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Abstract: Statins inhibit the 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMG-CoA reduc-
tase), which is the rate-limiting enzyme in cholesterol biosynthesis. Statin therapy reduces morbid-
ity and mortality in those who are at high risk of cardiovascular disease. Monacolin J is a statin 
compound, which is an intermediate in the lovastatin biosynthesis pathway, in the fungus Aspergil-
lus terreus. It is also found in red yeast rice, which is made by culturing rice with the yeast Monascus 
purpureus. Monacolin J has a hydroxyl substituent at position C’-8 of monacolin L. Here, a new statin 
derivative from monacolin J was made through the catalysis of CYP102A1 from Bacillus megaterium. 
A set of CYP102A1 mutants of monacolin J hydroxylation with high catalytic activity was screened. 
The major hydroxylated product was C-6’a-hydroxymethyl monacolin J, whose structure was con-
firmed using LC–MS and NMR analysis. The C-6’a-hydroxymethyl monacolin J has never been re-
ported before. It showed a greater ability to inhibit HMG-CoA reductase than the monacolin J sub-
strate itself. Human liver microsomes and human CYP3A4 also showed the ability to catalyze mon-
acolin J in producing the same product of the CYP102A1-catalyzed reaction. This result motivates a 
new strategy for the development of a lead for the enzymatic and chemical processes to develop 
statin drug candidates. 

Keywords: monacolin J; human liver microsomes; statin; HMG-CoA reductase; regioselective hy-
droxylation 
 

1. Introduction 
Statins are potent inhibitors of the 3-hydroxy-3-methyl-glutaryl-coenzyme A reduc-

tase (HMG-CoA reductase), which is the enzyme that catalyzes the rate-limiting step of 
cholesterol biosynthesis [1,2]. The statins also have other pleiotropic activities, such as 
anti-inflammatory, antithrombotic, and improved endothelial functions [3]. They reduce 
cardiovascular disease and mortality in people at high risk of cardiovascular disease [4,5]. 
Studies using statins for the treatment of hyperlipidemia demonstrated their efficacy in 
lowering triglycerides and low-density lipoprotein cholesterol. Recently, their use in can-
cer therapy was noticed as a tumor suppressor or adjuvant to chemotherapy. Several stud-
ies suggested that statins may reduce cancer mortality and may demonstrate some pro-
tective effects through the use of chemotherapy and radiation-induced cardiovascular 
toxicity [6]. Today, the search for new substances derived from statins to support treat-
ment and to create more diverse products is essential in research [7,8]. 

Currently, seven statins are available in major international markets: lovastatin, 
simvastatin, pravastatin, fluvastatin, atorvastatin, rosuvastatin, and pitavastatin [9]. The 
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statins share similar chemical characteristics but differ in their molecular synthesis, solu-
bility, and pharmacokinetic behavior. Among them, lovastatin (also known as monacolin 
K) is the only natural statin that is mainly produced by Aspergillus terreus strains. The 
biosynthetic pathway for lovastatin from A. terreus includes the three key intermediates 
of dihydromonacolin L, monacolin L, and monacolin J [10]. The 2-methylbutyryl side 
chain of lovastatin is synthesized by a polyketide synthase, namely, LovF, and transferred 
to the C-8′ hydroxyl group of monacolin J by LovD, which is an acyltransferase. Inactiva-
tion of either LovD or LovF leads to the accumulation of the monacolin J. Pravastatin is 
derived from compactin, which is a natural analog of lovastatin that is produced by Peni-
cillium citrinum, via biotransformation. Simvastatin can be efficiently synthesized from 
monacolin J (a lovastatin analog without the side chain at C-8′ hydroxyl group) via a pro-
cess that uses the A. terreus acyltransferase LovD [11]. 

On the other hand, monacolin J itself is a natural statin compound that is found in 
red yeast rice. It is made by culturing rice with various strains of the yeast Monascus pur-
pureus [12]. It has the ability to inhibit cholesterol biosynthesis [13]. Monacolin J is a pre-
cursor of lovastatin, which is an important drug for treating hypercholesterolemia [14] 
and has potential neuroprotective activities [15]. 

Interestingly, monacolin J was used as an intermediate to produce six novel statin 
derivatives by attaching different side chains at the C-8′ hydroxyl residue [15]. These 
novel derivatives were screened for their hypocholesterolemic and neuroprotective activ-
ities. One derivative showed a very low HMG-CoA reductase IC50 and a high protection 
rate for oxidative-stress-induced neuron cell death. This result showed that monacolin J 
can be used as a valuable intermediate for the synthesis of novel drug candidates via bio-
technological and chemical procedures. 

CYP102A1 (P450 BM3) from Bacillus megaterium has attracted considerable interest 
due to its excellent enzymatic properties, such as higher catalytic activity, more broad 
substrate scope, and higher catalytic efficiency compared to other P450s. With a large 
number of crystal structures, the soluble expression in Escherichia coli and its self-sufficient 
characteristics make CYP102A1 a P450 prototype for studying the structure–function re-
lationships of P450s. It has the ability to participate in catalyzing relatively diverse reac-
tions [16–18]. In particular, CYP102A1 is a biocatalyst that catalyzes the production of hu-
man metabolites [19], which are useful in chemical biosynthesis and pharmaceutical 
fields. CYP102A1 catalyzes the 6′β-hydroxylation of lovastatin and simvastatin to make 
human metabolites from them [19]. Multistep chemical synthesis of drugs, drug metabo-
lites, and fine chemicals is laborious, cost expensive, and environmentally unfriendly. 

Using cytochrome P450 (CYP or P450) enzymes, this study was conducted to synthe-
size new compounds from monacolin J through greener biological pathways. Here, we 
found that the CYP102A1 mutants could catalyze regioselective hydroxylation of mon-
acolin J. More specifically, the hydroxylated product was characterized as a new com-
pound with the OH group attached at position C-6′a of monacolin J, which has never been 
reported before (Figure 1). The potential of the new hydroxylated product was evaluated 
by means of an HMG-CoA reductase inhibition assay by comparing it with monacolin J. 
The result showed that 6’a-hydroxymethyl monacolin J has the ability to inhibit HMG-
CoA reductase at higher levels than monacolin J. This result suggested a new research 
approach to make a lead to produce new derivatives of statin drugs. 
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Figure 1. Chemical structures of monacolin J and 6′a-hydroxymethyl monacolin J. (A) Chemical 
structure of monacolin J. (B) Chemical structure of a major product from monacolin J that was cat-
alyzed using CYP102A1 in the presence of NADPH. The structure of the product was found to have 
an OH group attached to the C-6’a position, while the original monacolin J structure had an H3 
group. 

2. Results 
2.1. Monacolin J Oxidation Using CYP102A1 and Identification of the Major Product 

To determine the ability of CYP102A1 to hydroxylate monacolin J, a set of its mutants 
were reacted with monacolin J (200 μM) at 37 °C. The 60 mutants that were used to find 
highly active mutants toward monacolin J were selected based on our previous works 
showing their catalytic activities on several natural substrates [20–23]. Each mutant had 
amino acid substitutions relative to wild-type (WT) CYP102A1, as shown in Supplemen-
tary Table S1. The effect of CYP102A1 mutants on monacolin J was checked using HPLC 
(Figure 2). Seventeen of the 60 mutants tested here were shown to have hydroxylation 
activity (>0.05 min−1) toward monacolin J (Figure 3), with M697 exhibiting the highest hy-
droxylation activity among the tested mutants (Figure 2). One major metabolite was ob-
served at a retention time of 20.4 min. The other mutants did not provide any apparent 
catalytic activity (<0.01 min−1). Optimal pH for production of the hydroxylated product 
was 7 (Figure S1). 
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Figure 2. HPLC chromatograms of monacolin J and its products when using CYP102A1 M697. The 
peaks of the reaction mixtures were identified by comparing their retention times: a major product 
of monacolin J (tR = 20.4 min) and monacolin J (tR = 30.2 min). The star marks the major product. 
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Figure 3. Hydroxylation rate of the monacolin J catalyzed using CYP102A1 mutants. The M697 
showed the highest hydroxylation activity among the tested mutants. The rates of the major product 
formation using 17 mutants are presented as the mean ± SEM of triplicate measurements. 

To characterize the chemical structure of the major product, the reaction was ana-
lyzed using LC–MS (Figure 4). A full-scan chromatogram of the reaction mixture of mon-
acolin J with M697 showed that monacolin J (Figure 4A) was converted to several products 
(Figure 4B). The results of the LC–MS analysis indicated that the major product (m/z = 359) 
(tR = 20.42 min) was hydroxylated (Figure 4D) when compared to the substrate, namely, 
monacolin J (m/z = 343) (Figure 4C). 

 
Figure 4. LC–MS results of the product of monacolin J when using CYP102A1. LC–MS chromato-
gram of monacolin J (A) and its reaction mixture catalyzed using CYP102A1 in the presence of 
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NADPH (B). The MS spectra demonstrated that the m/z values of the protonated molecular ions of 
monacolin J (C) and its hydroxylated product (D) were 343 and 359, respectively. 

After the major product was collected and dried, its spectral assignments were car-
ried out with 1H NMR, 13C NMR, and two-dimensional experiments. Figure 5 shows the 
one-dimensional 1H and 13C NMR spectra of monacolin J and its major product. The 1H 
NMR results of monacolin J that were obtained in CD3OD at 600 MHz were in good agree-
ment with the previous assignment of monacolin J [13]. The chemical structure of the 
product was identified as 6’a-hydroxymethyl monacolin J. In the 1H and 13C NMR spectra 
of 6’a-hydroxymethyl monacolin J, methyl protons (1.19 ppm, doublet) and carbon (23.78 
ppm) at the C-6’a location of the original substrate, namely, monacolin J, disappeared and 
new CH2 peaks (1H: 3.50 ppm, 13C: 67.71 ppm) appeared (Figure 5). Detailed 1H and 13C 
assignments according to the analysis of two-dimensional spectra (COSY, HSQC, and 
HMBC) are listed in Tables S2 and S3. 

 
Figure 5. NMR results of the major product of monacolin J when using CYP102A1. (A) Expanded 
1H NMR spectra of monacolin J and its product, namely, 6’a-hydroxymethyl monacolin J (0.7~3.7 
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ppm region). Chemical shift of methyl protons at C-6’a of monacolin J moved downfield at 3.50 
ppm. (B) 13C NMR spectra of monacolin J and its product, namely, 6’a-hydroxymethyl monacolin J. 

2.2. Kinetics Parameters and Total Turnover Numbers (TTNs) of Monacolin J Hydroxylation 
Using CYP102A1 

Four mutants (M16V2, M380, M371, and M697) with high monacolin J hydroxylation 
activity among the tested CYP102A1 mutants were used to determine the kinetic param-
eters. Table 1 shows the steady-state kinetics of 6′a-hydroxymethyl monacolin J formation. 
M697 showed the highest kcat value of 1.01 min−1 and the lowest Km value of 92 μM among 
the tested CYP102A1 mutants. M697 also showed the highest catalytic efficiency when 
converting monacolin J to 6’a-hydroxymethyl monacolin J. 

Table 1. Kinetic parameters of monacolin J hydroxylation using M380, M371, M697, and CYP16V2. 

Enzymes kcat (min−1 ) Km (μM) kcat/Km (min−1μM−1) 

M16V2 0.086 ± 0.025 117 ± 97 0.00074 ± 0.00065 
M380 0.24 ± 0.07 656 ± 285 0.00037 ± 0.00019 
M371 0.88 ± 0.26 527 ± 256 0.0017 ± 0.0009 
M697 1.01 ± 0.14 92 ± 42 0.011 ± 0.005 

When the time profiles of the reactions with three mutants were determined by pro-
longing the incubation time from 1 to 120 min, the formation of 6’a-hydroxymethyl mon-
acolin J increased with the reaction time. The total turnover number (TTN, nmol prod-
uct/nmol enzyme) of M697 reached the highest levels of 38 at 120 min of reaction time. 
For M371, it showed the maximum TTN value at 30 min of 22. Meanwhile, M380 showed 
the lowest values compared with M371 and M697 (Figure 6). 

 
Figure 6. Time profiles of 6’a-hydroxymethyl-monacolin J formation, which was catalyzed using 
M380, M371, and M697. TTN values were determined using HPLC after accomplishing the reactions 
at indicated times at 37 °C. The formation of 6’a-hydroxymethyl monacolin J was measured in the 
reaction mixtures containing 0.2 μM of P450, an NADPH regeneration system, and monacolin J (0.30 
mM) for a total volume of 0.25 mL. 

2.3. Hydroxylation of Monacolin J Catalyzed Using Human Liver Microsomes 
Monacolin J is found in red yeast rice [13]. Therefore, during the consumption of red 

rice, the oxidative metabolism of monacolin J with the enzymes occurs in the human liver. 
In the human liver microsomes (HLMs), there are some prominent P450 enzymes that are 
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involved in oxidation processes, such as the CYPs 1A2, 3A4, 2C19, and 2D6 [24,25]. This 
study of the ability of P450 enzymes in HLMs to catalyze monacolin J hydroxylation adds 
to the knowledge about the monacolin J oxidative metabolism in the body. When mon-
acolin J was incubated with HLMs and recombinant human CYPs, such as the CYPs 2C9, 
2E1, 2C19, 3A4, and 2D6, only HLMs and CYP3A4 (0.040 nmol product min−1 nmol P450−1) 
showed the apparent catalytic activity of monacolin J hydroxylation (Figures 7 and 8). The 
CYPs 2C9, 2E1, 2C19, and 2D6 did not show catalytic activity (<0.005 min−1). The major 
product peak showed the same retention time (tR = 20.4 min) as that produced by the 
CYP102A1 M697 mutant. When the kinetic parameters of HLMs for monacolin J hydrox-
ylation were determined, the kcat and Km values were 0.10 min−1 and 424 μM, respectively. 
The monacolin J hydroxylation reactions that were catalyzed by HLMs and CYP3A4 were 
also examined using LC–MS analysis (Figure 8) and similar results to those of the 
CYP102A1 M697 were obtained (Figure 4). The major product (m/z = 359) was a hydrox-
ylated product when compared to the substrate, namely, monacolin J (m/z = 343). This 
result indicated that HLMs had the same regioselective hydroxylation activity toward 
monacolin J to produce the same hydroxylated product with M697. Taken together, it is 
reasonable to consider that the human P450 enzymes can participate in the catalytic hy-
droxylation of monacolin J in the HLMs. 

 
Figure 7. HPLC chromatograms of monacolin J and its products when using HLMs. The reaction 
mixtures contained 0.4 μM HLMs and 0.2 mM monacolin J with or without an NADPH regenerating 
system. The major product and monacolin J appeared at 20.4 and 30.2 min, respectively. 
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Figure 8. LC–MS results of the metabolite of monacolin J when using HLMs and CYP3A4. LC–MS 
chromatogram of monacolin J that was catalyzed using HLMs (A) and CYP3A4 (C) in the presence 
of NADPH. The MS spectra demonstrated that the m/z value of the protonated molecular ion of the 
major product from both of HLMs (B) and CYP3A4 (D) was 359, which is the same as that produced 
with M697. 

2.4. Inhibitory Effects of Monacolin J and Its Product on HMG-CoA Reductase 
The inhibitory effect of monacolin J and its product, namely, 6′a-hydroxymethyl 

monacolin J, on HMG-CoA reductase was investigated. Monacolin J and its product in-
hibited the activity of HMG-CoA reductase as their concentrations increased in the range 
of 5–500 μM (Figure 9). The results showed that the product inhibited HMG-CoA reduc-
tase activity more strongly than the monacolin J substrate. The highest inhibitions of mon-
acolin J and 6’a-hydroxymethyl monacolin J were 9.7 and 60.7%, respectively, at a concen-
tration of 500 μM. The IC50 of 6′-hydroxymethyl monacolin J on HMG-CoA reductase ac-
tivity was 285 μM. The product, namely, 6′a-hydroxymethyl monacolin J, was found to 
show great potential when compared to the substrate, namely, monacolin J, which did not 
show apparent inhibitory effects up to 500 μM (<10%). The hydroxylated monacolin J can 
become a new substance with high inhibitory activity against HMG-CoA reductase, and 
it can be a good candidate for statin drugs in future research. 
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Figure 9. Inhibitory effects of monacolin J and its product on HMG-CoA reductase. The inhibitory 
activity of monacolin J and its product (6′a-hydroxymethyl monacolin J) on HMG-CoA reductase 
was determined. Monacolin J and its product were used at concentrations up to 500 μM. Data are 
shown as the means (n = 3) ± SEM. 

3. Discussion 
Cardiovascular diseases (CVDs) are the leading cause of death around the world, 

taking an estimated 17.9 million lives in 2019, representing 32% of all global deaths ac-
cording to the World Health Organization [26]. CVDs are a group of disorders of the heart 
and blood vessels, including coronary heart disease and cerebrovascular disease. More 
than four out of five CVD deaths are due to heart attacks and strokes. High levels of serum 
cholesterol, specifically low-density lipoprotein cholesterol (LDL-C), are associated with 
an increased risk of atherosclerotic CVDs. LDL-C reduction with statins has been a popu-
lar therapy for CVD prevention because statin treatment leads to reduced serum levels of 
total cholesterol, LDL-C, and triacylglycerols [27,28]. The significance of statins was rec-
ognized in the primary and secondary prevention of atherosclerotic CVDs [28–33]. In pri-
mary prevention, statins substantially decrease CVD morbidity, but only moderately re-
duce CVD mortality [27–33]. Statin use for primary prevention can be effective for indi-
viduals at high risk of CVD [28]. The beneficial effects of statins in secondary prevention 
were reported to reduce all-cause, CVD mortality, and cardiovascular events [29,31–33]. 

In this study, we made a novel hydroxylated product of monacolin J that was cata-
lyzed using CYP102A1. Based on the results obtained and analyzed using HPLC, LC–MS, 
and NMR methods, we confirmed that the hydroxylated product of monacolin J was a 
completely new substance that has never been reported before. The position of the OH 
group of the metabolite was attached to the C-6’a position (Figure 1). 

Although the chemical, pharmacokinetic, and pharmacodynamic properties of sev-
eral popular statin compounds (i.e., atorvastatin, cervastatin, fluvastatin, lovastatin, 
simvastatin, pravastatin, rosuvastatin, and pitavastatin) are well known [34], the proper-
ties of monacolin J have not been studied extensively. The inhibitory effects of monacolin 
J and 6′a-hydroxymethyl monacolin J on HMG-CoA reductase seem to be weaker than 
those of other statins (such as simvastatin, lovastatin, fluvastatin, and atorvastatin) and 
their hydroxylated products [21]. It was reported that the IC50 of the acid form (open hy-
droxycarboxylate) of monacolin J on HMG-CoA reductase activity was 3.3 μM [13]. After 
assessing the effect of monacolin J (lactone form) on HMG-CoA reductase in this study, 
we could not obtain the IC50 value of monacolin J because only 9.7% of the HMG-CoA 
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reductase activity was inhibited at a concentration of 500 μM (Figure 9). This result sug-
gested that the acid form of monacolin J is an active form in vivo. The IC50 of 6′-hy-
droxymethyl monacolin J on HMG-CoA reductase activity was 285 μM. The product, 
namely, 6′a-hydroxymethyl monacolin J, was found to show great potential when com-
pared to the substrate, namely, monacolin J, which did not show apparent inhibitory ef-
fects up to 500 μM (<10%). 

The IC50 values of statins on HMG-CoA reductase activity depend on the report and 
were in the range from several nanomolar to several micromolar levels. It was reported 
that rosuvastatin’s ability to inhibit 50% of HMG-CoA reductase activity occurs at the 
lowest concentration (IC50 = 5.4 nM) among the tested statins, followed by atorvastatin (8.2 
nM) [35]. Other statins showed higher IC50 values: simvastatin (11.2 nM), fluvastatin (27.6 
nM), and pravastatin (44.1 nM). Another report showed the IC50 of lovastatin was 390 μM 
[36]. Other studies reported that the IC50 of atorvastatin and fluvastatin are between 40 
and 100 nM and for pravastatin, simvastatin, and lovastatin, the IC50 is between 100 and 
300 nM [37]. Previously, we found that the statins and their metabolites show different 
inhibitory effects on HMG-CoA reductase [38]. The IC50 values of other statins are as fol-
lows: 6β-OH simvastatin (2.0 μM), lovastatin (0.95 μM), 6β-OH lovastatin (1.2 μM), fluvas-
tatin (0.38 μM), atorvastatin (56 nM), and 4-OH atorvastatin (1.2 μM). 

Although all statins share a common mechanism of action, they differ in terms of 
their chemical structures, pharmacokinetic and pharmacodynamic properties, and bioa-
vailabilities [34]. Their chemical structures influence the metabolism processes of their ab-
sorption, distribution, metabolism, and excretion. Lovastatin, pravastatin, and simvas-
tatin have elimination half-lives of 1–3 h. Atorvastatin, fluvastatin, pitavastatin, and rosu-
vastatin show elimination half-lives ranging from 1 h for fluvastatin to 19 h for rosuvas-
tatin. The bioavailability of the statins differs greatly, from 5% for lovastatin and simvas-
tatin to 60% for pitavastatin. Clinical studies have demonstrated rosuvastatin to be the 
most effective for reducing low-density lipoprotein cholesterol, followed by atorvastatin, 
simvastatin, and pravastatin. 

The metabolism processes of the statins in the human body should be considered 
regarding their functions as they depend on the chemical structure of each statin [39]. 
Human P450s have an important role in the clinical drug metabolism of statin drugs 
[40,41]. CYP3A4 is responsible for atorvastatin, simvastatin, and lovastatin metabolism. 
CYP2C9 metabolizes fluvastatin and, to a lesser degree, pitavastatin. Rosuvastatin, 
pravastatin, and pitavastatin undergo negligible metabolic interactions with P450 en-
zymes. In addition, we should consider the issue of active metabolites of statins as several 
statins are administered as prodrugs and converted to active metabolites in the liver [9,42]. 

The results obtained in this study showed that HLMs and CYP3A4 participate in the 
oxidation of monacolin J. The major product of monacolin J oxidation using HLMs and 
CYP3A4 was the same as that of bacterial CYP102A1. CYP3A4 is one of the most im-
portant P450 isozymes in the metabolism of statin drugs [43]. CYP3A4 is abundant in the 
liver and small intestine and can inhibit or activate drug properties during treatment. This 
result suggests that the 6’a-hydroxymethyl monacolin J is produced by HLMs and 
CYP3A4 in the liver when red rice was consumed and that it may provide health benefits 
by reducing cholesterol biosynthesis. 

Even though the inhibitory effect of 6’a-hydroxymethyl monacolin J on HMG-CoA 
reductase is not comparable to previously known statins, this new compound can be used 
to develop new statin drug candidates. Previously, the C-8′ hydroxyl residue of monacolin 
J was used as a target site to produce novel statin derivatives by attaching different side 
chains [15]. One derivative had a very low HMG-CoA reductase IC50 and a high protection 
rate for oxidative-stress-induced neuron cell death. The new statin compound, namely, 
6’a-hydroxymethyl monacolin J, can be used as a lead to make several new statin deriva-
tives by using enzymatic (i.e., acyltransferase) and chemical modifications. Taken to-
gether, 6’a-hydroxymethyl monacolin J can be considered as a valuable intermediate for 
the synthesis of novel drug candidates using biotechnological and chemical procedures. 
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To the best of our knowledge, this is the first report to identify 6′a-hydroxymethyl 
monacolin J, which is a major product of monacolin J that is catalyzed using CYP102A1. 
The kinetic studies suggest that CYP102A1 M697 had the highest turnover for monacolin 
J among mutants (Table 1). With a new structure, 6′a-hydroxymethyl monacolin J can be 
considered an important compound for further studies on its influence on the ability to 
treat or the ability to participate in other reactions in the body. The experimental data 
suggested that 6’-hydroxymethyl monacolin J was a stronger inhibitor of HMG-CoA re-
ductase when compared with monacolin J, although it had a much higher IC50 value than 
other statins and their metabolites. This study suggests a possibility that the product, 
namely, 6’a –hydroxymethyl monacolin J, can be used as a lead for the production of new 
statin derivatives. Further modification of 6’a-hydroxymethyl monacolin J using enzy-
matic and chemical methods should be applicable in producing diverse statin derivatives. 

4. Materials and Methods 
4.1. Materials 

Monacolin J was purchased from 4Chem Laboratory (Gyeonggi-do, Korea); in addi-
tion, β-nicotinamide adenine dinucleotide phosphate (NADP+), glucose-6-phosphate, glu-
cose-6-phosphate dehydrogenase, acetonitrile, methanol, and ethyl acetate were pur-
chased from Sigma-Aldrich (St. Louis, MO, USA). Other chemicals used in this study were 
of the highest grade commercially available and used without further purification. 

HLMs were purchased from ThermoFisher Scientific (Waltham, MA, USA) and anti-
bodies against CYP3A4 and 2C19 were prepared in the previous work [44]. 

The recombinant human P450s were heterologously expressed in E. coli with a pCW 
vector containing human P450 cDNA and rat NADPH-P450 reductase (CPR). The pCW 
vectors expressing both P450 and CPR were constructed in previous studies: CYPs 1A2, 
1B1, 2E1, 3A4, 2C19, 2D6, and 2A6 [45,46]. Membrane fractions expressing each human 
P450 and rat CPR were prepared as described previously [45,46] and used for the catalytic 
activity of monacolin J hydroxylation. 

4.2. Hydroxylation of Monacolin J Catalyzed Using CYP102A1 
A set of CYP102A1 was used to screen hydroxylation activities toward monacolin J. 

The CYP102A1 variants used in this study were chosen based on previous studies. The 
mutants A5-M697 have mutations at the heme domains of M16V2 and contain the under-
lined 20 mutated amino acids of the V2 reductase domain of M16V2 (Table S1). M16V2 is 
a chimeric variant of the M16 heme domain and a reductase domain of the V2 variant [47]. 

The hydroxylation reactions of monacolin J that were catalyzed using CYP102A1 and 
human P450/rat CPR containing membrane fractions were done as follows: The reaction 
contained 0.2 nmol P450 enzyme, an NADPH regeneration system (NGS, final concentra-
tion: 10 mM glucose-6-phosphate, 0.50 mM NADP+, and 1.0 IU yeast glucose-6-phosphate 
dehydrogenase per mL), and monacolin J (0.3 mM) in a final volume of 0.25 mL of a po-
tassium phosphate buffer (0.1 M, pH 7.4). The reaction mixtures were incubated at 37 °C 
for 30 min and stopped by adding 0.6 mL of cold ethyl acetate, followed by centrifugation 
(1000× g, 20 min) to separate the organic and aqueous layers [48,49]. The organic layer was 
concentrated under a stream of nitrogen, and the residue was dissolved in 180 μL of mo-
bile phase A:B (8:2, v/v). Mobile phase A contained distilled water and 0.1% formic acid, 
mobile phase B was 100% acetonitrile, and 20 μL of samples were injected onto a Gemini 
C18 column (4.6 mm × 150 nm, i.d. 5 μm; Phenomenex, Torrance, CA, USA). The flow rate 
of the mobile phase was 0.7 mL/min, which was achieved via a gradient pump (LC-20AD; 
Shimadzu, Kyoto, Japan) using an increasing stepwise gradient of acetonitrile (mobile 
phase B) from 15 to 50% (v/v) over 55 min: 0−5 min, 15% acetonitrile; 5−25 min, 50% ace-
tonitrile; 25−45 min, 50% acetonitrile, 45–50 min, 15% acetonitrile; and 50−55 min, 15% 
acetonitrile. The detection was performed at 238 nm. 
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For the kinetic analysis of monacolin J hydroxylation using mutants, the reaction con-
tained a 0.2 nmol CYP enzyme, an NADPH regeneration system, and monacolin J 
(0.05−0.5 mM) in a final volume of 0.25 mL of a potassium phosphate buffer (0.1 M, pH 
7.4). The reaction mixtures were incubated at 37 °C for 30 min. The kinetic parameters Km 
and kcat were calculated through nonlinear regression analysis with GraphPad Prism soft-
ware (GraphPad, Software Inc., San Diego, CA, U SA). The equation for Michaelis–Men-
ten kinetics was applied. 

To study the TTNs for the concentration, 500 μM of monacolin J was used. The reac-
tion was started by adding an NADPH-generating system and incubating at 1, 5, 10, 20, 
30, 60, 90, 120, and 150 min at 37 °C. The formation rate of the hydroxylated product of 
monacolin J was determined using HPLC, as described above. 

Calibration standards of monacolin J and lovastatin were constructed from a blank 
sample (a reaction mixture without a substrate and internal standard), nine samples of 
monacolin J, and nine samples of lovastatin with concentrations of 0.2–500 μM (Figure 
S2). The peak area ratio of monacolin J to the internal standard (lovastatin) was linear with 
respect to the analyte concentration over the range of 0.2–500 μM. Quantitation of the 
product was done by comparing the peak areas of the major product to the mean peak 
areas of the internal standard (50 μM). The detection limit of the product was 5 μM. 

4.3. LC–Mass Spectrometric Analysis of a Product of Monacolin J 
To characterize the monacolin J products using CYP102A1, LC–MS analysis of the 

metabolites was executed for the comparison of fragmentation patterns and LC profiles 
with authentic compounds. M697 was incubated with 200 μM of monacolin J at 37 °C for 
1 h with an NADPH-generating system, and injection samples were prepared as described 
above. An aliquot (7 μL) of this solution was injected into the LC column. LC–MS analysis 
was carried out in electrospray ionization (negative) mode on a Shimadzu LCMS-2010 EV 
system (Shimadzu Corporation, Japan) with LCMS solution software. The separation was 
performed on a Shim-pack VP-ODS column (2.0 mm × 250 mm, Shimadzu Corporation, 
Japan). Mobile phase A was water containing 0.1% formic acid, mobile phase B was ace-
tonitrile, and mobile phase A/B run with a gradient, as described in the previous section, 
was delivered at a flow rate of 0.7 mL/min. The interface and detector voltages were 4.4 
and 1.7 kV, respectively. 

4.4. NMR Spectroscopy Analysis of Monacolin J Product 
NMR experiments were performed at 25 °C on a Varian VNMRS 600 MHz NMR 

spectrometer equipped with a carbon-enhanced cryogenic probe. Methanol-d4 was used 
as the solvent, and chemical shifts for proton and carbon-13 NMR spectra were measured 
in parts per million (ppm) relative to tetramethylsilane (TMS). All of the NMR experi-
ments were carried out with standard pulse sequences in the VNMRJ (v. 3.2) library and 
processed with the same software. 

4.5. Inhibitory Effects of Monacolin J and Its Metabolite on HMG-CoA Reductase 
The experiment was conducted on an HMG-CoA reductase assay kit from Sigma-

Aldrich. Monacolin J and its product were used as an inhibitor with concentrations rang-
ing from 5-1000 μM. Reactions were conducted and measured using a spectrophotometer 
at 340 nm. 

5. Conclusions 
In this study, the conversion of monacolin J to 6’a-hydroxymethyl monacolin J was 

investigated based on the catalysis of bacterial CYP102A1, as well as HLMs and human 
CYP3A4. Monacolin J is a statin compound and a precursor of lovastatin biosynthesis in 
the fungi Aspergillus terreus. It is also found in red yeast rice, which is made by culturing 
rice with the yeast M. purpureus. Here, new statin compounds from monacolin J were 
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made through the catalysis of CYP102A1 from B. megaterium. The catalytic ability of 
CYP102A1 was found to catalyze regioselective hydroxylation reaction toward monacolin 
J. The product, namely, C-6’a-hydroxymethyl monacolin J, demonstrated the ability to 
inhibit HMG-CoA reductase better than the monacolin J substrate itself. HLMs and 
CYP3A4 also showed the ability to catalyze monacolin J by producing the same product 
of the CYP102A1-catalyzed reaction. Based on the achieved results, we can use this strat-
egy to produce a lead compound to create new statin derivatives with high potentials for 
therapeutic abilities. 

Supplementary Materials: The following are available online at www.mdpi.com/arti-
cle/10.3390/ph14100981/s1. Figure S1; pH dependence of monacolin J formation using CYP102A1, 
Figure S2: Standard curves of the internal standard lovastatin and monacolin J, Table S1: The amino 
acid sequence of M16V2 and CYP102A1 mutants, Table S2: Detailed 1H and 13C assignments accord-
ing to the analysis of two-dimensional spectra (COSY, HSQC, and HMBC) of monacolin J, Table S3: 
Detailed 1H and 13C assignments according to the analysis of 2-dimensional spectra (COSY, HSQC, 
and HMBC) of the major product. 
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