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Abstract: Aging is considered an inevitable process that causes deleterious effects in the functioning
and appearance of cells, tissues, and organs. Recent emergence of large-scale gene expression datasets
and significant advances in machine learning techniques have enabled drug repurposing efforts
in promoting longevity. In this work, we further developed our previous approach—DeepCOP, a
quantitative chemogenomic model that predicts gene regulating effects, and extended its application
across multiple cell lines presented in LINCS to predict aging gene regulating effects induced by
small molecules. As a result, a quantitative chemogenomic Deep Model was trained using gene
ontology labels, molecular fingerprints, and cell line descriptors to predict gene expression responses
to chemical perturbations. Other state-of-the-art machine learning approaches were also evaluated
as benchmarks. Among those, the deep neural network (DNN) classifier has top-ranked known
drugs with beneficial effects on aging genes, and some of these drugs were previously shown
to promote longevity, illustrating the potential utility of this methodology. These results further
demonstrate the capability of “hybrid” chemogenomic models, incorporating quantitative descriptors
from biomarkers to capture cell specific drug–gene interactions. Such models can therefore be used
for discovering drugs with desired gene regulatory effects associated with longevity.

Keywords: library of integrated network-based cellular signatures (LINCS); longevity; gene regulating
effects; gene descriptors; molecular fingerprints; machine learning; deep neural network; drug repurposing

1. Introduction

Aging is an ultimate, intrinsic risk factor for all degenerative conditions, and the
incidence of age-associated diseases, such as Alzheimer’s, Parkinson’s, dementia, and
osteoporosis (among many others), increases dramatically as we age. Moreover, humans
are likely to suffer from conditions, such as vision impairment, chronic diseases, and
cancers in older ages, all of which can greatly reduce the quality of life. Numerous studies
were conducted in recent years to reverse the biological aging clock in animals, and a
recent work has successfully demonstrated restored vision in mice by switching certain
cells to a “younger” state [1]; thus, promising the possibility to regenerate tissues and
organs in mammals, and encouraging researchers to explore longevity beyond laboratory
animals. For example, mTOR inhibitors marked a milestone in anti-aging drug discovery
and produced an FDA-approved drug, rapamycin, which extended the life spans of several
model organisms. Rapamycin succeeded in increasing the lifespans by nearly three-fold in
mice [2] and was proven to prolong life in yeast, worms, and flies [3]. However, there are
objections to rapamycin, including warnings that such an immunosuppressive drug could
lead to the development of malignancies, such as skin cancer (noted in an FDA statement).
Moreover, irreversible side effects, such as diabetes [4], are also main concerns that have
prevented the use of rapamycin at a larger scale. In recent years, a variety of similar studies
have proposed geroprotector candidates that could potentially promote life spans [5–7].
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For example, acarbose [8], initially used to treat diabetes, showed significant effects in
improving the health and life spans of mice.

Recent developments in genomics and transcriptomics have led to a vast collection of
large-scale gene expression datasets. Connectivity Map (CMap) [9], introduced in 2006, is
aimed to link connections among genes, drugs, and diseases, by comparing gene signatures
with reference perturbations; thus, it is a great resource when developing drug candidates
with desired efficacies. CMap data have greatly been used in the bioinformatics field,
especially in drug discovery applications, to retrieve novel chemicals that share similar
regulatory effects on gene expressions with known perturbations. The NIH Library of
Integrated Network-based Cellular Signatures (LINCS), inspired by the success of CMap,
was funded as a next generation platform, using a more advanced approach at a lower cost,
producing high-throughput gene expression profiles that have outpaced CMap. LINCS,
with data stored in NCBI Gene Expression Omnibus (GEO), describes over 1 M gene
perturbations, inflicted by thousands of small molecules at a variety of conditions and
across multiple cell lines. With the increasing availability in gene expression profiles, we
now have the opportunity to study how small molecules affect genes in human cells and to
utilize the available gene expression data to predict drug responses, offering tremendous
value for drug discovery and repurposing. For example, the limited biological knowledge
on the recent COVID-19 outbreak made it difficult to choose appropriate treatments;
however, querying differentially expressed genes in similar diseases (SARS-CoV-2) against
CMap, to detect similarly behaved drug candidates without any prior knowledge, was
shown to be an efficient therapeutic strategy [10]. In addition, rapidly emerging machine
learning technologies provide powerful computational tools to discover the underlying
biological mechanisms in a variety of domains. Thus, our previous study, DeepCOP, has
proven the capacity of deep learning models in predicting gene expression regulating
effects using LINCS perturbation datasets [11].

In this work, we propose repurposed anti-aging drug candidates by analyzing their
regulation effects on the expression of pro-longevity and anti-longevity genes from the
LINCS dataset. While simply querying LINCS is still a valid method to repurpose the
existing drugs, this approach is limited to a very small portion of the chemical space
with only about 5000 compounds. Moreover, most of the experiments described in the
CMap/LINCS depository were designed to measure perturbation responses in cancer
cell lines; thus, making it challenging to study longevity effects of drugs in normal, non-
tumorous cell lines. Thus, it is essential to build more general machine learning models
that can harness the existing data from LINCS and apply to larger chemical space and
non-cancer cell lines.

Herein, we hypothesize that deep neural network (DNN) could learn from high di-
mensional features, including gene ontology terms, small molecule descriptors, cell line
mutation, and methylation data to produce reliable predictions on drug–gene regulation ef-
fects across multiple cell lines. To build testable computational models to predict regulating
effects on unknown data, we applied assorted classification approaches, including DNN,
random forest (RF), Naïve Bayes, and logistic regression. We tested the drug (D)–gene (G)
regulation effects on external normal cell lines using the pre-trained DNN models. We
identified 13 small molecules from the LINCS dataset that demonstrated potential ability
to regulate aging gene expressions with the desired effects. We further demonstrated that
the efficacy of these repurposed drugs on longevity is supported by some examples from
the literature.

2. Results and Discussion
2.1. Sample Distributions

We have labeled the upregulated and downregulated D–G–C interactions with the
top/bottom 5% Z-score cut-off in LINCS for each cell line. This results in a comparably
much smaller proportion in positive samples then the negatives. In addition, LINCS
experiments are not distributed evenly across cell lines, so that the sample size differs from
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different cell lines. For example, cell line A375 contains 73,610 unique D–G–Cs, labeled
as positive samples with top 5% threshold, while the remaining 1.2 million D–G–Cs with
unknown regulating effects form the negative set. Table 1 demonstrates the unique drugs
and genes in each cell line for the upregulated models.

Table 1. Sample distribution for each cell line in upregulated models; positive samples are defined as the top 5% gene
signatures, while negative samples are the remaining 95%. Unique numbers of drugs and aging genes are summarized
below. For example, cell line A375 contains 73,610 unique D–G–Cs as positive samples with the top 5% threshold, while the
remaining 1.2 million D–G–Cs with unknown regulating effects form the negatives. (#: Counts.)

Cell Lines A375 A549 HUH7 PC3 VCAP HL60 U266 NOMO1

Positive samples 73,610 196,027
See supple-

mentary
data

See supple-
mentary

data

See supple-
mentary

data

2138 735 1145
Negative samples 1.2M 3.4M 27,022 19,677 11,248

# Unique genes 729 729 729 729 729
# Unique drugs 1731 4875 40 28 17

2.2. CMAP LINCS Dataset Querying Results

By diving into the positive samples from the model 1 dataset labeled as upregulated
D–G–C pairs, we ranked compounds that interact with the most pro-longevity genes across
all LINCS cell lines. For each small molecule in the positive samples of model 1, we built a
pool of (drug)–(pro-longevity gene)–(cell line) pairs and selected the molecules with the
most interactions. To avoid chemicals that only upregulated pro-longevity genes within
a small range of cell lines, or chemicals that only interacted with a few certain genes, we
calculated the unique number of pro-longevity genes and cell lines to ensure the diversity
and robustness of the selected chemicals. Only pairs that covered above 100 pro-longevity
genes and more than five cell lines were included for the final ranking. Table 2 shows
the top 10 small molecules that upregulate the most pro-longevity genes across all LINCS
cell lines.

Table 2. Top-ranked 10 small molecules that upregulate the most pro-longevity genes across all cell lines in LINCS. (#: Counts.)

Rank Drug # Interactions # Unique Pro-Longevity Genes # Unique Cell Lines

1 Trichostatin-a 926 218 10
2 AT 7519 871 226 7
3 CGP-60474 843 200 6
4 Alvocidib 743 218 6
5 PHA-793887 730 244 7
6 Emetine 714 225 6
7 Narciclasine 711 239 6
8 Zibotentan 700 218 7
9 Oxetane 673 214 6
10 Mitoxantrone 632 201 6

Conversely, positive samples in model 2 indicate downregulated D–G–C interactions
for anti-longevity genes. We ranked small molecules that downregulated the most anti-
longevity genes in model 2, using the same filter as Table 2, and obtained the 10 top-ranked
chemicals, as shown in Table 3.

Table 3. Top-ranked 10 small molecules that downregulate the most anti-longevity genes across all cell lines in LINCS. (#: Counts.)

Rank Drug # Interactions # Unique Anti-Longevity Genes # Unique Cell Lines

1 AT-7519 585 201 7
2 BI-2536 536 207 9
3 Emetine 520 205 6
4 Narciclasine 510 212 6
5 CGP-60474 497 177 6
6 Oxetane 494 177 7
7 Trichostatin-a 454 198 6
8 Alvocidib 445 174 6
9 LSM-3353 433 215 6
10 BMS-345541 426 176 6
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We observed seven identical drugs AT 7519, CGP-60474, trichostatin-a, alvocidib,
narciclasine, oxetane, emetine in both tables, which showed not only upregulation ef-
fects with pro-longevity genes, but also downregulation effects with anti-longevity genes
across multiple cancer cell lines in LINCS. In addition, PHA-793887, zibotentan, and mitox-
antrone showed potential in upregulating pro-longevity gene expression, while chemical
BI-2536, LSM-3353, and BMS-345541 showed downregulated expressions on anti-longevity
genes. In total, we can repurpose 13 unique small molecules in LINCS perturbations
for longevity purpose.

Figure 1 shows the top 10 ranked small molecules with D–G (pro-longevity genes)–C
interactions from model 1, and Figure 2 illustrates D–G (anti-longevity genes)–C inter-
actions on the top 10 ranked small molecules from model 2. The color indicates the
occurrence on different cell lines. From green to blue, the line connecting longevity genes
with repurposed chemicals demonstrates a higher occurrence on different LINCS cell lines.
For example, drug BI-2536 connects with anti-longevity gene RAD51 with downregulat-
ing effects in 9 cancer cell lines, while drug trichostatin-a promotes pro-longevity gene
expressions (GDI1, ZNF224, MAP3K13, EPHB1, ZNF500, PPFIA3) in 10 cancer cell lines.
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Figure 1. Top 10 small molecules that upregulate pro-longevity genes across all LINCS cell lines.
Pro-longevity genes are shown on chromosomes bands, repurposed chemicals are shown on the drug
band. Colors of interactions indicate the relationship occurrence on different cell lines. Green D–G
(pro-longevity genes) links indicate the interactions were captured in less than six cell lines; pairs
found in above five cell lines are labeled in blue.

2.3. Model Performance

We estimated the accuracy parameter, AUC score, precision, and recall values for each
model, as shown in Table 4. A skewed class distribution in models 3–8 failed accuracy
on evaluation of the model performance. Another commonly used interpretation metric,
ROC curve, was employed in binary classification problems [12] to diagnose the trade-off
between sensitivity and specificity, and a higher ROC value indicates the trained model is
better in distinguishing between categories. However, area under the ROC curve could be
misleading when the one class significantly outweighs the other [13]. AUC score and ROC
visualization could be deceptively appealing in this scenario. Instead, precision and recall
provide a straightforward evaluation, focusing on the comparably small positive class
based on the imbalanced dataset [13], given the concept of the precision-recall curve (PRC)
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being the indictor of true positives in all positive predictions. Our results demonstrate
that DNN outperformed the other benchmark approaches including RF, Naïve Bayes, and
ridge regression for every model, despite the selected features in terms of the APR score
with an acceptable drop in AUC and accuracy. We also found that by concatenating the
cell line methylation beta values and binarized mutation status, the deep neural network
is more capable at extracting useful features from high-dimensional feature sets through
the learning process and results in better performance than learning with single cell
line annotation resource. Deep neural network models (model 1–2) have outstanding
APR scores and, thus, encourage making reliable predictions in further investigations on
unknown datasets. ROC and precision recall curves are shown in Figure 3 for model 1 and
model 2, and curves for the rest of the DNN models are provided in the supplementary
figures.
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Table 4. Model performance on overall accuracy, Area under the ROC curve (AUC), and area under the precision-recall
curve (PRC) for the positive class on deep neural network(DNN), random forest, naïve bayes and logistic regression models.

Model Evaluation DNN Random Forest Naïve Bayes Logistic Regression

1
Accuracy 0.73 0.71 0.54 0.62

AUC 0.82 0.71 0.54 0.62
APR 0.82 0.78 0.55 0.68

2
Accuracy 0.73 0.66 0.54 0.59

AUC 0.8 0.66 0.54 0.59
APR 0.78 0.71 0.54 0.64

3
Accuracy 0.95 0.94 0.6 0.95

AUC 0.89 0.64 0.76 0.63
APR 0.46 0.39 0.12 0.44
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Table 4. Cont.

Model Evaluation DNN Random Forest Naïve Bayes Logistic Regression

4
Accuracy 0.95 0.95 0.59 0.95

AUC 0.84 0.58 0.74 0.56
APR 0.4 0.29 0.1 0.33

5
Accuracy 0.95 0.94 0.68 0.95

AUC 0.85 0.64 0.78 0.65
APR 0.46 0.4 0.14 0.46

6
Accuracy 0.95 0.95 0.54 0.95

AUC 0.81 0.58 0.72 0.57
APR 0.39 0.29 0.09 0.35

7
Accuracy 0.95 0.95 0.58 0.95

AUC 0.88 0.64 0.75 0.64
APR 0.46 0.4 0.11 0.45

8
Accuracy 0.95 0.95 0.58 0.95

AUC 0.84 0.58 0.74 0.56
APR 0.4 0.3 0.1 0.54
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Figure 3. ROC and precision curves for model 1 ((a): PRC, (b): ROC) and model 2 ((c): PRC,
(d): ROC). While the AUC score dropped compared with models 3–8, the dramatic increase in the
APR score (positive class) gained confidence in predicting the positives in further exploration.

2.4. Prediction on Normal Cell Lines

Newly generated pairs with top-ranked repurposed chemicals and longevity genes
were predicted with our best-performed models—model 1 to predict upregulating effects
and model 2 for downregulating the effects on normal cell lines, NHBEC and HGEC6B. In
each drug candidate pool (Equation (1)), we generated D (drug candidate)–G (longevity
genes)–C (normal cell line) connections as input for the pre-trained deep neural network
models, and explored the positive predictions with desired regulation effects, respectively.
We summarized the total positive predictions along with the number of corresponding
aging genes for each drug candidate in model 1 and model 2, respectively, in Figure 4. The



Pharmaceuticals 2021, 14, 948 7 of 18

prediction results confirmed the efficacy of the potential desired aging gene regulation
effects on normal cell lines.

Overall samples of D(i) = Pool(D(i)) = D(i)−G(Aging gene)−C(Normal cell line) (1)
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Figure 4. Bar charts on positive predictions for repurposed drugs in CMAP LINCS dataset, for
normal cell lines, NHBEC and HGEC6B, using model 1(a) and model 2(b). Orange bars demonstrate
the total number of positive predictions for each drug candidate, and blue bars illustrate the number
of unique aging genes among positive predictions.

Table 5 shows the proportion of positive predictions against the D–G–C pool for each
promising drug candidate. We observed an above 80% positive prediction rate for drugs
“BI-2536”, “CGP-60474”, “oxetane”, “alvocidib” and “PHA-793887” in both model 1 and
model 2, demonstrating their great potential to upregulate pro-longevity gene expression
and downregulate anti-longevity gene expression in normal cells. All of the D–G–C
connections in BI-2536 pool were predicted positive in model 2, meaning that ‘BI-2536′

downregulated all of the anti-longevity genes we collected from GenAge.

Table 5. Percentage of positively predicted D (drug candidates)–G (aging genes)–C (normal cell line)
pairs for each promising drug candidate in model 1 and model 2. Highlighted repurposed drugs
showed great potential in regulating aging gene expressions on normal cell lines in both models.
Drugs in bold achieved high positive rate (above 80%) on both models.

Drug Model 1 Positive Rate Model 2 Positive Rate

AT 7519 78% 45%
BI-2536 81% 100%
Emetine 87% 66%

Narciclasine 80% 4%
CGP-60474 92% 87%

Oxetane 95% 82%
Trichostatin-a 88% 68%

Alvocidib 87% 83%
LSM-3353 82% 75%

BMS-345541 88% 33%
PHA-793887 80% 97%
Zibotentan 60% 56%

Mitoxantrone 92% 52%

2.5. Repurposed Drugs

We finally identified 13 molecules that helped to promote pro-longevity gene expres-
sions, inhibit anti-longevity gene expressions, or act in both desired ways. Structures of
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repurposed molecules are shown in Figure 5. While performing experimental validations
on these 13 molecules in longevity studies in model organisms is out of the scope for this
paper, previous research has uncovered a number of relevant traits of those chemicals with
our repurposed objectives. Table 6 summarizes the evidence that supports our findings.
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Figure 5. Molecular structures of repurposed drug candidates for longevity purpose.

Among 13 discovered longevity-promoting chemicals, four (AT 7519, alvocidib, CGP-
60474, and PHA-793887) are indicated as cyclin-dependent kinase (CDK) inhibitors. Inter-
estingly, previous studies have shown inhibition on CDK-2 resulted in tolerance towards
environmental stress and promoted anti-aging in Caenorhabditis elegans [14,15]. Moreover,
“BI-2536” inhibits tumor growth in vivo by inducing apoptosis on cancer cells as an in-
hibitor of polo-like kinase 1 [16]. Experiments have found the effectiveness in anti-aging
on emetine dihydrochloride treated to leukemic mice [17]. In addition, narciclasine was
proven to attenuate diet-induced obesity by promoting oxidative metabolism [18] while
trichostatin-a, a histone deacetylase (HDAC) inhibitor, was proven to increase lifespans by
promoting hsp22 gene expression on Drosophila melanogaster [19]. Zibotentan was designed
and tested on castration-resistant prostate cancer patients as an endothelin A receptor
antagonist [20], it is also proven to prevent hypertension and maintains cerebral perfu-
sion [21]. A study conducted among 42 women with breast cancer showed great potential
in mitoxantrone as a treatment for advanced breast cancer with mild side effects compared
to traditional treatments, such as chemotherapy [22].

Table 6. Summary of previous research findings for repurposed pro-longevity drugs.

Repurposed Drug Traits Evidence

AT 7519 Inhibitor of CDKs /
BI-2536 Inhibits tumor growth [16]
Emetine Increases lifespan of leukemic mice [17]

Narciclasine Attenuates diet-induced obesity [18]
CGP-60474 Inhibitor of CDKs /

Oxetane / /
Trichostatin-a Increases lifespan by promoting hsp22 gene expression [19]

Alvocidib Inhibits metastasis of human osteosarcoma cells [23]
LSM-3353 / /
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Table 6. Cont.

Repurposed Drug Traits Evidence

BMS-345541 Inhibitor of kB-kinase (IKK) /
PHA-793887 Inhibitor of pan-CDK /
Zibotentan Inhibits blood vessel growth [21]

Mitoxantrone Treatment of advanced breast cancer [22]

3. Materials and Methods
3.1. Datasets

Connectivity map (CMap) is a pilot project that aims to characterize cellular responses
under pharmacologic perturbagens, thus, fulfilling the underdeveloped space in disease-
associated gene functions, and contributing toward drug development by estimating
off-target activities and eliminating unfit candidates at early stages. To date, the CMap
LINCS dataset encompasses more than 1.5 million gene expression signatures related to up
to 5000 small molecules and more than 10,000 genes across a total of 77 cancer cell lines [9].
Such a vast amount of gene expression information enables computational approaches,
such as the deep neural network, to learn data patterns, to predict gene regulation ef-
fects [11], and drug side effects [24]. In this work, we collected L1000 high-throughput
gene expression data from LINCS phase I dataset; the dataset contains perturbation data
points on gene expression level under small molecular treatments at different conditions,
such as dosages, cell line cultures, and time points. To reduce the data size and to maintain
consistency across multiple cell lines, only perturbations with 24-h treatment were kept,
and samples with molecular dose units other than “µM” were excluded.

Aging-related genes were downloaded from the GenAge (the Aging Gene Database)
source, which labels pro- and anti-longevity genes in various model organisms, including
(but not limited to) Caenorhabditis elegans, Drosophila melanogaster, and Zaprionus paravittiger.
GenAge has been developed through manual curation by experts and several collabo-
rated associations. In this work, we collected a total of 2205 genes from GenAge that
are considered to have either pro- or anti-longevity effects in 10 different model organ-
isms, including Caenorhabditis elegans, Mus musculus, Saccharomyces cerevisiae, Drosophila
melanogaster, Mesocricetus auratus, Podospora anserina, Schizosaccharomyces pombe, Danio
rerio, and Caenorhabditis briggsae. These aging-related genes identified from the model
organisms were mapped to 889 human genes in total, where 397 were labeled with pro-
longevity effects and 492 with anti-longevity effects, respectively (these datasets are down-
loadable online through https://genomics.senescence.info/download.html (accessed on
17 September 2021)). Out of a total of 889 collected aging genes, 729 were successfully
mapped to the LINCS dataset and were further investigated in our models.

Only filtered LINCS perturbations that contained 729 aging-related genes were kept
for further machine learning modeling and prediction. To label gene expression regulations,
we used the left–right percentile method on the Z-score with a threshold of 5% for each
cell line. Only the top 5% of gene expression values were considered as upregulation
samples in the upregulation models, and the bottom 5% of gene expression values were
marked as downregulated in the downregulation models, while the remaining 95% samples
were treated with ‘unknown’ effects (Figure 6). In the training models that predicted
upregulation effects, the above defined upregulation samples were treated as positive
samples, while the remaining 95% were treated as negative samples. In the training models
that predicted downregulation effects, the above defined downregulation samples were
treated as positive-, while the remaining 95% were treated as negative samples. Figure 7
features gene expression Z-score distribution and data sampling in upregulation and
downregulation models.

https://genomics.senescence.info/download.html
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3.2. Gene Descriptors

Gene ontology (GO) terms have been commonly used for gene annotations in recent
drug discovery applications [25,26]. The GO terms consist of a set of categories that
describe the gene functions as in cellular components, biological processes, and molecular
functions. R package “ontologySimliarity” was built for comparing gene semantic similarity
as encapsulated by the GO annotations, including nearly 20,000 terms that relate to all
branches of gene ontology. The gene ontology descriptors for the 729 aging related human
genes in LINCS were generated to a list of binary integers using one-hot encoding with R
package “ontologySimliarity”. Only GO terms that shared with at least three age-related
gene domains were selected to reduce the feature size, which resulted in 946 GO features
in the final standard dataset of aging-related genes. Our previous works [11,27] already
illustrated the efficacy of using GO terms as gene descriptors in machine learning models,
especially with deep learning architectures.
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3.3. Molecular Fingerprints

The molecular fingerprints were encoded into 0|1 binary vectors to encode chemical
structures, where 1 indicated a specific substructure was found in a given molecule. In this
paper, Morgan fingerprints [28] were generated for small molecules in the LINCS phase I
dataset using the python library “RDKIT”. The Morgan fingerprints were calculated
by counting the path through each atom in the chemical given a specific radius and a
bit number. By increasing the radius, more fragments can be included in the Morgan
fingerprint computations and can output a larger chemical feature space. We set the
radius to 2 in this work and generated 2048 Morgan fingerprints for each molecular using
canonical SMILES.

3.4. Cell Line Features

Gene mutations play an important role in cancer genetics and can be utilized to
represent cell line functionalities, as previous studies have demonstrated significant per-
formance of mutation features in machine learning approaches [29,30]. We collected copy
number alternations and coding variants in “pan-cancer” from the Genomics of Drug
Sensitivity in Cancer public platform, and a total of 735 mutation markers were labeled for
each cell line. The mutation annotation dataset for pan-cancer is freely downloadable at
https://www.cancerrxgene.org/downloads (accessed on 17 September 2021).

Besides mutation markers, DNA methylation levels also contributed to drug response
prediction applications [31,32]. Its impact in regulating gene expression determines organ
functionalities and may cause severe diseases, such as cancer. The 450K BeadChip array
provides high-throughput methylation data at more than 450K CpG sites, at a low cost,
making it feasible for machine-learning algorithms to learn and extract informative features.
We collected methylation profiling from the NCBI gene expression omnibus (GEO) series
GSE68379, where a total of 1028 cell lines were tested with the methylation level for each
CpG island. Ranging from 0 to 1, beta value was calculated as a ratio of methylated
intensity verses the sum of methylated and unmethylated intensity at the probe level. The
formular of beta value B at the specific j CpG site is defined as Equation (2):

B(j) =
max

(
yj,methylated, 0

)
max

(
yj,methylated, 0

)
+ max

(
yj,unmethylated, 0

)
+ α

(2)

where yj,q stands for jth probe intensities in q status. α is the added in denominator to avoid
computational error. As recommended by Illumina [33], beta value is used in this work to
represent the methylation level for cell lines. We used R package “FCBF” to select limited
informative methylation beta values from 450 K CpG sites. The fast correlation based filter
(FCBF) algorithm [34] selected the most relevant features towards histology sites of LINCS
cancer cell line. Figure 8 shows the corresponding number of selected variables under a
variety of (cell line)–(cancer histology sites) correlations. By choosing a correlation cut-off
at 0.6, we obtained 1183 subset methylation levels for each cell line.

3.5. Querying Camp LINCS Dataset

To retrieve aging-related drug (D)-gene and (G)-cell line (C) combinations, we queried
perturbations with the aging-related genes in the LINCS phase I dataset. Samples were
consequently labeled through 5% left–right percentiles as upregulation effects and downreg-
ulation effects, respectively. Human pro-/anti-longevity genes extracted from the GenAge
platform were used as input samples to query against CMAP LINCS dataset signatures.
Drugs that upregulated pro-longevity gene expression or downregulate anti-longevity
gene expression across multiple cell lines were identified and could be repurposed for
promoting longevity. Top chemicals, ranked by the number of D–G–C interactions, showed
great potential in increasing lifespans in humans, as supported by previous studies.

https://www.cancerrxgene.org/downloads
https://www.cancerrxgene.org/downloads
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3.6. Machine Learning Models and Deep Neural Network

Machine learning (ML) models have demonstrated unprecedented performance in re-
cent computational biology applications [35–37]. ML approaches are programmed without
explicit knowledge to self-extract informative features by learning the parameters, such
as weights, and illustrate patterns towards the output. The pervasive applications in ML
have changed our day-to-day lives, e.g., via object recognition applied in auto-driving cars,
recommender systems on social media, and in-depth understanding on drug behavior. The
capable solutions that trained models can learn are generally divided into regression and
classification problems, where a regression model predicts the true numeric value given
a set of features, and a classification model gives a category the input sample belongs.
Commonly deployed classification algorithms include logistic regression, random forest
(RF), and neural network (NN), each with pros and cons. It is notable that in the family of
ML, deep learning (DL) plays an important part and is capable of learning more complex
patterns with neurons, just as human brains. The advantage of DNN lies in absorbing
datasets with high dimensions and recognizing nonlinearity; thus, providing solutions to a
vast range of practical problems.

To better illustrate D–G–C relationships and have a clear evaluation on the feature
power, here we differentiated the sample size and feature sets, respective to up- and
downregulation effects predictions, and designed the following eight models. The selected
feature set in each model is: model 1, model 2, model 3, and model 4: gene descriptor, drug
descriptor, cell line mutation status, cell line methylations; model 5 and model 6: gene
descriptor, drug descriptor, cell line mutation status; model 7 and model 8: gene descriptor,
drug descriptor, cell line methylations.

Due to the harsh filter on the sample selection process of determining up- or down-
regulation effects, only the top 5% samples were labeled as positive samples from LINCS
for each model. Such severe imbalanced datasets challenged the ML approaches and could
be difficult in measuring model performance for future predictions. To avoid models from
being heavily influenced only by the majority class, we randomly selected the same number
of negative and positive samples in model 1 and model 2. We used samples across all the
cell lines in LINCS for models (1–2), and compared them with the remaining models (3–8)
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that used the imbalanced dataset extracted from two cell lines “U266” and “NOMO1”,
which contained less data points and, thus, were easier for traditional machine learning
benchmarks to train (details are provided in Table 7).

Table 7. Detailed model layouts on predictive labels, sample cell lines, used feature set, and whether
the negative class is being downsampled. For example, model 3 was trained with gene ontology term,
drug descriptors, both cell line mutation status, and methylation values on perturbation responses
on cell lines “U266” and “NOMO1”. The positive samples from model 3 were D–G–C interactions
with the top 5% upregulated gene expression signatures, whereas the negative samples were the
remaining 95% perturbation data.

Model Predictive Direction Cultured Cell Lines If Balanced Sample Feature

1 Up/Non-upregulation Includes all cell lines True, Type 1
2 Down/Non-downregulation Includes all cell lines True, Type 1

3 Up/Non-upregulation U266, NOMO1 False, Type 1
4 Down/Non-downregulation U266, NOMO1 False, Type 1

5 Up/Non-upregulation U266, NOMO1 False, Type 2
6 Down/Non-downregulation U266, NOMO1 False, Type 2

7 Up/Non-upregulation U266, NOMO1 False, Type 3
8 Down/Non-downregulation U266, NOMO1 False, Type 3

Feature definitions: Type 1: gene ontology descriptors + drug fingerprints + cell line mutational status + cell line
methylation levels. Type 2: gene ontology descriptors + drug fingerprints + cell line mutational status. Type 3:
gene ontology descriptors + drug fingerprints + cell line methylation levels.

We then compared DNN model performance with commonly used classification
solving algorithms including RF, Naïve Bayes, and logistic regression. Due to the large
feature size, L2 norm(ridge) regulation was applied in logistic regression models to avoid
coverage failure and overfitting, by taking the squared value of trained weighs as the
penalty term in the cost function. DNN was constructed with four layers (one input layer,
two hidden layers, and one output layer), and the information was randomly dropped
by 50% in forward propagation. Selu and Rule activation functions were used for the
internal hidden layers, adding complexity and non-linearity to the model, followed by a
SoftMax activation for the final output layer, to transfer values into possibilities. The neural
numbers of the hidden layers were identical as those from the initial input feature list.
Figure 9 illustrates the DNN structure with the number of neurons and activation functions
for model 1 and model 2. For more robust evaluation results, early stopping and three-fold
cross validation (CV) were applied in the DNN model to avoid overfitting. We initiated the
model with hyperparameters, such as layer numbers identical with our previous studies
that demonstrate decent performance, and slightly revised them by watching validation
results in such a manner where model complexity must decrease when overfitting and
increase when underfitting.

3.7. Model Evaluation

To evaluate the performance on the developed models, we computed the overall
accuracy score, area under the ROC curve (AUC) parameter, as well as precision and
recall values for each model. Accuracy is simply calculated as the correct prediction
proportion on the whole dataset, whereas the receiver operating characteristic curve
(ROC) visualizes the model performance at all classification thresholds by comparing
true positive rate (TPR) versus the false positive rate (FPR). Accuracy and AUC score are
commonly used in evaluating machine-learning models and offer fairly accurate insight
on model performance. However, both values are easily dominated by the majority
group in the imbalanced datasets and could achieve misleading high scores. To address
this issue, we introduced precision and recall as supplementary evaluations. Precision
(Equation (3)), also known as positive predictive value, signifies the proportion of positive
samples that are predicted positive. Recall (Equation (4)), also referred as true positive
rate or sensitivity, evaluates the proportion of true positives out of all predicted positive
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samples. Overall, precision and recall estimate the prediction power on the positives,
which is highly important in our case, given that future repurposed drug candidates are
based on the positive predictions and a false positive is more disastrous and costly than a
false negative. As an alternative visualization of ROC curve on imbalanced datasets, the
precision-recall curve (PRC) illustrates the trade-off on precision and sensitivity on every
possible cut-off. A reasonable PRC curve should be above the diagonal line, with the area
under the curve more than 0.5.
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Precision = true positive/(true positive + false positive) (3)

Recall = true positive/(true positive + false negative) (4)

3.8. Prediction on Normal Cell Lines

Given the fact that all data in LINCS are for cancer cell lines, it is essential to run com-
putational predictions for repurposing drugs with expected pro-longevity effects in normal,
non-cancerous cells. The determining factor in choosing normal cell lines for prediction
is the availability of features that are identical with our trained models. Two normal cell
lines “NHBEC” and “HGEC6B” were tested for methylations in beta values using the same
technology—Illumina 450K BeadChip arrays—and were annotated with identical CpG
sites, as in GSE92843 and GSM2438425, respectively. As for the mutational status, these
two normal cell lines were simply annotated as having ‘none’ in the prediction models.

We tested the regulation effects on the top 10 ranked promising drugs that we previ-
ously queried from LINCS on these two normal cell lines, “NHBEC” and “HGEC6B”, with
our best performed models, and provided the probabilities on desired regulating effects
with pro-/anti-longevity genes. These 10 potential pro-longevity chemicals were paired
with age genes under two normal cell lines, forming in total 7940 D–G–C pairs to be tested
with up/non-upregulating (Equation (5)) and 9840 D–G–C down/non-down (Equation
(6)), respectively. Figure 10 illustrates a flowchart for applying the longevity prediction
models to these two normal cell lines. The mutational profiling for normal cell lines was
labeled “0” in feature representation, and the methylation beta levels were collected from
the Gene Expression Omnibus (GEO) “GSE92843” and “GSM2438425”.

10 (promising drugs)× 397 (pro− longevity genes)× 2 (cell lines) = 7940 (5)

10 (promising drugs)× 492 (anti− longevity genes)× 2 (cell lines) = 9840 (6)
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4. Conclusions

It is estimated that the anti-aging global market value was over 60 billion US dollars
annually in 2020 [38]. Machine learning tools can utilize substantial transcriptional pertur-
bation data from resources, such as CMap and LINCS, and transfer them into predictive
models and actionable knowledge on modulation of longevity genes. In this study, we
labeled gene expression changes using the left–right percentile at a 5% threshold for each
drug–gene–cell perturbation in the LINCS datasets and analyzed the labeled samples
with known human aging-related genes. We created several machine-learning models to
classify the direction of gene expression changes by using combined descriptive features of
small molecules and genes along with information on cell line mutations and methylation
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levels. The deep neural network models outperformed the other K-machine learning
methods and demonstrated promising accuracy in predicting up- or down-gene-regulating
effects on perturbations beyond the scope of the original LINCS dataset. In addition, we
demonstrated that the longevity models, while trained from cancer cell lines, are applicable
to normal cell lines, and the models predicted a list of drug candidates that could have
potential to be repurposed as pro-longevity agents. Quantitative predictions on all possible
combinations of D (repurposed drug)–G (aging gene)–C (normal cell line) demonstrated
the desired regulating effects on normal cells for the repurposed drugs with high positive
rates. As a result, we identified 13 repurposing drug candidates that could potentially
promote longevity by regulating aging-related gene expressions towards the desired di-
rection, either upregulating pro-longevity genes, downregulating anti-longevity genes, or
both. Interestingly, some of the proposed drug candidates were previously reported with
aging-related functionalities in a number of model organisms. For example, one of the
repositioned drug candidates, trichostatin-a, was found efficient at promoting anti-aging
gene expression among fruit flies [19].

Our study utilized knowledge transferring from high-throughput gene expression
profiling to testable data models, and achieved accurate performance in validating reg-
ulation effects, despite the severe imbalance of the data classes. In comparison to our
previous model, DeepCOP [11], which is limited to only drug and gene descriptors, our
current model has incorporated additional cell line descriptors that allow knowledge to
be transferred from one set of cells (for example, cancer cells) to another set of cells (such
as normal cells) using a single unified DNN. This task would not have been possible
with DeepCOP models, where separate, disconnected DNN models were built for each
individual cell line.

The limitations of this study include the possible improved methodologies in NN
schemes and the lack of experimental validation of repurposed chemicals. One noticeable
NN scheme—the graph convolutional neural network (GCN)—was presented in various
studies, from drug discovery [39] to gene interactions [40]. In bioinformatics applications,
two major types of graph structures were applied [41]: molecular structures and interaction
networks. A multi-relational interaction network could be explored in GCN models
using our preprocessed dataset that contains three domains—cells, genes, and drugs.
Experimental validations should also be considered in future studies, in conjunction with
docking simulations and ADMET estimations (a work in progress) using our in-house drug
development platforms [42].
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Abbreviations

APR area under precision recall curve
AUC area under the roc curve
CDK cyclin-dependent kinase
CMAP connectivity map
CV cross validation
FPR false positive rate
GEO gene expression omnibus
GO gene ontology
LINCS library of integrated network-based cellular signature
NN neural networks
PRC precision recall curve
RF random forest
ROC receiver operating characteristic curve
TPR true positive rate
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