 2 h) and [18F]FDG (D). Transaxial PET-CT fused images of the primary
tumor ((B,E), respectively for [68Ga]Ga-ABY-025 (2 h) and [18F]FDG) and metastasis ((C,F), respectively
for [68Ga]Ga-ABY-025 (2 h) and [18F]FDG). The black and white arrows indicate known tumor deposits.
The red arrow (D,F) indicate post-surgical inflammation after biopsy wherein sentinel lymph node was
tumor- and HER2-negative. Reproduced from [184].

In order to facilitate standardized multicenter trials and to enable dissemination of this diagnostic
methodology for routine clinical use, it is necessary to provide data evaluation methods that are
independent on the variation of PET scanner characteristics. Intra-image normalization such as
tumor-to-reference tissue ratio (T/R) was investigated and spleen was found the most accurate
approach providing a simple and robust semi-quantification of HER2 expression [186]. The spleen
T/R ratio met the selection criteria such as correlation with biopsy analysis results, low variation of
radioactivity uptake, and low probability of hosting metastases from breast cancer on spleen. The
suggested cut-off for the discrimination between HER2-positive and HER2-negative lesions was set
to 6.5. Another crucial aspect for [68Ga]Ga-ABY-025 PET-CT technology worldwide spreading is
production and availability of the radiopharmaceutical [184]. The automated production procedure is
currently used in the ongoing phase II/III study, aiming to validate the use of [68Ga]Ga-ABY-025/PET-CT
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for non-invasive assessment of HER2-status in breast cancers in a multicenter setting (ClinicalTrials.gov:
NCT03655353).

Reliable whole-body, quantitative assessment of HER2-receptor expression is crucial in order to
identify patients with HER2-positive tumors that can benefit from HER2 targeted treatments (Figure 13).
It is as important to avoid unnecessary cost and potential risk of serious adverse effects related to
the treatment of patients with HER2-negative tumors. [68Ga]Ga-ABY-025 PET/CT has potential for
therapy planning and treatment response monitoring, enabling adjustment of the treatment very early
in the process.
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all 16 patients undergoing [68Ga]Ga-ABY-025 PET/CT at 2 h after injection of tracer with high peptide 
content. Crosses symbolize biopsied metastases. The red line indicates a proposed threshold at SUVmax 
= 6 for discriminating HER2-positive and HER2-negative metastases. Adopted from [5]. 
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Numerous publications report on the alteration of treatment regimen based on radionuclide imaging 
that provides non-invasive, whole body mapping of the specific target in a single examination that 
can be safely repeated multiple times for monitoring treatment response and disease progression. 
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Figure 13. Maximum intensity projection PET images from two studied patients with wide-spread
metastatic breast cancer. Left panel: HER2-negative. Right panel: HER2-positive. All images are
normalized to SUV 10. Darker colors indicate higher uptake. The graph presents the range of
[68Ga]Ga-ABY-025 SUVmax in all nodular metastases (black dots) identified using [18F]FDG-PET/CT in
all 16 patients undergoing [68Ga]Ga-ABY-025 PET/CT at 2 h after injection of tracer with high peptide
content. Crosses symbolize biopsied metastases. The red line indicates a proposed threshold at SUVmax

= 6 for discriminating HER2-positive and HER2-negative metastases. Adopted from [5].

5. Conclusions

These examples of NENs, prostate cancer, and breast cancer management using targeted imaging
and (radio)therapy have proven the concept of (radio)theranostics for clinical practice valid. Numerous
publications report on the alteration of treatment regimen based on radionuclide imaging that provides
non-invasive, whole body mapping of the specific target in a single examination that can be safely
repeated multiple times for monitoring treatment response and disease progression. Pre-therapeutic
determination of the absorbed doses to normal organs and lesions is essential for treatment planning.
However, the use of short-lived radionuclides for the prediction of dosimetry for long-lived therapeutic
radionuclides presents challenge and therapeutic dose planning based on the receptor expression
quantification awaits prospective clinical studies to prove the concept.

Nuclear medicine is becoming an important component in personalized patient treatment.
Dissemination of the (radio)theranostic technology requires standardization and harmonization of
the clinical protocols and data evaluation strategies, as well as accessibility and regulatory approval
of radiopharmaceuticals.
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